ebook img

Mercury's capture into the 3/2 spin-orbit resonance including the effect of core-mantle friction PDF

0.62 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mercury's capture into the 3/2 spin-orbit resonance including the effect of core-mantle friction

Mercury’s capture into the 3/2 spin-orbit resonance including the effect of core-mantle friction AlexandreC.M.Correiaa,b, ,JacquesLaskarb ∗ aDepartamentodeF´ısica,UniversidadedeAveiro,CampusdeSantiago,3810-193Aveiro,Portugal bAstronomieetSyste`mesDynamiques,IMCCE-CNRSUMR8028,ObservatoiredeParis,UPMC,77Av.Denfert-Rochereau,75014Paris,France Abstract 9 0 TherotationofMercuryispresentlycapturedina3/2spin-orbitresonancewiththeorbitalmeanmotion.Thecapturemechanism 0 iswellunderstoodastheresultoftidalinteractionswiththeSuncombinedwithplanetaryperturbations(GoldreichandPeale,1966; 2 CorreiaandLaskar, 2004). However, it is now almost certain that Mercuryhas a liquid core (Margotetal., 2007) which should ninduce a contributionof viscous frictionat the core-mantleboundaryto the spin evolution. Accordingto PealeandBoss (1977) a this last effect greatly increases the chances of capture in all spin-orbit resonances, being 100% for the 2/1 resonance, and thus J preventing the planet from evolving to the presently observed configuration. Here we show that for a given resonance, as the 3 chaoticevolutionofMercury’sorbitcandriveitseccentricitytoverylowvaluesduringtheplanet’shistory,anypreviouscapture 1 can be destabilized whenever the eccentricity becomes lower than a critical value. In our numerical integrations of 1000 orbits ]of Mercuryover 4Gyr, the spin ends99.8%of the time capturedin a spin-orbitresonance, in particularin one of the following P threeconfigurations: 5/2(22%),2/1(32%)and3/2(26%). Althoughthepresent3/2spin-orbitresonanceisnotthemostprobable E outcome, we also show that the capture probability in this resonance can be increased up to 55% or 73%, if the eccentricity of . hMercuryinthepasthasdescendedbelowthecriticalvalues0.025or0.005,respectively. p -Keywords: Mercury,spindynamics,tides,core-mantlefriction,resonance o r t s a1. Introduction into the present3/2spin-orbitresonanceis onthe low side, at [ mostabout7%,whichremainedsomewhatunsatisfactory. Mercury’spresent rotation is locked in a 3/2 spin-orbitres- GoldreichandPeale(1967)neverthelesspointedoutthatthe 1 onance, with its spin axis nearly perpendicular to the orbital v probabilityofcapturecouldbegreatlyenhancedifaplanethas plane (PettengillandDyce, 1965). The stability of this ro- 3 amoltencore. In1974,thediscoveryofanintrinsicmagnetic 4tation results from the solar torque on Mercury’s quadrupo- field by the Mariner 10 spacecraft(Nessetal., 1974), seemed 8lar moment of inertia, combined with an eccentric orbit: the to imply the existence of a conducting liquid core and conse- 1axis of minimum moment of inertia is always aligned with quentlyanincrementinthecaptureprobabilityinthe3/2reso- . 1the direction to the Sun when Mercury is at the perihe- nance. However,accordingtoGoldreichandPeale(1967),this 0lion of its orbit (Colombo, 1965; GoldreichandPeale, 1966; also increases the capture probabilityin all the previousreso- 9 CounselmanandShapiro, 1970). The initial rotation of Mer- 0 nances. PealeandBoss(1977)indeedremarkedthatonlyvery cury was presumably faster than today, but tidal dissipation : specificvaluesofthecoreviscosityallowtoavoidthe2/1reso- valong with core-mantle friction brought the planet rotation to nanceandpermitthecaptureinthe3/2configuration. i Xthe present configuration, where capture can occur. However, Morerecently,CorreiaandLaskar(2004)(hereafterdenoted theexactmechanismonhowthisstateinitiallyaroseisnotcom- r byPaperI)haveshownthatastheorbitaleccentricityofMer- apletelyunderstood. cury is varyingchaotically, from near zero to more than 0.45, In their seminal work, GoldreichandPeale (1966) have thecaptureprobabilityissubstantiallyincreased.Indeed,when shown thatsince thetidalstrengthdependsonthe planet’sro- thelargeeccentricityvariationisfactoredintothecapture,the tation rate, it creates an asymmetry in the tidal potential that rotationrateoftheplanetcanbeaccelerated,andthe3/2reso- allowscaptureintospin-orbitresonances. Theyalsocomputed nancecouldhavebeencrossedmanytimesinthepast.Perform- thecaptureprobabilityintotheseresonancesforasinglecross- ingastatisticalstudyofthepastevolutionsofMercury’sorbit, ing, and found that for the present eccentricity value of Mer- over1000cases, it was demonstratedthatcaptureinto the 3/2 cury(e=0.206),andunlessoneusesanunrealistictidalmodel spin-orbitresonantstateisinfact,andwithouttheneedofspe- with constant torques(which cannotaccount for the observed cificcore-mantleeffect,themostprobablefinaloutcomeofthe damping of the planet’s libration), the probability of capture planet’sevolution,occurringabout55.4%ofthetime. Incon- trast,becausetheeccentricitycandecreasetonearzero,allres- onancesexceptthe1/1becomeunstable,allowingtheplanetto Correspondingauthor, ∗ Emailaddresses:[email protected](AlexandreC.M.Correia) escapefromresonance. Thismechanismsuggeststhatinpres- PreprintsubmittedtoIcarus January24,2009 enceofcore-mantlefrictiontheplanetcanescapetoaprevious trueanomalyvinseriesoftheeccentricityeandmeananomaly. captureinthe2/1orhigherorderspin-orbitresonances. However,whentherotationrateωandthemeanmotionn= M˙ The present paper continues the work started in Paper I. In are close to resonance (ω pn, for a semi-integer1 value p), ≃ additionto theeffectsoftidesand planetaryperturbations,we wemustretainthetermswithargument(2θ 2pM)intheex- − will consider here also the core-mantle friction effect as de- pansion scribed by GoldreichandPeale (1967), since the presence of + a liquidcoreinsideMercuryisnowconfirmedbyradarobser- cos(2θ 2v) 1 ∞ − = H(p,e)cos(2θ 2pM), (2) vations (Margotetal., 2007). In the next section we give the r3 a3 − pX= averaged equations of motion in a suitable form for simula- −∞ tions of the long-term variations of Mercury’s spin, including whereaisthesemi-majoraxisoftheplanet’sorbitandthefunc- theresonantmotion,viscoustidaleffects,core-mantlecoupling tionH(p,e)isapowerseriesine(Tab.1). Theexactaveraged andplanetaryperturbations. Insection3wediscusstheconse- contributions to the spin are given in a suitable form for our quencesofeacheffectintothe spinevolutionandevaluatethe studybyexpression(15)inCorreia(2006)2. Forzeroobliquity capture probabilities in resonance. Finally, in last section we wehave: perform some numerical simulations to illustrate the different dω β effectsdescribedinsection3. = H(p,e)sin2(θ+ϕ pM ̟), (3) dt −cm − − 2. Equationsofmotion where̟isthelongitudeoftheperihelion,c = C /C = 0.55 m m (Margotetal.,2007),and We willadoptherea modelforMercurywhichisanexten- sion of the model from Poincare´ (1910) of a perfect incom- 3Gm B A 3 B A pressibleandhomogeneousliquidcorewithmomentsofinertia β= ⊙ − n2 − . (4) 2a3 C ≃ 2 C A = B <C insideanhomogeneousrigidbodywithmoments c c c of inertia Am Bm < Cm, supported by the reference frame The Mariner 10 flyby of Mercury provided information on ≤ (~i,~j,~k), fixed with respect to the planet’s figure. Tidal dissi- the internal structure of the planet, though subject to some pationandcore-mantlefrictiondrivetheobliquityclosetozero uncertainty. For the gravity field it has been measured J = 2 (Yoder,1997;Correiaetal.,2003).Sinceweareonlyinterested (6.0 2.0) 10 5andC =(1.0 0.5) 10 5(Andersonetal., − 22 − ± × ± × hereinthestudyofthefinalstagesofevolution(wherecapture 1987). ModelingtheinteriorstructureofMercury,ithasbeen in spin-orbit resonance may occur), we will neglect the effect estimated for the structure constant ξ = C/(mR2) 0.3359 ≃ of the small obliquity variations on the equations of motion. (Spohnetal.,2001). Thus,forthemomentsofinertiawecom- Moreover, since for a long-term study we are not interested pute(B A)/C =4C /ξ 1.2 10 4. 22 − − ≃ × in diurnal nutations, we can average over fast rotation angles andmergetheaxisofprincipalinertiaandtheaxisofrotation 2.2. Tidaltorques (Boue´andLaskar,2006). Therefore,themantlerotationrateis Tidal effects arise from differential and inelastic deforma- simplygivenbyω= θ˙+ϕ˙,whereθistherotationangleandϕ tionsofMercuryduetothegravitationaleffectoftheSun.Their theprecessionangle. contributions to the spin variations are based on a very gen- eral formulation of the tidal potential, initiated by George H. 2.1. Precessiontorque Darwin(1880). Thedistortionoftheplanetgivesrisetoatidal Thegravitationalpotential generatedatagenericpointof V potential, thespace~risgivenby(e.g.Tisserand,1891;Smart,1953): Gm R 3 R 3 V(~r)=−Grm + G(Br3−A)P2(~ur·~j) Vg(~r,~r′)=−k2 R⊙ r! (cid:18)r′(cid:19) P2(cid:0)~ur·~ur′(cid:1) . (5) where R is the average radius of the planet and r~ the radial G(C A) ′ + − P (~u ~k), (1) distancefromtheplanet’scentertotheSun. Ingeneral,imper- r3 2 r· fect elasticity will cause the phase angle of g to lag behind V where terms in (R/r)3 were neglected. G is the gravitational theperturbation(Kaula,1964),becausethereisisatimedelay ∆tbetweentheperturbationoftheSunandthemaximaldefor- constant, m the mass of Mercury, ~u = ~r/r and P (x) = r 2 (3x2 1)/2is the Legendrepolynomialof degreetwo. When mation of Mercury. Duringthat time, the planetrotatesby an − angleω∆t,whiletheSunalsochangesitsposition.Assuminga interacting with the Sun’s mass, m , the spin of Mercurywill ⊙ constanttimedelayallowsustolinearizethetidalpotentialand undergoimportantchanges. Themiddletermintheabovepo- simplifythetidalequations(Mignard,1979,1980;Hut,1981). tentialwillberesponsiblefora librationinthespin, whilethe last term causes the spin axis~k to precess around K~, the nor- mal to the orbit. Since we are only interested in the study of 1Wehaveretainedtheuseofsemi-integersforbettercomparisonwithpre- the long term motion, we will average the potential over the viousresults. rotationangleθandthemeananomaly M, afterexpandingthe 2ThereisamisprintinthesignofφinCorreia(2006). 2 Table1:CoefficientsofH(p,e)toe7.TheexactexpressionofthesecoefficientsisgivenbyH(p,e)= 1 π a 3exp(i2ν)exp(i2pM)dM. π 0 r R (cid:16) (cid:17) p H(p,e) 5 13 35 1/1 1 e2 + e4 e6 − 2 16 − 288 7 123 489 1763 3/2 e e3 + e5 e7 2 − 16 128 − 2048 17 115 601 2/1 e2 e4 + e6 2 − 6 48 845 32525 208225 5/2 e3 e5 + e7 48 − 768 6144 533 13827 3/1 e4 e6 16 − 160 228347 3071075 7/2 e5 e7 3840 − 18432 73369 4/1 e6 720 12144273 9/2 e7 71680 For zero obliquity, the averaged contributions to the spin are If there is slippage between the liquid core and the man- thengivenby: tle, a second source of dissipation of rotational energyresults from friction occurring at the core-mantle boundary. Indeed, dω K ω because of their different shapes and densities, the core and = Ω(e) N(e) , (6) dt −cm  n −  the mantle do nothave the same dynamicalellipticity and the   two parts tend to precess at different rates (Poincare´, 1910). where This tendency is more or less counteracted by different inter- 1+3e2+3e4/8 actionsproducedattheirinterface: thetorqueofnon-radialin- Ω(e)= , (7) ertial pressure forcesof the mantle overthe core provokedby (1 e2)9/2 − the non-sphericalshape of the interface; the torqueof the vis- cous friction (or turbulent) between the core and the mantle; 1+15e2/2+45e4/8+5e6/16 N(e)= , (8) andthetorqueoftheelectromagneticfriction,causedbythein- (1 e2)6 teractionbetweenelectricalcurrentsofthecoreandthebottom − of the magnetized mantle. The two types of friction torques K =n2 3k2 m⊙ R 3 , (9) (viscous and electromagnetic)depend on the differential rota- ξQ (cid:18) m (cid:19)(cid:18)a(cid:19) tionbetweenthecoreandthemantleandcanbeexpressedby a single effective friction torque, Υ (MathewsandGuo, 2005; and Q 1 = n∆t. Thistidalmodelisparticularlyadaptedtode- − DeleplaceandCardin,2006): scribe the planets behavior in slow rotating regimes (ω n), which is the case of Mercury during the spin-orbit reson∼ance Υ=Ccκδ; δ=ω ωc , (10) − crossing. In the present work we will adopt k = 0.4 and 2 where κ is an effective coupling parameter, ω the core’s ro- c Q = 50, which yields K = 2.2 10 5yr 2. This choice is − − tation rate and c = C /C = 1 c = 0.45 (Margotetal., × c c m somewhat arbitrary, but based on the parameter values of the − 2007). According to MathewsandGuo (2005) we may write otherterrestrialplanets(GoldreichandSoter,1966). κ 2.62√νω/R , where R is the core radius and ν is the c c ≃ effective kinematic viscosity of the core. Adopting R /R = c 2.3. Core-mantlefrictioneffect 0.77 0.04(Spohnetal., 2001) and ν = 10 6m2s 1, we com- − − ± TheMariner10flybyofMercuryrevealedthepresenceofan puteforthe3/2resonance: κ = 5 10 5yr 1. Theuncertainty − − × intrinsicmagneticfield,whichismostlikelyduetomotionsina overνisverylarge,accordingtoLumbandAldridge(1991)it conductingfluidcore(forareviewseeNess,1978).Subsequent can coverabout13 ordersof magnitude. As informerstudies observationsmadewithEarth-basedradarprovidedstrongevi- onplanetaryevolution(Yoder,1997;CorreiaandLaskar,2001, dencethatthemantleofMercuryisdecoupledfromacorethat 2003), weusedthesamevalueasthebestestimatedso farfor isatleastpartiallymolten(Margotetal.,2007). theEarth(Gans,1972;Poirier,1988). 3 Anotherimportantconsequenceofcore-mantlefrictionisto Over several millions years, the eccentricity of Mercury tiltthe equatoroftheplanettotheorbitalplane,whichresults presentssignificantvariations(Fig.1)thatneedtobetakeninto inaseculardecreaseoftheobliquity(Rochester,1976;Correia, accountintheresonancecaptureprocess(PaperI). 2006), reinforcing the previous assumption that the obliquity remainsclosetozeroduringthelastevolutionarystages. Sincethecoreandthemantlearedecoupled,weneedadif- 3. Spinevolutionandcaptureprobabilities ferentialequationforeachrotationrate, thecouplingequation beinggivenbythefrictiontorque(Peale,2005;Correia,2006): The evolution of the spin for zero obliquity is completely describedwhenweputtogetherthecontributionsfromthedif- dω = ccκδ and dωc =κδ. (11) ferenteffectspresentedinsection2: dt −cm dt ω˙ = P+T Υ/C , m − (13)  2.4. Planetaryperturbations  ω˙c =Υ/Cc, Whenconsideringtheperturbationsoftheotherplanets,the whereP is the precession torques (Eq.3), T the tidal torque eccentricity of Mercury is no longer constant, but undergoes (Eq.6)andΥthefrictiontorque(Eq.10).Inordertobetterstudy strong chaotic variations in time (Laskar, 1990, 1994, 2008). thecaptureprobabilitiesinspin-orbitresonances,wewilladopt These variations can be modeled using the averaging of the achangeofvariablesthatisvalidaroundeachresonance p: equations for the motion of the Solar System, that have been compared to recent numerical integrations, with very good γ=θ+ϕ pM ̟, (14) − − agreement (Laskaretal., 2004a,b). These equations are ob- tainedbyaveragingtheequationsofmotionoverthefastangles andthus, thatarethemeanlongitudesoftheplanets.Theaveragingofthe equationofmotionisobtainedbyexpandingtheperturbations γ˙ =ω pn ̟˙ and γ¨ =ω˙ ̟¨ . (15) − − − oftheKeplerianorbitsinFourierseriesoftheangles,wherethe In absence of planetary perturbations, for a Keplerian orbit, coefficientsthemselvesareexpandedinseriesoftheeccentric- ̟˙ = 0 and thus γ¨ = ω˙. Instead of the core rotation ω we ities and inclinations. This averaging process was conducted c willalsoadoptthedifferentialrotationδ = ω ω asvariable. inaveryextensiveway,uptosecondorderwithrespecttothe − c Theabovesystemofequations(13)becomesthen: masses,andthroughdegreefiveineccentricityandinclination, leading to truncated secular equations of the Solar System of γ¨ = P(γ)+T(γ˙) c κ δ ̟¨ , c m theform − − (16) dw  δ˙ = P(γ)+T(γ˙)−κmδ, dt =i[Γw+Φ3(w,w¯)+Φ5(w,w¯)] , (12) whereκ =κ/c . Ingeneral,weliketoexpressγ¨ asthesumof m m theprecessiontorqueP(γ)andaglobaldissipativetorqueD(γ˙) where w is the column vector (z ,...,z ,ζ ,...,ζ ), with z = 1 8 1 8 j suchthat e exp(i̟ ),ζ = sin(I /2)exp(iΩ )and̟andΩ,respectively j j j j j the longitudeof the perihelionand node. The 16 16 matrix Γ is the linear Lagrange-Laplace system, while Φ×3(w,w¯) and γ¨ =−βmsin2γ+D(γ˙), (17) Φ (w,w¯)gathertermsofdegree3and5respectively. 5 where Thesystemofequationsthusobtainedcontainssome150000 terms,butitsmainfrequenciesarenowtheprecessionfrequen- β β = H(p,e) (18) m cies of the orbits of the planets. The full system can thus be cm numericallyintegratedwithaverylargestep-sizeof250years. and ContributionsduetothesecularperturbationoftheMoonand generalrelativityarealsoincluded(formoredetailsandrefer- γ˙ encesseeLaskar,1990,1996;Laskaretal.,2004a). D(γ˙)= D0 V +µ , (19) −  n This secular system is then simplified and reducedto about   50000terms,afterneglectingtermsofverysmallvalue(Laskar, D , V and µ being “constant” quantities. Indeed, under this 0 1994). Finally, a small correctionof the terms appearingin Γ linearized form we are able to estimate the capture probabili- (Eq.12), after diagonalization, is performed in order to adjust ties using a simple expressionderivedby GoldreichandPeale thelinearfrequencies,inasimilarwayasitwasdonebyLaskar (1966): (1990). The secular solutions are very close to the direct nu- mericalintegrationLa2004(Laskaretal., 2004a,b) overabout π n V −1 P =2 1+ , (20) 35Myr,thetimeoverwhichthedirectnumericalsolutionitself cap " 2∆ω µ# is valid because of the imperfections of the model. It is thus legitimate to investigate the diffusion of the orbital motion of where ∆ω is the maximalamplitudeof librationin resonance, Mercuryoverlongtimesusingthesecularequations. i.e.,∆ω= 2β . m p 4 3.1. Effectoftides where χ = c κn/[KΩ(e)]. It allows us easily to compute the c captureprobabilitiesusingexpression(20)providedthatweare Let us consider first the simplified case where the spin of abletoestimatecorrectlyγ˙ justbeforetheplanetcrossesthe the planet is only subject to the precession and tidal torques c0 resonance: (GoldreichandPeale,1966).Thus,wemayuseexpression(17) toexpressγ¨,whereD(γ˙)isgivenbyexpression(6): 1 p E(e) χγ˙c0 − K γ˙  π n − − n  awictohnDEst((aγe˙n))t==vaTNlu=(ee)−o/fΩcmt(heΩe).