ebook img

Meshing, geometric modeling and numerical simulation. 1, Form functions, triangulations and geometric modeling PDF

379 Pages·2017·40.868 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Meshing, geometric modeling and numerical simulation. 1, Form functions, triangulations and geometric modeling

Meshing, Geometric Modeling and Numerical Simulation 1 For Anahita, Amitisse and Hilda Geometric Modeling and Applications Set coordinated by Marc Daniel Volume 1 Meshing, Geometric Modeling and Numerical Simulation 1 Form Functions, Triangulations and Geometric Modeling Houman Borouchaki Paul Louis George First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2017 The rights of Houman Borouchaki and Paul Louis George to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2017948827 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-038-6 Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter1.FiniteElementsandShapeFunctions . . . . . . . . . . . . . . . . . . . . . 15 1.1.Basicconcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.Shapefunctions,completeelements . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.1.Genericexpressionofshapefunctions . . . . . . . . . . . . . . . . . . . . . . 18 1.2.2.Explicitexpressionfordegrees1–3 . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.Shapefunctions,reducedelements . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.3.1.Simplices,trianglesandtetrahedra . . . . . . . . . . . . . . . . . . . . . . . . 27 1.3.2.Tensorelements,quadrilateralandhexahedralelements . . . . . . . . . . . . 31 1.3.3.Otherelements,prismsandpyramids . . . . . . . . . . . . . . . . . . . . . . 48 1.4.Shapefunctions,rationalelements . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.4.1.Rationaltrianglewithadegreeof2orarbitrarydegree . . . . . . . . . . . . 49 1.4.2.Rationalquadrilateralofanarbitrarydegree. . . . . . . . . . . . . . . . . . . 50 1.4.3.Generalcase,B-splinesorNurbselements . . . . . . . . . . . . . . . . . . . 50 Chapter2.LagrangeandBézierInterpolants . . . . . . . . . . . . . . . . . . . . . . . 53 2.1.Lagrange–Bézieranalogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.2.LagrangefunctionsexpressedinBézierforms . . . . . . . . . . . . . . . . . . . . 55 2.2.1.Thecaseoftensors,naturalcoordinates . . . . . . . . . . . . . . . . . . . . . 55 2.2.2.Simplicialcase,barycentriccoordinates . . . . . . . . . . . . . . . . . . . . . 63 2.3.BézierpolynomialsexpressedinLagrangianform . . . . . . . . . . . . . . . . . . 66 2.4.Applicationtocurves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.4.1.BézierexpressionforaLagrangecurve . . . . . . . . . . . . . . . . . . . . . 67 2.4.2.LagrangianexpressionforaBéziercurve . . . . . . . . . . . . . . . . . . . . 70 2.5.Applicationtopatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.1.BézierexpressionforapatchinLagrangianform . . . . . . . . . . . . . . . 71 2.5.2.LagrangianexpressionforapatchinBézierform . . . . . . . . . . . . . . . 73 2.6.Reducedelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 Meshing,GeometricModelingandNumericalSimulation1 2.6.1.Thetensorcase,BézierexpressionforareducedLagrangianpatch. . . . . . 74 2.6.2.Thetensorcase,definitionofreducedBézierpatches . . . . . . . . . . . . . 82 2.6.3.Thetensorcase,LagrangianexpressionofareducedBézierpatch . . . . . . 90 2.6.4.Thecaseofsimplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Chapter3.GeometricElementsandGeometricValidity . . . . . . . . . . . . . . . . . 95 3.1.Two-dimensionalelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.2.Surfaceelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.3.Volumetricelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.4.Controlpointsbasedonnodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.5.Reducedelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.5.1.Simplices,trianglesandtetrahedra . . . . . . . . . . . . . . . . . . . . . . . . 115 3.5.2.Tensorelements,quadrilateralsandhexahedra . . . . . . . . . . . . . . . . . 116 3.5.3.Otherelements,prismsandpyramids . . . . . . . . . . . . . . . . . . . . . . 120 3.6.Rationalelements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.6.1.ShiftfromLagrangerationalstoBézierrationals . . . . . . . . . . . . . . . . 121 3.6.2.Degree2,workingonthe(arcofa)circle . . . . . . . . . . . . . . . . . . . . 121 3.6.3.Applicationtotheanalysisofrationalelements. . . . . . . . . . . . . . . . . 123 3.6.4.Ontheuseofrationalelementsormore . . . . . . . . . . . . . . . . . . . . . 138 Chapter4.Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.1.Triangulation,definitions,basicconceptsandnaturalentities . . . . . . . . . . . . 142 4.1.1.Definitionsandbasicconcepts . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.1.2.Naturalentities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.1.3.Aball(topological)ofavertex . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.1.4.Ashellofak-face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.1.5.Theringofak-face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.2.Topologyandlocaltopologicalmodifications . . . . . . . . . . . . . . . . . . . . . 146 4.2.1.Flippinganedgeintwodimensions . . . . . . . . . . . . . . . . . . . . . . . 148 4.2.2.Flippingafaceinthreedimensions. . . . . . . . . . . . . . . . . . . . . . . . 148 4.2.3.Flippinganedgeinthreedimensions . . . . . . . . . . . . . . . . . . . . . . 148 4.2.4.Otherflips? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.3.Enricheddatastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.1.Minimalstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 4.3.2.Enrichedstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.4.Constructionofnaturalentities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.5.Triangulation,constructionmethods . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.6.Theincrementalmethod,agenericmethod . . . . . . . . . . . . . . . . . . . . . . 159 4.6.1.Naivetriangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 4.6.2.Delaunaytriangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Chapter5.DelaunayTriangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.1.History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.2.Definitionsandproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.3.TheincrementalmethodforDelaunay . . . . . . . . . . . . . . . . . . . . . . . . . 175 Contents 7 5.4.Othermethodsofconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.5.Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 5.6.Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Chapter6.TriangulationandConstraints . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.1.Triangulationofadomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.1.1.Triangulationofadomainintwodimensions . . . . . . . . . . . . . . . . . . 195 6.1.2.Triangulationofadomaininthreedimensions . . . . . . . . . . . . . . . . . 202 6.2.DelaunayTriangulation“Delaunayadmissibility” . . . . . . . . . . . . . . . . . . 214 6.3.Triangulationofavariety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.4.Topologicalinvariants(trianglesandtetrahedra) . . . . . . . . . . . . . . . . . . . 222 Chapter7.GeometricModeling:Methods . . . . . . . . . . . . . . . . . . . . . . . . . 233 7.1.Implicitorexplicitform(CAD),startingfromananalyticaldefinition . . . . . . . 234 7.1.1.Modelinganimplicitcurve,continuous→discrete . . . . . . . . . . . . . . 234 7.1.2.Modelingaparametriccurve . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.1.3.Modelinganimplicitsurface . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 7.1.4.Modelingofaparametricsurface. . . . . . . . . . . . . . . . . . . . . . . . . 242 7.2.Startingfromadiscretizationortriangulation,discrete→continuous . . . . . . . 246 7.2.1.Caseofacurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 7.2.2.Thecaseofasurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 7.3.Startingfromapointcloud,discrete→discrete . . . . . . . . . . . . . . . . . . . 278 7.3.1.Thecaseofacurveintwodimensions . . . . . . . . . . . . . . . . . . . . . . 278 7.3.2.Thecaseofasurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 7.4.Extractionofcharacteristicpointsandcharacteristiclines . . . . . . . . . . . . . . 302 Chapter8.GeometricModeling:Examples . . . . . . . . . . . . . . . . . . . . . . . . . 305 8.1.Geometricmodelingofparametricpatches . . . . . . . . . . . . . . . . . . . . . . 306 8.2.Characteristiclinesofadiscretesurface . . . . . . . . . . . . . . . . . . . . . . . . 311 8.3.Parametrizationofasurfacepatchthroughunfolding . . . . . . . . . . . . . . . . 311 8.4.Geometricsimplificationofasurfacetriangulation . . . . . . . . . . . . . . . . . . 324 8.5.Geometricsupportforadiscretesurface . . . . . . . . . . . . . . . . . . . . . . . . 325 8.6.Discretereconstructionofadigitizedobjectorenvironment. . . . . . . . . . . . . 330 Chapter9.AFewBasicAlgorithmsandFormulae . . . . . . . . . . . . . . . . . . . . 343 9.1.Subdivisionofanentity(DeCasteljau) . . . . . . . . . . . . . . . . . . . . . . . . 344 9.1.1.Subdivisionofacurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 9.1.2.Subdivisionofapatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 9.2.Computingcontrolcoefficients(higherorderelements) . . . . . . . . . . . . . . . 