ebook img

Meshing, Geometric Modeling and Numerical Simulation 2: Metrics, Meshes and Mesh Adaptation. PDF

399 Pages·2019·16.15 MB·English
by  Alauzet
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Meshing, Geometric Modeling and Numerical Simulation 2: Metrics, Meshes and Mesh Adaptation.

Meshing, Geometric Modeling and Numerical Simulation 2 Geometric Modeling and Applications Set coordinated by Marc Daniel Volume 2 Meshing, Geometric Modeling and Numerical Simulation 2 Metrics, Meshes and Mesh Adaptation Paul Louis George Houman Borouchaki Frédéric Alauzet Patrick Laug Adrien Loseille Loïc Maréchal First published 2019 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2019 The rights of Paul Louis George, Houman Borouchaki, Frédéric Alauzet, Patrick Laug, Adrien Loseille and Loïc Maréchal to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2018962437 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-117-8 Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter1.Metrics,DefinitionsandProperties . . . . . . . . . . . . . . . . . . . . . . 1 1.1.Definitionsandproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.Metricinterpolationandintersection . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1.Metricinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2.Metricintersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.Geometricmetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1.Geometricmetricforacurve . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.2.Geometricmetricforasurface . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.3.Turninganymetricintoageometricmetric . . . . . . . . . . . . . . . . . . . 23 1.4.Meshingmetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.Metricsgradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6.Elementmetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.6.1.Metricofasimplicialelement . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.6.2.Metricofanon-simplicialelement . . . . . . . . . . . . . . . . . . . . . . . . 37 1.6.3.Metricofanelementofarbitrarydegree . . . . . . . . . . . . . . . . . . . . . 38 1.7.Elementshapeandmetricquality. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.8.Practicalcomputationsinthepresenceofametric . . . . . . . . . . . . . . . . . . 46 1.8.1.Calculationofthelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.8.2.Thecalculationofanangle,areaorvolume . . . . . . . . . . . . . . . . . . . 49 Chapter2.InterpolationErrorsandMetrics . . . . . . . . . . . . . . . . . . . . . . . 53 2.1.Someproperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.2.Interpolationerrorofaquadraticfunction . . . . . . . . . . . . . . . . . . . . . . . 55 2.3.Bézierformulationandinterpolationerror . . . . . . . . . . . . . . . . . . . . . . . 62 2.3.1.Foraquadraticfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.2.Foracubicfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3.3.Forapolynomialfunctionofarbitrarydegree . . . . . . . . . . . . . . . . . . 80 vi Meshing,GeometricModelingandNumericalSimulation2 2.3.4.Errorthresholdormeshdensity. . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.4.Computationsofdiscretederivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.4.1.TheL2doubleprojectionmethod . . . . . . . . . . . . . . . . . . . . . . . . 86 2.4.2.Greenformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.4.3.LeastsquareandTaylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Chapter3.CurveMeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.1.Parametriccurvemeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.1.1.CurveinR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.1.2.Aboutmetricsusedandcomputationsoflengths . . . . . . . . . . . . . . . . 99 3.1.3.Curveplottedonapatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2.Discretecurvemeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.3.Remeshingameshedcurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Chapter4.SimplicialMeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.1.Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.2.Variety(surface)meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2.1.Patch-basedmeshing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.2.2.Discretesurfaceremeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2.3.Meshingusingavolumemesher . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3.Themeshingofaplaneorofavolumedomain . . . . . . . . . . . . . . . . . . . . 122 4.3.1.Tree-basedmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.3.2.Front-basedmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.3.3.Delaunay-basedmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.3.4.Remeshingofamesheddomain . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.4.Othergenerationmethods? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Chapter5.Non-simplicialMeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.2.Varietymeshing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.Constructionmethodsformeshingaplanarorvolumedomain . . . . . . . . . . . 145 5.3.1.Cylindricalgeometryandextrusionmethod . . . . . . . . . . . . . . . . . . . 147 5.3.2.Algebraicmethodsandblock-basedmethods . . . . . . . . . . . . . . . . . . 148 5.3.3.Tree-basedmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.3.4.Pairingmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.3.5.Polygonalorpolyhedralcellmeshing . . . . . . . . . . . . . . . . . . . . . . 176 5.3.6.Constructionofboundarylayers . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.4.Othergenerationmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 5.4.1.“Q-morphism”or“H-morphism”meshing . . . . . . . . . . . . . . . . . . . 182 5.4.2.Meshingusingareferenceframefield . . . . . . . . . . . . . . . . . . . . . . 183 5.5.Topologicalinvariants(quadrilateralsandhexahedra) . . . . . . . . . . . . . . . . 185 Chapter6.High-orderMeshConstruction . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.1.Straightmeshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Contents vii 6.1.1.Localnodenumbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.1.2.Overallnodenumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.1.3.Nodepositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.1.4.Onfillingupmatricesaccordingtoelementdegrees . . . . . . . . . . . . . . 207 6.2.Constructionofcurvedmeshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.2.1.First-degreemesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.2.2.Nodecreation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.2.3.Deformationandvalidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.2.4.Generalscheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.3.Curvedmeshesonavariety,curveorsurface . . . . . . . . . . . . . . . . . . . . . 215 Chapter7.MeshOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.1.Towardadefinitionofquality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 7.2.Optimizationprocess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 7.2.1.Globalmethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 7.2.1.1.Optimizationofacostfunction . . . . . . . . . . . . . . . . . . . . . . . 233 7.2.1.2.Iterativerelaxationofthepositionofverticesbyduality(simplices) . . 234 7.2.1.3.Globaloptimizationofthepositionofvertices(quadrilateralsandhex- ahedra). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 7.2.2.Localoperatorsandlocalmethods . . . . . . . . . . . . . . . . . . . . . . . . 236 7.2.2.1.Vertexmovesbybarycentering . . . . . . . . . . . . . . . . . . . . . . . 236 7.2.2.2.VertexmovesandLaplacianoperator . . . . . . . . . . . . . . . . . . . 237 7.2.2.3.Movingorremovingverticesandflipsbyinsertionorreinsertion . . . 241 7.2.2.4.Edgeflips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 7.2.2.5.Clusterofedgeflips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 7.2.2.6.Edgeorfaceflipbyreinsertion . . . . . . . . . . . . . . . . . . . . . . . 244 7.2.2.7.Edgeslicing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 7.2.2.8.Removalofanedgebymerging . . . . . . . . . . . . . . . . . . . . . . 245 7.2.2.9.Metricfieldupdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.2.2.10.Topologicalandmetriccriteria . . . . . . . . . . . . . . . . . . . . . . 246 7.2.2.11.Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.3.Planarmesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7.4.Surfacemesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 7.5.Volumemeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 7.6.High-degreemeshing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Chapter8.MeshAdaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 8.1.Genericframeworkforadaptivecomputation,thecontinuousmesh . . . . . . . . 