(eecT)chepen−tlriimEcii(ttey)soi+sluontbiotan,inoefdthwehreontaDtio(γn˙()2fo1=r) AcPcocarpd=ing2to1e+xp2r∆esωsion(111)+wχe haveω˙ =. κδ. Sinceκ(27) c ≪ 0, that is, for γ˙/n = E(e) p ω/n = E(e). If the planet ∆ω, the core is unable to follow the periodicvariationsin the − ⇔ encountersaspin-orbitresonanceinthewaytotheequilibrium mantle’srotationrate. Thus,onlythesecularvariationsonthe position,capturemayoccurwithaprobabilitycomputedfrom mantle will be followed by the core and we may write: ω = c expression(20): ω δ,whereωistheaveragedrotationofthemantleand − Pcap =2(cid:20)1+ π2∆nω(p−E(e))(cid:21)−1 . (22) δ≃e−κmtZ tT eκmt′dt′ ≃ κT . (28) t0 m Using the present value of the eccentricity of Mercury and cm = 1 we compute for the p = 3/2 resonance a probability Justbeforecrossingthe pth spin-orbitresonancewehaveω0 = ofcaptureofabout7%, whichisunsatisfactorygiventhatthis pn+2∆ω/π,andthus isthepresentlyobservedresonantstate. γ˙ = ω pn=ω δ pn c0 c0 − 0− − 3.2. Effectofcore-mantlefriction 2 T 2 KΩ(e) = ∆ω ∆ω+ p E(e) . (29) We now add the effect of core-mantlefriction to the effects π − κm ≃ π κ − (cid:2) (cid:3) alreadyconsideredintheprevioussection.Inthiscasewemust When using the present eccentricity of Mercury and the val- takeintoaccounttherotationofthecore,andthecompletero- ues of κ and K estimated in previous sections, we compute tationrateevolutionisgivenbysystem(16)with̟¨ =0. χ = 19.5. Substituting this into expression (27) we obtain a The general solution for the differential rotation in system probabilityofcaptureof100%inthe3/2spin-orbitresonance. (16)isgivenby: However,asnoticedbyPealeandBoss(1977), if wecompute t theprobabilityforthe2/1resonancewealsoget100%. Thus, δ(t)=δ0e−κmt+e−κmt P(γ)+T(γ˙) eκmt′dt′, (23) either the planet started its rotation below the 2/1 resonance, Z t0 (cid:2) (cid:3) whichisunlikely,ortheremustbeanothermechanismtoavoid where δ0 is the initial value of δ(t) for t = t0. In section 2.3 captureinthe2/1andhigherorderresonances. weestimateforthepresentrotationofMercury1/κ 104yr, m ≃ whichcanbeseenasthetimescaleneededtodamptheinitial 3.3. Effectofplanetaryperturbations differentialrotationδ tozero.Thus,fort 1/κ theevolution 0 m of the differentialrotationis givenonlyb≫ythe last termis ex- TheorbitaleccentricityofMercuryundergoesimportantsec- pression(23). Italsomeansthatfortimeintervals∆t 1/κ , ularperturbationsfromtheotherplanets(Fig.1)anditscontri- m wecanwritefort<t +∆t: ≪ bution needsto be taken into account. The mean value of the 0 eccentricityise¯ = 0.198,slightlylowerthanthepresentvalue t e 0.206, but we also observe a wide range for the eccen- δ(t)≃δ0+Z γ¨ dt′, (24) tric≃ityvariations,fromnearlyzerotomorethan0.45(PaperI, t0 Laskar, 2008). Even if some of these episodesdo not last for thatis, alongtime,theywillallowadditionalcaptureintoandescape fromspin-orbitresonances.Moreover,thecaptureprobabilities δ(t) δ +γ˙ γ˙ =γ˙ γ˙ , (25) ≃ 0 − 0 − c0 arealsomodifiedfordifferenteccentricities:forthesamereso- whereγ˙ =γ˙ δ =ω pn,andω isthevalueofthecore nancewecanhavezeroor100%ofcapturesdependingonthe rotationcf0or t 0=−t .0Thisc0ap−proximatiocn0 is veryusefulbecause eccentricityvalue(Fig.2). Forallresonances,thecaptureprob- 0 wecanexpressγ¨ bymeansofexpression(17)with ability is 100%wheneverthe eccentricity is close to the equi- librium valuefor the rotationrate, E(e) = N(e)/Ω(e)(Eq.21), K γ˙ ccκ but it tends to decrease as the eccentricity moves away from D(γ˙) = Ω(e) p E(e)+ γ˙ γ˙ −cm  − n− cm (cid:0) − c0(cid:1) tihfitsheeqsupiilnibrisiuimncvraelausein.gIfftrhoemeclcoewnetrricroittyatiisotnoorahteigs)hs(oomrteoorelsoow- = KΩ(e) p E(e) χγ˙c0 +(1+χ)γ˙ , (26) nances cannot be reached and the probability of capture sud- −cm  − − n n denlydropstozero(Fig.2).   5 Table2: Criticaleccentricityec fortheresonance p. Ife < ec,theresonance Table3:Captureprobabilitiesinseveralspin-orbitresonances(inpercentage). pbecomesunstable,andthesolutionmayescapetheresonance(PaperI).The Intheleft panel (Tonly)weconsider theeffect oftides alone, while inthe criticaleccentricityecisobtainedwhenβH(p,e)<K[Ω(e)p N(e)]. rightpanel(T+CMF)bothtidesandcore-mantlefrictioneffectsaretakeninto − account. Thefirstcolumn(Pcap)referstothetheoretical estimationgivenby p e expression(20),whilethenextcolumn(num.)referstotheestimationobtained c runninganumericalsimulationwith2000closeinitialconditions,differingby 5/1 0.211334 π/1000inthelibrationangle. Planetaryperturbations arenotconsideredand 9/2 0.174269 weusedaconstanteccentricitye=0.206. 