ebook img

Meso-scale shear physics in earthquake and landslide mechanics PDF

280 Pages·2010·16.192 MB·vii, 285 p. : ill. ; 25 cm\280
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Meso-scale shear physics in earthquake and landslide mechanics

MESO-SCALESHEARPHYSICSINEARTHQUAKEANDLANDSLIDEMECHANICS © 2010 by Taylor and Francis Group, LLC Meso-Scale Shear Physics in Earthquake and Landslide Mechanics Editors Yossef H. Hatzor DepartmentofGeologicalandEnvironmentalSciences, Ben-GurionUniversityoftheNegev,Beer-Sheva,Israel Jean Sulem UniversitéParis-Est,EcoledesPontsParisTech, URNavier,CERMES,ChampssurMarne,France Ioannis Vardoulakis FacultyofAppliedMathematicsandPhysics,DepartmentofMechanics, NationalTechnicalUniversityofAthens,Athens,Greece © 2010 by Taylor and Francis Group, LLC Coverphoto:AfilledbeddingplaneinMasadarockslopes/PhotoYossefHatzor CRCPress/BalkemaisanimprintoftheTaylor&FrancisGroup,aninformabusiness ©2010Taylor&FrancisGroup,London,UK TypesetbyVikatanPublishingSolutions(P)Ltd.,Chennai,India PrintedandboundinGreatBritainbyAntonyRowe(ACPI-groupCompany), Chippenham,Wiltshire All rights reserved. No part of this publication or the information contained herein may be reproduced, storedinaretrievalsystem, ortransmittedinanyformorbyanymeans, electronic, mechanical,byphotocopying,recordingorotherwise,withoutwrittenpriorpermissionfromthe publishers. Althoughallcareistakentoensureintegrityandthequalityofthispublicationandtheinformation herein,noresponsibilityisassumedbythepublishersnortheauthorforanydamagetotheproperty orpersonsasaresultofoperationoruseofthispublicationand/ortheinformationcontainedherein. Publishedby:CRCPress/Balkema P.O.Box447,2300AKLeiden,TheNetherlands e-mail:[email protected] www.crcpress.com–www.taylorandfrancis.co.uk–www.balkema.nl LibraryofCongressCataloging-in-PublicationData Meso-scaleshearphysicsinearthquakeandlandslidemechanics/editors,YossefH.Hatzor,Jean Sulem,IoannisVardoulakis. p.cm. Includesbibliographicalreferencesandindex. ISBN 978-0-415-47558-7 (hardcover : alk. paper) -- ISBN 978-0-203-86290-2 (e-book) 1. Deformations (Mechanics) 2. Shear (Mechanics) 3. Faults (Geology) 4. Earthquakes. 5.Landslides.I.Hatzor,YossefH.II.Sulem,J.(Jean)III.Vardoulakis,I.(Ioannis)IV.Title. QE604.M472010 551.22--dc22 2009028817 ISBN:978-0-415-47558-7(Hbk) ISBN:978-0-203-86290-2(Ebook) © 2010 by Taylor and Francis Group, LLC Table of contents Preface vii I. Dynamicsoffrictionalslip 1. Thermo-andhydro-mechanicalprocessesalongfaultsduringrapidslip 3 J.R.Rice,E.M.Dunham&H.Noda 2. Slipsequencesinlaboratoryexperimentsasanaloguestoearthquakes associatedwithafaultedge 17 S.M.Rubinstein,G.Cohen,J.Fineberg&Z.Reches 3. Onthemechanismofjunctiongrowthinpre-sliding 25 A.Ovcharenko,G.Halperin&I.Etsion 4. Nanoseismicmeasurementofthelocalizedinitiationofslidingfriction 31 G.McLaskey&S.D.Glaser 5. Weaklynonlinearfracturemechanics:Experimentsandtheory 43 E.Bouchbinder,A.Livne&J.Fineberg II. Faultgaugemechanics 6. Theeffectofmineraldecompositionasamechanismoffaultweakening duringseismicslip 57 J.Sulem&V.Famin 7. Thermalmechanismsandfrictionlawsdeterminingthestability andlocalizationduringslipweakeningofshallowfaults 69 E.Veveakis,S.Alevizos&I.Vardoulakis 8. Cataclasticandultra-cataclasticshearusingbreakagemechanics 77 I.Einav&G.D.Nguyen III. Experimentalfaultzonemechanics 9. Strainlocalizationingranularfaultzonesatlaboratoryandtectonicscales 91 C.J.Marone&A.Rathbun 10. Somenewexperimentalobservationsonfractureroughnessanisotropy 105 G.Grasselli 11. Constraintsonfaultingmechanismsusing3Dmeasurementsofnaturalfaults 117 A.Sagy&E.E.Brodsky 12. Nonlinearelasticityandscalardamagerheologymodelforfracturedrocks 123 V.Lyakhovsky&Y.Hamiel 13. Damagerheologyandstableversusunstablefracturingofrocks 133 Y.Hamiel,V.Lyakhovsky,O.Katz,Y.Fialko&Z.Reches V © 2010 by Taylor and Francis Group, LLC VI Tableofcontents 14. Micro-scaleroughnesseffectsonthefrictioncoefficientofgranite surfacesundervaryinglevelsofnormalstress 145 O.Biran,Y.H.Hatzor&A.Ziv IV. Granularshearandliquefaction 15. Frictioningranularmedia 159 J.C.Santamarina&H.Shin 16. Whatcontrolstheeffectivefrictionofshearinggranularmedia? 