MERGING PROCESSES IN GALAXY CLUSTERS ASTROPHYSICS AND SPACE SCIENCE LIBRARY VOLUME 272 EDITORIAL BOARD Chairman W.B.BURTON,NationalRadio AstronomyObservatory,Charlottesville,Virginia,U.S.A. ([email protected]); University of Leiden, The Netherlands ([email protected]) Executive Committee J. M. E. KUIJPERS, Faculty of Science, Nijmegen, The Netherlands E. P. J. VAN DEN HEUVEL, Astronomical Institute, University of Amsterdam, The Netherlands H. VAN DER LAAN, Astronomical Institute, University of Utrecht, The Netherlands MEMBERS I. APPENZELLER, LandessternwarteHeidelberg-Königstuhl,Germany J. N. BAHCALL, The Institute for Advanced Study, Princeton, U.S.A. F. BERTOLA,UniversitádiPadova, Italy J.P. CASSINELLI, University of Wisconsin, Madison, U.S.A. C. J. CESARSKY, Centre d'Etudes de Saclay, Gif-sur-Yvette Cedex, France O. ENGVOLD, Institute of Theoretical Astrophysics, University of Oslo, Norway R. McCRAY, University of Colorado, JILA, Boulder, U.S.A. P. G. MURDIN, Institute of Astronomy, Cambridge, U.K. F. PACINI, Istituto Astronomia Arcetri, Firenze, Italy V. RADHAKRISHNAN, Raman Research Institute, Bangalore, India K. SATO, School of Science, The University of Tokyo, Japan F. H. SHU, University of California, Berkeley, U.S.A. B. V. SOMOV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research Institute, Moscow, Russia Y. TANAKA, Institute of Space & Astronautical Science, Kanagawa, Japan S. TREMAINE, CITA, Princeton University, U.S.A. N. O. WEISS, University of Cambridge, U.K. MERGING PROCESSES IN GALAXY CLUSTERS edited by L. FERETTI Istituto diRadioastronomia CNR, Bologna, Italy I.M. GIOIA Istituto diRadioastronomia CNR, Bologna, Italy and G. GIOVANNINI Physics Department, University of Bologna, Italy KLUWER ACADEMIC PUBLISHERS NEW YORK,BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 0-306-48096-4 Print ISBN: 1-4020-0531-8 ©2004 Kluwer Academic Publishers NewYork, Boston, Dordrecht, London, Moscow Print ©2002 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans,electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://kluweronline.com and Kluwer's eBookstoreat: http://ebooks.kluweronline.com Contents Preface xi Contributing Authors xiii 1 The Physics of Cluster Mergers 1 Craig L. Sarazin 1 Basic Merger Rates and Kinematics 2 1.1 Estimates of Merger Rates 2 1.2 Estimates of Merger Kinematics 5 1.2.1 Turn-Around Distances 6 1.2.2 Merger Velocities 7 1.2.3 Angular Momenta, Impact Parameters, and Transverse Velocities 8 2 Thermal Physics ofMerger Shocks 10 2.1 Shock Kinematics 11 2.2 Nonequilibrium Effects 14 3 Mergers and Cool Cluster Cores 15 3.1 Cooling Flows vs. Mergers 15 3.2 Cold Fronts 18 3.2.1 Kinematics of Cold Fronts 18 3.2.2 Width of Cold Fronts 21 4 Nonthermal Physics ofMerger Shocks 21 4.1 Particle Lifetimes and Losses 22 4.2 Sources of Relativistic Particles 25 4.2.1 Particle Acceleration in Shocks 25 4.2.2 Reacceleration by Merger Shocks 26 4.2.3 Turbulent Acceleration Following a Merger 27 4.2.4 Secondary Electron Production 27 4.3 Models for Merger Shocks and Primary Electrons 28 4.4 Nonthermal Emission and Mergers 29 4.4.1 Radio Halos and Relics 29 4.4.2 EUV/Soft X-ray Emission 29 4.4.3 Hard X-ray Tails 31 4.4.4 Predicted Gamma-Ray and Neutrino Emission 33 4.4.5 UltraHigh Energy Cosmic Rays 33 5 Summary 34 v vi MERGING PROCESSES IN GALAXY CLUSTERS 2 Optical Analysis of Cluster Mergers 39 Marisa Girardi andAndrea Biviano 1 Detecting and Quantifying Substructure 41 1.1 Spatial Substructure 42 1.2 Velocity Substructure 44 1.3 Spatial–Velocity Substructure 45 1.4 Different Methods Compared 48 2 Frequency and Nature of Subclusters 50 3 Dynamical Effects of Cluster Mergers 52 4 Substructure and Cosmology 57 4.1 Accretion from the LSS 57 4.2 Estimating 61 5 Cluster Mergers and Galaxy Properties 64 5.1 Brightest Cluster Members 64 5.2 Galaxy Star–Formation 67 3 X-Ray Observations of Cluster Mergers 79 David A. Buote 1 Quantitative Analysis of Individual Substructures 82 2 Quantitative Classification of Global Morphology 85 2.1 Methods 86 2.2 Merger Frequency ofROSAT Clusters 90 3 High-Redshift Clusters 91 4 Morphology and Cosmology 92 4.1 Semi-Analytical Models 92 4.2 N-Body Simulations 95 5 Morphology and Radio Halos 96 6 Temperature