4/1 0.135506 7/2 0.095959 Tonly T+CMF 3/1 0.057675 p Pcap num. Pcap num. 5/2 0.024877 (%) (%) (%) (%) 2/1 0.004602 5/1 1.6 0.3 − − 3/2 0.000026 9/2 3.1 1.3 − − 1/1 4/1 0.1 5.9 4.8 − − 7/2 0.1 0.1 11.4 10.9 3/1 0.3 0.4 22.6 22.8 5/2 0.7 1.4 46.6 46.2 Foranon-constanteccentricitye(t),thelimitsolutionofthe 2/1 1.8 1.7 100.0 100.0 rotationratewhen D(γ˙) = 0(Eq.17)isnolongerω/n = E(e), 3/2 7.7 7.2 100.0 100.0 butmoregenerally: 1 t K c κ ω(t)= N(e(τ)) c δ(τ) g(τ)dτ, (30) g(t)Z0 cm (cid:20) − K (cid:21) 4.1. Simulationswithoutplanetaryperturbations Before considering the effect of planetary perturbationswe where can test numerically the theoretical estimates of the capture K t probability given by expressions (22) and (27). Since cap- g(t)=exp Ω(e(τ))dτ . (31) cmnZ0 ! ture in resonance is a statistical process we need to perform manyintegrationswithslightlydifferentinitialconditions. For The dissipation torques can thus drive the rotation rate sev- that purpose we ran 2000 simulations using a fixed eccentric- eraltimesacrossthesamespin-orbitresonance,increasingthe ity (e = 0.206), initial rotation period of 2 days, zero obliq- chancesofcapture. uity and different initial libration phase angles with step-size Anotherimportantconsequenceofanon-constanteccentric- of π/1000 rad. Results are listed in Table 3. We can see that ityisthatallresonancesbutthe1/1maybecomeunstable. In- there is a good agreement between the theoretical previsions deed, the amplitudeofthe librationtorquedependson the co- andthenumericalestimationoftheprobabilities. Asdiscussed efficientH(p,e)(Eq.3), whichgoestozerowiththeeccentric- in sections 3.1 and 3.2 the probability of capture when con- ity, except for the 1/1 resonance (Tab.1). Whenever the am- sidering only the effect of tides is very small ( 7% for the ∼ plitudeofthelibrationrestorationtorquebecomessmallerthan 3/2 resonance), while it becomes very important when core- theamplitudeofthedissipationtorque,equilibriuminthespin- mantle friction is added (100% for the 3/2 resonance). They orbit resonance can no longer be sustained and the resonance arealsoinconformitywiththoseobtainedinthepreviousstud- is destabilized. Critical eccentricities for each resonance are ies by GoldreichandPeale (1967) and PealeandBoss (1977). listedinTable2,obtainedwhenthetorquesbecomeequivalent Astheyallnoticed,whentheeffectfromcore-mantlefrictionis (Eqs.3,6): considered,theprobabilitiesofcapturearegreatlyenhancedfor all spin-orbitresonances. In particular, capture in the 2/1 res- Ω(e)p N(e) β − = . (32) onancealsobecomes100%,preventingasubsequentevolution H(p,e) K tothe3/2resonance. 4.2. Inclusionofplanetaryperturbations 4. Numericalsimulations Whenplanetaryperturbationsaretakenintoaccount,theec- centricity presents chaotic variations with many excursions to Wewillnowusethedynamicalequationsestablishedinsec- higherandlowervaluesthantoday(Laskar,1990,1994,2008, tion2tosimulatethefinalevolutionofMercury’sspinbyper- PaperI).Itisthenimpossibletoknowitsexactevolutionatthe forming massive numerical integrations. The main goal is to time the planet first encounteredthe spin-orbitresonances. A illustrate the effects described in section 3, in particular the statisticalstudywithmanydifferentorbitalsolutionsistheonly probabilitiesofcaptureandescapefromspin-orbitresonances. possibility to get a global picture of the past evolution of the Mercury geophysical models and parameters in use are those spinofMercury. InPaperI we performedsucha studybyin- listed in section 2. We recall here the most uncertain values: tegrating1000orbitsover4 Gyr in the paststarting with very k =0.4,Q=50andν=10 6m2s 1. close initial conditions. This statistical study was only made 2 − − 6 possiblebytheuseoftheaveragedequationsforthemotionof Table4:Captureprobabilitiesinseveralspin-orbitresonances(inpercentage). theSolarSystem(Laskar,1990,1994). WeperformedastatisticalstudyofthepastevolutionsofMercury’sspin,with In figure 3 we show five examples of the eccentricity evo- theintegration of1000orbits over4Gyr, ainitial rotation periodof10days lution through the 4.0Gyr. We choose some cases illustrative andzeroobliquity.Inthe“1stcap.”columnwelisttheresonancesinwhichthe ofthechaoticbehavior,wherewecanseethattheeccentricity spinwasfirstcaptured(beforebeingdestabilized). Inthe“final”columnwe listtheresultsafterthefull4Gyrofsimulations. Forcomparisonwealsolist canbeassmallaszero,butitcanalsoreachvaluesashighas theresultsobtainedwithaconstanteccentricity e = 0.206(“const.”) andthe 0.5. Insomecasestheeccentricitycanremainwithin[0.1,0.3] finalresultsobtainedinPaperI(“C&L04”),withamodelwithoutcore-mantle throughoutthe evolution, while in other cases it can span the friction. wholeinterval[0,0.5](Laskar,2008). numberofcaptures Owing to the chaotic evolution, the density function of the p const. 1stcap. final C&L04 1000 solutions over 4Gyr is a smooth function (Fig.4), well (%) (%) (%) (%) approximatedbyaRiceprobabilitydistribution(Laskar,2008). 6/1 0.1 The eccentricity excursions to higher values allow the planet − − − 11/2 0.4 to crossthe 3/2resonanceseveraltimes, andthusincreasethe − − − 5/1 0.3 1.3 probabilityofcapture.Thisbehaviorbecomesveryimportantif − − 9/2 1.3 2.7 theevolutionisdrivenbytidalfrictionalone. Eventhoughthe − − 4/1 4.7 5.3 probabilityofcaptureinasinglecrossingofthe3/2spin-orbit − − 7/2 10.3 8.7 4.7 resonanceisonlyaround7%,multiplecrossingsincreaseitup − 3/1 19.0 15.5 11.6 to55%(PaperI). − 5/2 29.8 26.5 22.1 − 2/1 34.6 31.2 31.6 3.6 4.3. Planetaryperturbationswithcore-mantlefriction 3/2 8.1 25.9 55.4 In presence of an efficientcore-mantle friction the multiple − 1/1 0.2 3.9 2.2 crossingsofthe 3/2resonanceare nolongerneeded,sincethe − none 0.2 38.3 captureinthisresonanceafterasinglecrossingisalready100% − − (Fig.2). Nevertheless, eccentricity excursions to lower values candestabilizetheequilibriuminanyspin-orbitresonancedif- ferent from the 1/1 (Tab.2). This effect was already present 32%respectivelyforthe5/2andthe 2/1resonances). The 5/2 whenthecore-mantlefrictionwasnotconsidered(PaperI),but andthe2/1spin-orbitresonancesbenefitfromthefactthatthe with small influence on the results, while here it becomes of planet must cross them first. On the other hand, the 3/2 reso- capitalimportance. Indeed,itmayallowtheevasionfrompre- nanceismorestableandthechancesofcapturearehigherwhen viouscapturesinhigherorderresonancesthanthe3/2andper- crossed. mitsubsequentevolutiontothepresentobservedspinstate. Inordertocheckthisnewscenario,wehaveperformedasta- SincetheeccentricityofMercury4.0Gyragocanbearound tisticalstudyofthepastevolutionsofMercury’sorbit,withthe 0.4 (e.g. Fig.3), at the momentof the first encounterwith the integrationofthesame1000orbitsover4Gyrinthepastusedin spin-orbitresonances,captureinresonancesashighasthe6/1 PaperI.We nowadditionallyincludetheeffectofcore-mantle can occur(Fig.2). Because the probabilityof capture is small friction as described by GoldreichandPeale (1967), i.e., we andbecausetherearenotmanyorbitalsolutionsreachingsuch willconsiderthefulldynamicsofthespingovernedbyEq.