191 M.Nataliya,L.Goren,D.Sparks&E.Aharonov 17. Porepressuredevelopmentandliquefactioninsaturatedsand 205 S.Frydman,M.Talesnick,A.Mehr&M.Tsesarsky 18. Characterizinglocalizationprocessesduringliquefactionusing inverseanalysesofinstrumentationarrays 219 R.Kamai&R.Boulanger 19. OnseismicP-andS-wavevelocitiesinunconsolidatedsediments:Accounting fornon-uniformcontactsandheterogeneousstressfieldsintheeffective mediaapproximation 239 R.Bachrach&P.Avseth V. Dynamicsoflandslides 20. Thermo-poro-mechanicaleffectsinlandslidedynamics 255 L.Goren,E.Aharonov&M.Anders 21. Mechanismsoffluidoverpressurizationrelatedtoinstabilityof slopesonactivevolcanoes 275 D.Elsworth,B.Voight&J.Taron Authorindex 285 © 2010 by Taylor and Francis Group, LLC Preface This book brings together a collection of invited articles on meso-scale mechanics, as a means to develop an understanding of the underlying physics dominating shear at material interfaces andwithinparticulatesystemsduringconditionsofrapidshearing.Thiseditedvolumeemanated from the ‘‘Batsheva Seminar on Shear Physics at the Meso-scale in Earthquake and Landslide Mechanics’’,sponsoredbytheBatshevadeRothschildfundoftheIsraelAcademyofSciencesand Humanitiesandco-sponsoredjointlybytheUSAirForceResearchLaboratoryandtheBen-Gurion UniversityoftheNegev. Identificationofmeso-scalephenomenaoccurringbetweenmicroscopicandcontinuumlength scaleshasbeenoneofthemostexcitingdevelopmentsinthelastdecadesinunderstandingshear betweenmaterialinterfacesandinparticulatesystems,andisconsideredasthebridgebetweenthe twolengthscalesforstudyingmaterialresponse.Atthemeso-scalecomplexitiesariseduetothe presenceofstructuralelementslikesurfaceroughness,grains,internalboundariesbetweenthem, physical phenomena occurring at surfaces, formation of sub-grain elements during loading, the presenceoffluids,interactionbetweendifferentmaterials,andtheircombinedeffectontheresponse ofthesystem.ThisresearchareahasbroadapplicationsinGeosciencesandGeoengineering.For example, the initiation of seismic slip along fault planes at great depths at rates nearing shock conditionsandtheinitiationofdeepseatedlandslidesneartheearth’ssurface.Additionally,thebasic physicsofthermo-poro-mechanicalcouplingcanbeelucidatedthroughameso-scalemechanics approach as a means of understanding the loss of shearing resistance when water and heat are trappedinsidealmostimperviousshearlayersundergreatpressures. Inthecaseofseismicslip, tremendousamountofmaterialslipsatveryhighvelocities(severalmeterspersecond)onultra localizedshearzones.Shearheatingandfluidpressurizationcanbeassociatedtophenomenasuch asphasetransitionandmineraldecompositionandthusplayakeyroleintheunderstandingofthe energeticsofearthquakes.Inthecaseofdeepseatedlandslides,thermo-poro-mechanicalprocesses withinlocalizedshearzonescontroltheirtriggering,theirslidingvelocityandconsequentlytheir runout. The21,peer-reviewedarticlesaregroupedintofivechaptersthataddresstheoretical,compu- tationalandexperimentalaspectsofmeso-scalemechanicsofmaterialinterfacesandparticulate systemsasfollows:1)Dynamicsoffrictionalslip,2)Faultgaugemechanics,3)Experimentalfault zonemechanics,4)Granularshearandliquefaction,and5)Dynamicsoflandslides. WewishtoexpressourdeepgratitudetoDr.YossiSegal,SecretaryofNaturalSciences,Israel AcademyofSciences;Dr.MajorWynnS.Sanders,ChiefofMaterialsandNanotechnology,Euro- pean Office of Aerospace Research