Substructure 98 6.1 X-Ray Temperature Maps 98 6.2 Quantitative Classification of Temperature Morphology 101 7 Conclusions 103 4 High Angular Resolution Cluster Observations with Chandra 109 W. Forman, C. Jones, M. Markevitch, A. Vikhlinin, E. Churazov 1 Cluster Mergers 110 1.1 Multiple Cold Fronts in A2142 112 1.2 Cluster Physics and Cold Fronts 115 1.3 Cold Fronts in Other Clusters 118 1.3.1 RXJ1720.1+2638 118 1.3.2 ZW3146 – A Cluster with Three Edges 118 1.4 Merger shocks and Cluster Radio Halo Sources 121 2 The Radio—X-ray Connection 122 2.1 A First Look at Radio Emitting Plasma Bubbles in Cluster Atmospheres 123 2.2 Bubbles in A GalaxyAtmosphere– M84 124 2.3 Evolution of Buoyant Plasma Bubbles in Hot Gaseous Atmospheres 125 3 Conclusions 129 Contents vii 5 Observational signatures and statistics ofgalaxy cluster mergers 133 HansBöhringerand PeterSchuecker 1 X-ray diagnostics for cluster mergers 135 2 The Virgo Cluster as a Laboratory for Detailed Merger Studies 142 3 Observational Consequences of Cluster Mergers 145 4 Merger statistics 148 4.1 Robust substructure tests to measure substructure oc- curence rates 149 4.2 Observed substructure occurrence rates 151 4.3 Theoretical aspects 154 4.4 Substructure density relation 156 4.5 Substructures in halo, relic, and cooling flowclusters 157 6 Radio Galaxies and their Environment 163 Luigina Feretti and Tiziana Venturi 1 Cluster X-ray emitting gas 166 2 Radio Structures 168 2.1 Narrow-angle tailed radio galaxies 169 2.2 Wide-Angle tailed radio galaxies 172 2.3 Radio galaxies in cooling flows 175 3 Confinement 177 4 Statistics ofRadio Sources:Radio luminosity functions 179 4.1 Local RLF forfieldgalaxies 180 4.2 Local RLF for cluster galaxies 181 4.3 Radio emission and large scale environment 183 5 Radio power-size correlation 184 6 Environment and starburst radio emission 184 6.1 Radio sources and the Butcher-Oemlereffect 185 6.2 FIR/Radio correlation for spirals in clusters 187 7 Gas stripping and HI deficiency in cluster spirals 189 7 DiffuseRadioSources andClusterMergers 197 Gabriele Giovannini andLuigina Feretti 1 A Working Definition 200 2 Observations and Results 202 2.1 The Radio Halo Coma C 203 2.2 Diffuseemission inthe Coma Cluster Periphery 204 2.3 Clusters with well known Diffuse Sources 205 2.4 New HaloandRelicSources 206 3 Statistical properties ofradio halos and relics 208 3.1 Radio properties 209 3.2 Occurrence 210 3.3 Correlations with cluster properties 210 4 Relevance ofCluster Merger Events 212 5 Models 215 5.1 Magnetic field 215 5.1.1 Observational results 215 5.1.2 Interpretation 216 viii MERGING PROCESSES IN GALAXY CLUSTERS 5.2 Relativistic particles in halos 217 5.2.1 Primary electron models 218 5.2.2 Primary electron reacceleration models 218 5.2.3 Origin ofthe primary relativistic electrons 219 5.2.4 Secondary electron model 219 5.2.5 The Two Phase model 221 5.3 Relativistic particles in Relics 222 6 Summary 223 8 Mergers ofGalaxy Clusters in 229 Numerical Simulations Sabine Schindler 1 Simulation Methods 230 2 Cluster Models 232 3 Effects of mergers 232 3.1 Shocks 235 3.2 ObservableEffects ofMergers 237 4 Physical Processes 239 4.1 Simulations ofMergers with Magnetic Fields 239 4.2 Cooling and Star Formation 241 5 Metallicity-Merger Connection 242 6 Mass Determination in Merging Clusters 246 7 Summary and Prospects 248 9 Clusters, Cosmology and Mergers 253 August E. Evrard and Isabella M. Gioia 1 Gravitational Instability: Theory and Computation 256 1.1 The late universe 256 1.2 Isolated, spherical clusters 257 1.3 3-D hierarchical clustering 259 2 The Discrete Cluster Population 267 2.1 From cluster surveys to cosmology 267 2.2 The mass function 268 2.2.1 Frequency ofMergers 272 2.3 Cluster internal structure 274 2.3.1 Dark matter density profiles 274 2.3.2 The dark matter virial theorem 276 2.3.3 The ICM virial relation 278 2.4 Cluster observables 282 3 Constraints on Cosmological parameters 283 3.1 Cluster surveys 284 3.2 from the cluster baryon fraction 286 3.3 from the local temperature function 288 3.4 from distant cluster counts 290 3.4.1 SZsurveyyields 293 3.4.2 X–rayflux limited samplesfrom ROSAT 295 4 Summary 296 Contents ix Topic Index 305 Object Index 309 Copyright Credits 311