(13). high values for the eccentricity, we only count about 10% of Assuming an initial rotation period of Mercury of 10h, we capturesinresonancesaboveorequaltothe4/1(Tab.4). Once estimatedthatthetimeneededtode-spintheplanettotheslow captured,theseequilibriacanbemaintainedaslongastheec- rotationswouldbeabout300millionyears. Wewillthenstart centricityremainsabovetherespectivecriticalvalues(Tab.2). ourintegrationsalreadyintheslow-rotationregime,witharota- Contrary to the results predicted for a constant eccentricity tionperiodof10days(ω 8.8n),zeroobliquityandastarting (Tab.4), we also registereda few trajectoriesdirectlycaptured ≃ timeof 4Gyr,althoughthesevaluesarenotcritical.InTable4 inthe3/2resonancejustafterthefirstpassagethroughthereso- − weshowtheamountofcapturesforeachresonanceattheendof nancearea. Whenweusedthepresentvalueoftheeccentricity thesimulations(column“final”).Wealsolisttheresonancesin (e = 0.206), the 3/2 resonance could not be attained because whichthespinwasfirstcapturedbeforebeingdestabilized(col- forthatvaluecaptureprobabilityinthe2/1resonanceis100% umn“1stcap.”)andwerecalltheresultsobtainedforaconstant (Fig.2).However,foreccentricityvalueslowerthanabout0.19, eccentricity (e = 0.206)and in Paper I, with a modelwithout theprobabilityofcaptureinthisresonancedecreases,aswellas core-mantlefriction. forhigherorderresonances.Forinstance,whentheeccentricity After running 1000 trajectories we observe that the spin of is0.09,captureinthe2/1resonancedropsto50%. Thus,since Mercury preferably chooses one of the three final configura- theeccentricityofMercuryisvarying,itmayhappenthatabout tions:5/2,2/1or3/2(Tab.4).With26%ofcaptures,thepresent 4.0Gyrago its value was muchlowerthan todayand the spin configurationnolongerrepresentsthemostprobablefinalout- managedtoavoidallthespin-orbitresonanceshigherthanthe come, as it was in absence of core-mantle friction (Paper I). 3/2 and was directly captured in the present observed config- However,itisstill amongthemostprobablescenarios, theal- uration. We estimate nevertheless that the probability for this ternativesreceivingcomparableamountsofcaptures(22%and scenariotooccurisverylow,onlyabout8%(Tab.4). 7 4.4. Criticaleccentricities evenfor verylow valuesof the eccentricity (Fig.2), the major Over4.0Gyrofevolutiontheeccentricityhasmanychances possibilityofevolvingintothe1/1resonanceisbydestabilizing ofexperiencingaperiodofverysmallvalues(e.g.Fig.3).Even the3/2. Thisbecomesapossibilityiftheeccentricityisalmost whenaperiodofloweccentricitydoesnotlastforalongtime,a zero,thatis,fore<3 10 5(Tab.2). − × singlepassageoftheeccentricitybelowacriticalvalue(Tab.2) canbeenoughtodestabilizethecorrespondingspin-orbitreso- 4.5. Differentscenariosofevolution nance. The critical eccentricity needed to destabilize the 2/1 spin- Allorbitalsolutionsweregeneratedstartingfrominitialcon- orbitresonanceise 0.0046(Tab.2). Whenevertheorbital ditionsclosetothepresentvalues(seeLaskar,2008),andthere- 2/1 ≈ eccentricity is below this value, the spin will then evolve to- fore converge to the same final evolution. The eccentricity wardsthe3/2resonanceorbelow(Fig.7). However,thisisnot behavior is thus identical for the last 50-60Myr (Fig.1), be- the only possibility of achieving this last configuration if the forewhichthechaoticdiffusiondominates(Fig.5). Duringthe planet was first captured in a higher-orderresonance. Indeed, last50Myrtheeccentricitycertainlyreachedvalueslowerthan as discussed for the 1st capture column (Tab.4), if the eccen- 0.13,thusthe4/1andabovespin-orbitresonancescannotrep- tricity islowerthan 0.19atthe time the planetcrossesthe 2/1 resentapossiblefinaloutcomeforMercury(e 0.136).For 4/1 ≈ resonance(Fig.2),thechancesofcapturearelowerthan100%, the7/2andlowerorderspin-orbitresonances,captureuntilthe opening some space for subsequent evolution to the 3/2 reso- present day is not forbidden by the last 50Myr of Mercury’s nance.Forinstance,forapreviouscaptureinthe5/2resonance, evolution, but depends on the true orbital evolution of the ec- an eccentricityof e 0.025will destabilize it and produce centricity (Fig.5). The higher is the critical eccentricity, the 5/2 ≈ a capture probabilityof only 14.4%in the 2/1 resonance, i.e., loweristheprobabilityofremainingtrapped,becausemoreor- when the 5/2 resonance is destabilized there is about 85% of bitalsolutionswillcomebelowthisvalue. chanceofendinginthe3/2presentconfiguration(Fig.7). Infigure6weplotthecumulativedistributionoftheminimal Inordertoexemplifythemultitudeofpossibleevolutionary eccentricitiesattainedforeachoneofthe1000orbitalsolutions scenarios, we performed another kind of experiment. Adopt- thatweused.Wealsomarkwithstraightlinesthecriticalvalues ing a particular orbital solution, which presents a gradual de- oftheeccentricityforeachspin-orbitresonance(Tab.2)anduse crease in the eccentricity (Fig.3a), we integrated close initial dots to representthe amountof capturesobtainednumerically conditions for the spin. Since for this orbital solution the ec- forspin-orbitresonancesthatarestillstablebeloweachcritical centricity is high at the time of the first encounter, there is a value of the eccentricity. Since a large amount of the orbital greatchanceofcapturingthespininaspin-orbitresonancewith solutions