and Development—USAF, Professor Rivka Carmi (M.D.), President, Ben-Gurion University of the Negev, Professor Jimmy Weinblatt, Rector, BGU, and ProfessorAmirSagi,Dean,FacultyofNaturalSciences,BGU,fortheirfinancialsupport.Finally, wealsowishtothankDr.ConradFeliceofWashingtonStateUniversityforcochairingtheBatsheva seminarandforhisresourcefulassistancethroughouttheproductionoftheseminar. YossefH.Hatzor JeanSulem IoannisVardoulakis Editors VII © 2010 by Taylor and Francis Group, LLC I. Dynamics of frictional slip © 2010 by Taylor and Francis Group, LLC Thermo- and hydro-mechanical processes along faults during rapid slip JamesR.Rice DepartmentofEarthandPlanetarySciencesandSchoolofEngineeringandAppliedSciences, HarvardUniversity-SEAS,Cambridge,MA,USA EricM.Dunham DepartmentofGeophysics,StanfordUniversity,Stanford,CA,USA HiroyukiNoda DivisionofGeologicalandPlanetarySciences, CaliforniaInstituteofTechnology,Pasadena,CA,USA ABSTRACT: Field observations of maturely slipped faults show a generally broad zone of damage by cracking and granulation. Nevertheless, large shear deformation, and therefore heat generation, inindividualearthquakestakesplacewithextremelocalizationtoazone <1–5mm widewithinafinelygranulatedfaultcore.Relevantfaultweakeningprocessesduringlargecrustal eventsarethereforelikelytobethermal.Further,giventheporosityofthedamagezones,itseems reasonabletoassumegroundwaterpresence.Itissuggestedthatthetwoprimarydynamicweak- eningmechanismsduringseismicslip,bothofwhichareexpectedtobeactiveinatleasttheearly phasesofnearlyallcrustalevents,arethenasfollows:(1)Flashheatingathighlystressedfrictional micro-contacts,and(2)Thermalpressurizationoffault-zoneporefluid.Bothhavecharacteristics whichpromoteextremelocalizationofshear.Macroscopicfaultmeltingwilloccuronlyincasesfor whichthoseprocesses,orotherswhichmaysometimesbecomeactiveatlargeenoughslip(e.g., thermal decomposition, silica gelation), have not sufficiently reduced heat generation and thus limitedtemperaturerise.Spontaneousdynamicrupturemodeling,usingproceduresthatembody mechanisms(1)and(2),showshowfaultscanbestaticallystrongyetdynamicallyweak,andoper- ateunderlowoveralldrivingstress, inamannerthatgeneratesnegligibleheatandmeetsmajor seismicconstraintsonslip,stressdrop,andself-healingrupturemode. 1 INTRODUCTION Therehasbeenasurgeofactivityinrecentyearstowardsincreasedphysicalrealismindescription oftheearthquakeprocess.Thatincludesinsightfulgeologicalcharacterizationofthefinestructure offaultzones, newlaboratoryexperimentsthatrevealresponsepropertiesinrapidorlargeslip, andnewtheoreticalconceptsformodelingdynamicrupture.Thepurposehereistoreviewsome ofthosenewperspectivesandtheirimpactonhowwethinkaboutearthquakerupturedynamics. 1.1 Faultzonestructure,frictionandaquandaryinseismology Fieldobservationsofmaturelyslippedfaultsshowagenerallybroadzoneofdamagebycrackingand granulation(Chesteretal.,1993),butneverthelesssuggestthatshearinindividualearthquakestakes placewithextremelocalizationtoalong-persistentslipzone,<1–5mmwide,withinordirectly borderingafinelygranulated,ultracataclasticfaultcore(ChesterandChester,1998;Chesteretal., 2003,2004;Heermanceetal.,2003;WibberleyandShimamoto,2003). Ontheotherhand,theshearstrengthalongafaultmayberepresentedby τ =fσ where σ =σ −p (1) n f Heref isthefrictioncoefficient,σ istheeffectivenormalstress,σ isthetotalnormalstress n clampingthefaultshut,andp istheporepressurealongit.Itiswellknownthatlabestimatesoff f 3 © 2010 by Taylor and Francis Group, LLC 4 JamesR.Rice,etal. forrocks(underslidingratesof,say,μm/stomm/s)areusuallyhigh,f ∼0.60–0.85(e.g.,Byerlee (1978)). Giventhatfaultslipzonesseemtobesoextremelythin,onemustconcludethatifthosef prevail duringseismicslip,withp thatismuchclosertohydrostaticthanlithostatic,weshouldfindthe f following: (a)measurableheatoutflownearmajorfaults, and(b)evidenceofextensivemelting alongexhumedfaults.However,neithereffect(a)or(b)isgenerallyfound. 