348 9.3.Algorithmsfortheinsertionofapoint(Delaunay) . . . . . . . . . . . . . . . . . . 351 9.3.1.Classicalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 9.3.2.Modifiedalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 9.4.Constructionofneighboringrelationships,ballsandshells . . . . . . . . . . . . . 357 9.4.1.Neighboringrelationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 8 Meshing,GeometricModelingandNumericalSimulation1 9.4.2.Constructionoftheballofavertex . . . . . . . . . . . . . . . . . . . . . . . . 359 9.4.3.Constructionoftheshellofanedge . . . . . . . . . . . . . . . . . . . . . . . 361 9.5.Localizationproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 9.5.1.Triangulationsorsimplicialmeshes . . . . . . . . . . . . . . . . . . . . . . . 363 9.5.2.Othermeshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 9.6.Someformulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 ConclusionsandPerspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Foreword The“GeometricModelingandApplications”seriesismadeupoffivevolumesofresearch ongeometricmodeling. Theactofgeometricmodelingisanage-oldone. Tolookatafewkey pointsinitshistory: geometristsinantiquitydevotedthemselvestoit,though,ofcourse,ithad adifferentformfromthatwhichweknowtoday; Descartes, inthemid-17thCentury, worked onpartitioningofplanes;andVoronoïestablishedconceptsrelatingtothistowardtheendofthe 19thCentury. Butgeometricmodeling,asweunderstanditnow,canbeconsideredtobelinkedtotheuseof computers,especiallysincethistoolhasbecomeubiquitous.Wearetemptedtofixthescientific recognitionofthisactivitytothedateofthe“FirstConferenceonComputerAidedGeometric Design”,whichtookplaceinMarch1974attheUniversityofUtah. ThiswasorganizedbyR. Barhnill and R. Riesenfeld, whose presentations may be found in the book “Computer Aided GeometricDesign, AcademicPress, 1974”, whichclearlyassociatesgeometricmodelingwith thecomputer. Sincethen,manydetailedandhigh-qualitybookshavebeenpublishedinthisfield. Oneof thepioneeringworkswas,undoubtedly,thatauthoredbyD.FauxandM.Pratt,“Computational Geometry for Design and Manufacture, Ellis Horwood Publishers, 1979”. Some books went throughseveraleditions,takingnoteoftheadvancesmadeinresearchinthefield.Inthiscontext, bringingoutanewgeneralbookonthesubjectwouldmarknosignificantscientificprogress. Moreover,foranyobjetorentitythatistobemodeled,thereisnosinglegeometricmodel. Instead, thereareseveralgeometricmodels, eachbeingadaptedtotheprocessestobecarried out. For example, the model to finely analyze the shape of an object is necessarily different frommodelsthatareusedformechanicalcomputationsonthissameobject.Wehave,therefore, chosentofocusonspecificpointsofresearchinfieldsthatwefindparticularlyimportant.Thus, thefivereferencesgivenhere,writtenbyspecialists,bringyouuptodateonadvancesinresearch infivedomains: •“Constraintsandgeometricmodeling”, byDominiqueMichelucci, PascalSchreck and PascalMathis,looksatgeometricproblemsthatcanbeapproachedbydescribingtheconstraints, geometricormorecomplex,thatasolutionmustverify,ratherthandirectlygivingthegeometric definitionofsuchasolution. 10 Meshing,GeometricModelingandNumericalSimulation1 •“GeometricmodelingoffractalformsCAD”,byChristianGentil,DmitrySokolovand GillesGouaty,discussesthedefinitionoffractalforms:thisformalismmakesitpossibletoreuse smoothformsofgeometricmodelsthatareclassictodaytodefineformsthathavenotyetbeen exploredtillpresent. •“Meshing,geometricmodelingandnumericalsimulation”,intwovolumes,byHouman Borouchaki and Paul-Louis George, details methodologies advanced for the construction of meshes and geometric modeling for numerial simulation with applications, especially in me- chanics. •“Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis”, by Jean-Luc Mari, Franck Hétroy-Wheeler and Gérard Subsol, studies the analysis of three- dimensional-meshedshapesviatheextractionofcharacteristics,bothgeometricandtopological. Thefieldsofapplicationarealsodetailedtoillustratethetransdisciplinarynatureofthiswork. •“RelevantTriangulationsandSamplingsfor3DShapes”,byRaphaëlleChaineandJulie Digne,discussessampling,meshingandcompressionoffreeformsfromalargequantityofreal datafromavirtual,interactivedeformationprocess. Thesearebooksthatpresentrecentresearch. Thereadercanfind, inthegeneralbookson geometricmodelingthatwerementionedbefore,elementstofillanygapstheymayhaveandto enablethemtoreadthebooksinthisseries. Happyreading. MarcDANIEL

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.