experience at least one episode with an eccentricity p > 5/2. Infigure 7 we plotthe behaviorof fourtrajectories, below0.05(log e 1.3),about84%ofthefinalevolutions 10 ≈ − each one initially captured in a differentspin-orbit resonance, will end in the 5/2 spin-orbit resonance or lower (Tab.4). By when the eccentricity approaches a zone of very low values. comparingtheeccentricityinstabilitythresholdsforeachspin- As expected, the spin-orbit resonances are sequentially aban- orbit resonancewith the amountof capturesobtained numeri- doned as the eccentricity assumes small values. In particular, cally below that resonance we see that there is a good agree- we observe that the resonances are quit immediately after the ment, suggestinga strongcorrelationbetweenthe orbitalevo- eccentricityisbelowthecriticalvalueslistedinTable2. After lutionoftheeccentricityandthepercentageofcapturesineach being destabilized, the spin can evolve directly to the present resonance.Thereasonwhythereisnotfullagreementbetween 3/2 configuration, or can be trapped in an intermediate spin- thetwoisbecausespin-orbitresonancesbelowcriticalvaluesof orbitresonance.Inthisexample,theeccentricitybecomelower theeccentricitycanalsobeattainedbytrajectoriesthatescaped than e 0.0046 around 1.79Gyr and captures in the 2/1 captureinhigherorderresonances,thatis,theycanbeattained 2/1 ≈ − resonancebecomedestabilizedafterthatdate. eveniftheeccentricityisneverbelowthecriticalvalueforthat Wepurposelyplotonesituation,wherethespindoesnotend resonance(Fig.2). inthe3/2resonance,however. Inthiscase, atthemomentthe When comparing the results after 4.0Gyr with those after eccentricitybecomeslower than e , the spin is still captured the first capture, we verify that the 5/2 resonance (and above) 2/1 inthe5/2resonance. Thisresonancelogicallybecomesdesta- loseasignificantamountofpreviouslycapturedsolutions. The bilizedandtherotationratedecreases.Nevertheless,atthemo- amountoforbitscapturedinthe2/1resonanceremainsroughly ment the spin encountersthe 2/1 resonance the eccentricity is thesame,becausethenumberoftrajectoriesquittingthisreso- again higherthan e , and thereforethere is a chance of cap- nanceismoreorlesscompensatedbytheincomingtrajectories 2/1 tureinthisresonance,preventingasubsequentevolutiontoward fromhigherorderresonances.The3/2istherealwinnerofthis the3/2state(Fig.7). transitionprocess,astheamountoftrajectoriesthatendinthis lastconfigurationisabout4timeslargerthanitwasinitially.An 4.6. Constraintsontheorbitalevolution identicalscenariowasalreadyobservedinPaperI,exceptthat only a few captures occurred in spin-orbit resonances higher Wehaveseeninprevioussectionsthatthereisanimportant thanthe2/1andtheywereallsubsequentlydestabilized(Tab.4). correlationbetween the minimaleccentricityattainedby Mer- As in Paper I, we also noticed about 4% of the trajectories curythroughitsorbitalevolutionandtheprobabilityofcapture capturedinthe1/1spin-orbitresonance(Tab.4).Sincetheprob- in agivenresonance(Fig.6). Theloweris theminimaleccen- abilityofcaptureinthe3/2spin-orbitresonanceisalmost100% tricity, the higher is the probability of achieving a low order 8 Table5: Captureprobabilities inspin-orbitresonances (inpercentage), when Table6:ProbabilityfortheeccentricityofMercurytohavedescendedbelowa theeccentricitydescendsbelowagivencriticalvalue(Tab.2). specificcriticallevel(Pec)giventhatitsrotationiscapturedinthe3/2spin-orbit resonancetoday. Resultsforeachcriticaleccentricity ec (Tab.2)areobtained p e3/2 e2/1 e5/2 e3/1 e7/2 e4/1 fromEq.(33)withPcap=25.9%(Tab.4). 7/2 1.2 2.6 3.8 4.7 − − P e e e e e e 3/1 2.0 4.2 7.2 10.7 11.6 3/2 2/1 5/2 3/1 7/2 4/1 − P 25.0 73.2 55.1 37.2 27.7 25.9 5/2 3.2 5.2 16.0 20.7 22.1 cap/ec − P 3.2 27.1 40.3 64.5 99.7 100.0 2/1 3.1 5.4 23.9 30.5 32.6 31.6 orb P 3.1 76.6 85.7 92.6 98.8 100.0 3/2 25.0 73.2 55.1 37.2 27.7 25.9 ec 1/1 68.8 15.4 9.7 6.1 4.2 3.9 none 3.1 0.7 0.5 0.3 0.2 0.2 scended below e 0.0046(butonly a 3% chance of going 2/1 ≈ belowe 0.00003). 3/2 ≈ spin-orbit resonance. In particular, each time the eccentricity descendsbelowagivencriticalvalueforaspin-orbitresonance 5. Conclusions (Tab.2),thespinwillevolveintoalowerresonance. DuetotheincreasingevidenceofamoltencoreinsideMer- Sinceweknowthedistributionoftheminimaleccentricities cury(Nessetal.,1974;Margotetal.,2007),viscousfrictionat (Fig.6),wecanestimatetheprobabilityofendinginaspecific the core-mantleboundaryis expectedand its consequencesto spin-orbitresonancegiventhe valueofthe minimaleccentric- thespinmustbetakenintoaccount.Animportantconsequence ityofaconsideredorbit,P . Forthatpurposeweeliminate cap/ec is a considerable increase in the probability of capture for all allthetrajectoriesforwhichtheminimaleccentricityisabove spin-orbit resonances; in particular, for the 2/1 and the 3/2 it thecriticalvalue(Tab.2)andthencountthenumberofcaptures can reach 100% (PealeandBoss, 1977). Since it is believed in each resonancefor the remainingorbitalsolutions. Results that Mercury’s initial rotation was much faster than today, a arelistedinTable5. Whileforanarbitraryorbitalsolutionthe destabilizationmechanismis then requiredto allowthe planet probabilityofcaptureinthepresent3/2spin-orbitresonanceis toescapefromthe2/1andhigherorderresonancesandsubse- only25.9%,thisvaluerisesto55.1%ifweassumethattheec- quentlyevolvetothepresentobserved3/2configuration. centricityofMercurywasbelowe 0.025atsometimein 5/2 ≈ Withtheconsiderationofthechaoticevolutionoftheeccen- thepast,orevenupto73.2%iftheeccentricitydescendsbelow tricityofMercuryweshowthatsuchdestabilizationmechanism e 0.0046. Resultsforthecriticaleccentricitye 0.136 2/1 ≈ 4/1 ≈ existswhenevertheeccentricitybecomessmallerthanacritical are the same as the global results shown in Table 4, because value for each spin-orbit resonance (Tab.2). This mechanism