1.2 Weakfaults,vs.staticallystrongfaultsthatdynamicallyweaken Therearetwogenerallinesofexplanationthathavebeenexploredtoresolvethisquandary.One lineofexplanationsimplypostulatesthatmajorfaultsareweak.Thatcouldbebecausefaultcore materialsaresimplydifferentfrommostrocksandhaveverylowf,e.g.,likedocumentedforsome claysandtalc.Alternatively,itcouldbebecausef isnotnecessarilylow,butporepressurep is f highandnearlylithostaticovermuchofthefault,especiallydown-dipwhereσ islarge. n It is not the purpose here to argue against such weak-fault lines of explanation, but rather to explore an alternative which we are led to by recent observations. That is that major faults are staticallystrongbutdynamicallyweakenduringseismicslip.Owingtotheextremethinnessofslip zones,therelevantfaultweakeningprocessesduringlargecrustaleventsarelikelytobethermal and, given the damage zones and geologic evidence of water-rock interactions within them, it seemsreasonabletoassumefluidpresence.Ofthevariousdynamicweakeningprocessesthusfar identified,ithasbeenarguedthattwoshouldbesingledoutasbeingessentiallyuniversal,inthat theyareexpectedtobeactiveandimportantfromthestartofseismicslipincrustalevents(Rice, 2006;RiceandCocco,2007).Theseareasfollows: 1. Flashheatingandhenceshearweakeningoffrictionalmicro-asperitycontacts,aprocesswhich reducesf inrapidslip,and 2. Thermalpressurizationofporefluid,whichreducestheeffectivestress;p increases,because f thehighlygranulatedfaultgougeisoflowpermeabilityandthethermalexpansioncoefficient ofwaterismuchgreaterthanthatoftherockparticles. Other thermal weakening processes may set in at large enough slip or large enough rise in temperatureT alongthefault.Theseincludethefollowing: f 3. ThermaldecompositionatlargeriseinT inlithologiessuchascarbonates, thusliberatinga f fluidproductphaseathighporepressure, 4. Formationofagel-likelayeratlargeslipinwetsilica-richfaultzones,orsomerelatedprocess relyingonthepresenceofsilicaandwater,and 5. Theultimatethermalweakeningmechanism,formationofamacroscopicmeltlayeralongthe faultatlargeenoughslipandriseofT ,if theabovesethasnotlimitedtheactualincreaseof f T tolevelslowerthatthatforsuchbulkmelting. f While we focus on processes (1) and (2), it is very important to understand (3), (4), and (5) and others not yet identified. Still, in a sense the latter are secondary, because one expects that some significant earthquake slip, and fault weakening, will already have occurred before they can become activated. Preliminary estimates (Rempel and Rice, 2006) of when (5) would set- insuggestthatwithhydrostaticp andrepresentativematerialparameterranges, (1)and(2)are f sufficiently effective at shallow fault depths that slip in significant earthquakes could often be accommodated without an onset of macroscopic melting, but that deeper in a fault zone, where theinitialσ −p (whichscalestherateofheatinput), andtheinitialT , arehigher, meltonset n f f shouldoccurduringincreasingslipoftypicalsurface-breakingearthquakes.Forquantificationof theslipsandparameterrangesinvolved,seeRempelandRice(2006). Flashheating, weakeningprocess(1), isamechanismthathasbeenadvancedtoexplainhigh speedfrictionalweakeninginmetals(BowdenandThomas,1954;Archard,1958/59;Ettles,1986; LimandAshby, 1987; Limetal., 1989; Molinarietal., 1999). Itisonlyrelativelyrecentlythat ithasbeenconsideredasaprocessactiveduringearthquakeslip(Rice, 1999, 2006; Beelerand Tullis, 2003; Beeler et al., 2008; Tullis and Goldsby, 2003a,b; Hirose and Shimamoto, 2005; © 2010 by Taylor and Francis Group, LLC Thermo-andhydro-mechanicalprocessesalongfaultsduringrapidslip 5 