266 8.1.1.Dualitybetweendiscreteandcontinuousgeometricentities . . . . . . . . . . 267 8.1.2.Dualitybetweendiscreteandcontinuousinterpolationerror . . . . . . . . . 269 8.1.3.Discrete–continuousdualityinonediagram. . . . . . . . . . . . . . . . . . . 272 8.2.OptimalcontroloftheinterpolationerrorinLp-norm . . . . . . . . . . . . . . . . 272 8.3.Genericschemeofstationaryadaptation . . . . . . . . . . . . . . . . . . . . . . . . 279 8.3.1.Errorestimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 8.3.2.Interpolationofsolutionfields . . . . . . . . . . . . . . . . . . . . . . . . . . 287 viii Meshing,GeometricModelingandNumericalSimulation2 8.4.Unsteadyadaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 8.4.1.Space–timeerrorestimatorsbasedonthecharacteristicsofthesolution . . . 290 8.4.2. Extension of the error analysis for the fixed-point algorithm for unsteady meshadaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 8.4.3.Meshadaptationforunsteadyproblems . . . . . . . . . . . . . . . . . . . . . 292 8.4.4.Unsteadymeshadaptationtargetedatafunctionofinterest . . . . . . . . . . 294 8.4.5.Conservativeinterpolationofsolutionfields. . . . . . . . . . . . . . . . . . . 295 8.5.Mobilegeometrywithorwithoutdeformation . . . . . . . . . . . . . . . . . . . . 297 8.5.1.Generalcontextoftheadaptationformobileand/ordeformablegeometries. 297 8.5.2.ALEcontinuousoptimalmeshminimizingtheinterpolationerrorinLp-norm 298 8.5.3.Space–timeerrorestimatorformovinggeometryproblems . . . . . . . . . . 300 Chapter9.MeshingandParallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 9.1.Renumberingviaafillingcurve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 9.2.Parallelism:twomemoryparadigmsanddifferentstrategies . . . . . . . . . . . . 307 9.3.Algorithmparallelizationformeshconstruction . . . . . . . . . . . . . . . . . . . 312 9.4.Parallelizationofameshconstructionprocess,partitionthenmeshing . . . . . . . 324 9.5.Meshparallelization,meshingthenpartition . . . . . . . . . . . . . . . . . . . . . 326 Chapter10.Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 10.1.Surfacemeshing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 10.2.Incomputationalfluiddynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 10.3.Computationalsolidmechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 10.4.Computationalelectromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 10.5.Renumberingandparallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 10.6.Othermoreexoticapplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 Chapter11.SomeAlgorithmsandFormulas . . . . . . . . . . . . . . . . . . . . . . . . 353 11.1.Localnumberingofnodesofhigh-orderelements. . . . . . . . . . . . . . . . . . 354 11.2.Lengthcomputationsetc.,inthepresenceofametricfield . . . . . . . . . . . . . 364 11.3.Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 ConclusionsandPerspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 Foreword The“GeometricModelingandApplications”seriesismadeupoffivevolumesofresearch ongeometricmodeling. Theactofgeometricmodelingisanage-oldone. Tolookatafewkey pointsinitshistory: geometristsinantiquitydevotedthemselvestoit,though,ofcourse,ithad adifferentformfromthatwhichweknowtoday; Descartes, inthemid-17thCentury, worked onpartitioningofplanes;andVoronoiestablishedconceptsrelatingtothistowardtheendofthe 19thCentury. Butgeometricmodeling,asweunderstanditnow,canbeconsideredtobelinkedtotheuseof computers,especiallysincethistoolhasbecomeubiquitous.Wearetemptedtofixthescientific recognitionofthisactivitytothedateofthe“FirstConferenceonComputerAidedGeometric Design”,whichtookplaceinMarch1974attheUniversityofUtah. ThiswasorganizedbyR. Barhnill and R. Riesenfeld, whose presentations may be found in the book “Computer Aided GeometricDesign, AcademicPress, 1974”, whichclearlyassociatesgeometricmodelingwith thecomputer. Sincethen,manydetailedandhigh-qualitybookshavebeenpublishedinthisfield. Oneof thepioneeringworkswas,undoubtedly,thatauthoredbyD.FauxandM.Pratt,“Computational Geometry for Design and Manufacture, Ellis Horwood Publishers, 1979”. Some books went throughseveraleditions,takingnoteoftheadvancesmadeinresearchinthefield.Inthiscontext, bringingoutanewgeneralbookonthesubjectwouldmarknosignificantscientificprogress. Moreover,foranyobjectorentitythatistobemodeled,thereisnosinglegeometricmodel. Instead, thereareseveralgeometricmodels, eachbeingadaptedtotheprocessestobecarried