Nodaetal.,2006;Noda,2008).Becauseoftherelativelylowthermalconductivityofmostrocks, andtherelativelyhighshearstresseswhichtheysupportatfrictionalmicro-contacts, theyarein fact susceptible to weakening by flash heating starting at sliding rates as low as 0.1 to 0.3 m/s, which is well less than the average slip rate of ∼1 m/s (Heaton, 1991) inferred from seismic inversions for large earthquakes. Thermal pressurization, process (2), has independent roots in the literature on large landslides (Habib, 1967, 1975; Anderson, 1980; Voigt and Faust, 1982; Vardoulakis, 2002; Veveakis et al., 2007; Goren and Aharonov, 2009) and that on earthquakes (Sibson,1973;Lachenbruch,1980;MaseandSmith,1985,1987;LeeandDelaney,1987;Andrews, 2002;Wibberley,2002;NodaandShimamoto,2005;Sulemetal.,2005;Rice,2006;Rempeland Rice,2006;GhabezlooandSulem,2008;Nodaetal.,2009). Process(3),thermaldecompositionwithgenerationofahigh-pressurefluidphase(O’Haraetal., 2006; Hanetal., 2007; SulemandFamin, 2009)is, ofcourse, atypeofthermalpressurization. Inconsideringprocess(2),thefluidphaseispresumedtopre-existinporespaceswithinthefault gouge so that the pressurization begins as soon as slip and consequent frictional heating begin, whereasin(3)thefluidphasecomesintoexistenceonlyonceenoughslip,frictionalheating,and temperaturerisehaveaccumulatedtoinitiatethedecomposition.Process(4)isbasedonfindings fromexperimentsatlargebutsub-seismic(inresultsreportedthusfar)slipthat,inpresenceofwater, frictionalweakeningatlargeslipisgreatestforrocksofgreatestsilicacontent(GoldsbyandTullis, 2002;DiToroetal.,2004;RoigSilvaetal.,2004).Theweakeningisarguedtobeduetoformation ofaninitiallyweaksilica-gellayerthroughreactionofwaterwithfinesilicaparticlesfromfresh comminutionalongtheshearzone. Therearemanystudiesofprocess(5), macroscopicmelting infaultzones,ofwhichthelong-livedsignatureisnoncrystallinepseudotachylyteveinsalongthe faultsurfaceandinside-wallinjections.RecentcontributionsincludeSpray(1995),Tsutsumiand Shimamoto(1997),FialkoandKhazan(2004),HiroseandShimamoto(2005),Sironoetal.(2006), andNielsenetal.(2008). 2 DYNAMICRUPTUREFORMULATION 2.1 Elastodynamicmethodology Nodaetal. (2006, 2009)andDunhametal. (2008)havebeguntointegrateweakeningbyflash heating and thermal pressurization into elastodynamic numerical methodology for spontaneous rupture development. The problems thus far addressed are of rupture along a planar fault zone within an effectively unbounded and homogeneous solid. For those, the implementation of an elastodynamicboundaryintegralequation(BIE),withaspectralbasissetfortheslipandstress distributions (Perrin et al., 1995; Geubelle and Rice, 1995) is extremely efficient and accurate. Resultshavebeenobtainedfor2Danti-planeorin-planestrain.Intheformulation,withthexaxis passingalongthefaultplane,theshearstressτ(x,t)alongthefaultandtheslipδ(x,t)arerelatedby τ(x,t)=τ (x,t)−(μ/2c )V(x,t)+φ(x,t) (2) 0 s whereV(x,t)≡∂δ(x,t)/∂tissliprate,μistheshearmodulus,c istheshearwavespeed,andthe s functionalφ(x,t)isgivenasalinearspace-timeconvolutionofanelastodynamickernel,dependent onx−x(cid:4)andt−t(cid:4),withtheslipδ(x(cid:4),t(cid:4))forallx(cid:4),t(cid:4)withinthewaveconewithvertexatx,t.Here τ (x,t)issomespecifiedloadingstressonthefault;itisthestressthatwouldhavebeeninduced 0 bytheappliedloadingsifthefaulthadbeenconstrainedagainstanyslip.Weprescribeτ (x,t)asa 0 uniformbackgroundstressτbforalltime,plussomelocalizedoverstressappliedatt =0tonucleate rupture.δ(x,t)andφ(x,t)areexpandedinaFourierbasisset,sotheconvolutionisexpressedby (cid:2) (cid:3) (cid:4)N/2 (cid:2) (cid:3) (cid:5)t δ(x,t) = Dn(t) exp(inkˆx) with(cid:7) (t)= C (t−t(cid:4))D (t(cid:4))dt(cid:4) (3) φ(x,t) (cid:7) (t) n n n n n=−N/2 0 © 2010 by Taylor and Francis Group, LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.