out. For example, the model to finely analyze the shape of an object is necessarily different frommodelsthatareusedformechanicalcomputationsonthissameobject.Wehave,therefore, chosentofocusonspecificpointsofresearchinfieldsthatwefindparticularlyimportant.Thus, thefivereferencesgivenhere,writtenbyspecialists,bringyouuptodateonadvancesinresearch infivedomains: •“Constraintsandgeometricmodeling”, byDominiqueMichelucci, PascalSchreck and PascalMathis,looksatgeometricproblemsthatcanbeapproachedbydescribingtheconstraints, geometricormorecomplex,thatasolutionmustverify,ratherthandirectlygivingthegeometric definitionofsuchasolution. x Meshing,GeometricModelingandNumericalSimulation2 •“GeometricmodelingoffractalformsCAD”,byChristianGentil,DmitrySokolovand GillesGouaty,discussesthedefinitionoffractalforms:thisformalismmakesitpossibletoreuse smoothformsofgeometricmodelsthatareclassictodaytodefineformsthathavenotyetbeen exploredtillpresent. •“Meshing,geometricmodelingandnumericalsimulation”,intwovolumes,byHouman Borouchaki and Paul Louis George, details methodologies advanced for the construction of meshes and geometric modeling for numerial simulation with applications, especially in me- chanics. •“Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis”, by Jean-Luc Mari, Franck Hétroy-Wheeler and Gérard Subsol, studies the analysis of three- dimensional-meshedshapesviatheextractionofcharacteristics,bothgeometricandtopological. Thefieldsofapplicationarealsodetailedtoillustratethetransdisciplinarynatureofthiswork. •“RelevantTriangulationsandSamplingsfor3DShapes”,byRaphaëlleChaineandJulie Digne,discussessampling,meshingandcompressionoffreeformsfromalargequantityofreal datafromavirtual,interactivedeformationprocess. Thesearebooksthatpresentrecentresearch. Thereadercanfind, inthegeneralbookson geometricmodelingthatwerementionedbefore,elementstofillanygapstheymayhaveandto enablethemtoreadthebooksinthisseries. Happyreading. MarcDANIEL Introduction Triangulations and, more precisely, meshes, with the subtle difference that separates these twoentities, lieattheheartofanynumberofproblemsthatarisefromvariedscientificdisci- plines. Atriangulationorameshisadiscreterepresentation,usingsimplegeometricelements (triangle,quadrilateral,tetrahedron,etc.,anyarbitrarypolygonorpolyhedron),ofadomainthat maybeanobjectoraregionofwhichwewantadiscrete,spatialdescription. Thereare,thus, manyapplications,includingnumericalsimulationsofanykindofphysicalproblem,thoughnot restrictedtothese. Inparticular,adiscreterepresentationofa(volume)objectorasurfacemay simplybeseenasageometricmodelingproblemasis.Thisbookadoptsadoublepointofview, asindicatedbyitstitle,andwewilllookbothattheuseofmeshesinnumericalsimulations(the finiteelementmethod,especially)with,ofcourse,theunderlyingconstraints,aswellastheuse ofthesemeshesforthe(discrete)modelingofgeometry. The literature on triangulations and meshes may be classified in two chief categories: one morepurelymathematicalandgeometric,theothermoreorientedtowardindustrialapplications (numericalsimulations)with,ofcourse,thoughnotalways,relationsbetweenthesecategories. The first point of view is covered by the computation geometry community, which stud- ies (among others) Delaunay triangulations in all cuts, definitions, properties, construction al- gorithms and the complexity of these algorithms. They also study some applications of these triangulations. Nonetheless,relativelyrecently,meshgenerationproblemsarealsobeingstud- ied,butunderamoretheoreticalangle,generallyrelatingtosituationsthatallowfortheuseof Delaunaytriangulationsforwhichrobustconstructionmethodsaswellasinterestinggeometric propertieshavebeenknownforalongtime.This(somewhatmonotheistic)philosophynecessar- ilyimposeslimitsonthenatureoftheproblemsworked(workable).Thefirstreferencebookon thesesubjectsisthatofPreparataandShamos[Preparata,Shamos-1985]publishedin1985.This wasfollowedbyseveralothers,amongwhichwecitetwobyEdelsbrunner[Edelsbrunner-1987] and [Edelsbrunner-2001], that of Yvinnec and Boissonnat [Boissonnat,Yvinec-1997], by Dey [Dey-2007]andwindingupthelistwiththebookbyChengetal. [Chengetal. 2012],which waspublishedin2012. Withafewexceptions,theorientationchosenbythesereferencesisnot alwaysguidedbythepreoccupationsofmathematicians,engineersandtheworldofnumerical simulationingeneral.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.