the eccentricity of Mercury was below that value in the most wasalreadydescribedinPaperI,butbecomesofcapitalimpor- recent 50 Myr, where the chaotic behavior is not significant tance when core-mantle friction is taken into account. There (Fig.5). Notice also that there are always a few captures left aretwomainpossibilitiestoevolveintothe3/2configuration: inresonancesabovethecorrespondingcriticalvalue. Thiscan beexplainedbythesameeffectdescribedinthelastparagraph Theeccentricitybecomeslowerthanthecriticalvaluefor • ofsection4.5andillustratedinfigure7. the 2/1 spin-orbit resonance (e 0.005) and evolves 2/1 ≈ Inversely, since we know that the rotation of Mercury is intothe3/2. presentlycapturedinthe3/2spin-orbitresonance,wecanesti- Theeccentricitybecomeslowerthanthecriticalvaluefor matetheprobabilityfortheeccentricitytohavedescendeddur- • a higher order resonance than the 2/1, and then crosses ingitspastevolutionbelowaspecificcriticallevel,P . Using ec this resonance with an eccentricity lower than e < 0.19. conditionalprobabilities,wehavethen Thisallowsanonzeroprobabilityofescapingthe2/1res- P = Pcap/ec ×Porb , (33) onance,andsubsequentevolutionintothe3/2. ec P cap The other mechanism of capturingin the 3/2 resonancede- whereP istheprobabilityofendinginaspecificspin-orbit cap/ec scribedinPaperI,consistedinareturningtothe3/2spin-orbit resonancegiventhe value of the minimaleccentricity(Tab.5), resonanceafteranincreaseintheeccentricity.Thiseffectisnot P the probability for the eccentricity to reach that minimal orb as important when we take into account core-mantle friction, eccentricity (Fig.6) and P the global capture probability in cap sincethemostpartofthetrajectoriesarecapturedinresonance the specific spin-orbit resonance (Tab.4). Results for the 3/2 afterasinglepassage. spin-orbitresonance are given in Table 6. These probabilities After running1000 orbitalsolutions, starting from 4Gyr in for the orbital evolution of the eccentricity are the same as if thepastuntiltheyreachedthepresentdate,thespinoftheplanet weselectonlytheevolutionsthatfinishedinthe3/2spin-orbit wascapturedinaspin-orbitresonance99.8%ofthetime. The resonance and then look at the minimal eccentricity distribu- mainresonancestobefilledandtherespectiveprobabilitywere tion.Fromtheaboveanalysisweconcludethatthereisastrong (Tab.4): probability that the eccentricity of Mercury reached very low values; in particular there is about a 77% chance that it de- P =22.1%, P =31.6%, P =25.9%. (34) 5/2 2/1 3/2 9 Althoughinthiscasethepresentconfigurationnolongerrepre- Correia, A.C.M.,Laskar,J.,May2003.Long-termevolution ofthespinof sents themostprobablefinaloutcome,asitwas inabsenceof VenusII.Numericalsimulations.Icarus163,24–45. Correia,A.C.M.,Laskar,J.,Jun.2004.Mercury’scaptureintothe3/2spin- core-mantlefriction(PaperI),itisstillamongthemostproba- orbitresonanceasaresultofitschaoticdynamics.Nature429,848–850. blescenarios. Correia,A.C.M.,Laskar,J.,Ne´rondeSurgy,O.,May2003.Long-termevo- Moreover, if we assume that at some time in the past, the lutionofthespinofVenusI.Theory.Icarus163,1–23. eccentricity of Mercury becomes lower than e 0.025 or Counselman,C.C.,Shapiro,I.I.,1970.Spin-OrbitresonanceofMercury.Sym- 5/2 ≈ posiaMathematica3,121–169. e 0.005 respectively, the probability of reaching the 3/2 2/1 ≈ Darwin,G.H.,1880.Onthesecularchangeintheelementsofasatellitere- spin-orbitresonancerisesto55%and73%respectively(Table volvingaroundatidallydistortedplanet.Philos.Trans.R.Soc.London171, 5). Given thatMercuryis presentlytrappedin the 3/2config- 713–891. uration, we can also estimate that the eccentricity of Mercury Deleplace,B.,Cardin,P.,Nov.2006.Viscomagnetictorqueatthecoremantle boundary.Geophys.J.Int.167,557–566. has known at least one period of very low eccentricity during Gans,R.F.,1972.ViscosityoftheEarth’score.J.Geophys.Res.77,360–366. itspastevolution,withabout86%and77%ofchancesofbeing Goldreich, P., Peale, S., Aug.1966.Spin-orbit coupling inthesolarsystem. belowe 0.025ande 0.005respectively(Table6). Astron.J.71,425–438. 5/2 2/1 The prob≈abilityof capture≈in the 3/2 resonance can also be Goldreich,P.,Peale,S.,Jun.1967.Spin-orbitcouplinginthesolarsystem.II. TheresonantrotationofVenus.Astron.J.72,662–668. increased if the orbital eccentricity experiences more periods Goldreich,P.,Soter,S.,1966.QintheSolarSystem.Icarus5,375–389. nearzero. Thiscanbeachievedifweusedirectintegrationof Hut,P.,Jun.1981.Tidalevolutioninclosebinarysystems.Astron.Astrophys. theSolarSysteminsteadoftheaveragedequations,becausethe 99,126–140. true eccentricityis expectedto undergosome additionalsmall Kaula,W.M.,1964.Tidaldissipationbysolidfrictionandtheresultingorbital evolution.Rev.Geophys.2,661–685. variationsaroundthevalueobtainedfortheaveragedequations Laskar,J.,Dec.1990.Thechaotic motionofthesolarsystem-Anumerical (Laskar,2008). Alternatively,theprobabilityofcaptureinthe estimateofthesizeofthechaoticzones.Icarus88,266–291. 3/2 resonance can still be increased if we are able to increase Laskar,J.,Jul.1994.Large-scalechaosinthesolarsystem.Astron.Astrophys. 287,L9–L12. the criticaleccentricitiesthat destabilize spin-orbitresonances Laskar,J.,1996.LargeScaleChaosandMarginalStabilityintheSolarSystem. (Tab.2). Thiscanbeachievedifthetidaldissipationisstronger CelestialMechanicsandDynamicalAstronomy64,115–162. (k2 >0.4and/orQ<50)orifC22 <1.0 10−5(Eq.32). Laskar,J.,Jul.2008.ChaoticdiffusionintheSolarSystem.Icarus196,1–15. × Lower values for the core effective viscosity, ν, will not Laskar,J.,Correia,A.C.M.,Gastineau,M.,Joutel,F.,Levrard,B.,Robutel, P.,Aug.2004a.Longtermevolutionandchaoticdiffusionoftheinsolation changethecriticaleccentricities,butwilldecreasetheamount quantitiesofMars.Icarus170,343–364. of capturesforallspin-orbitresonances. Asa consequence,it Laskar,J.,Robutel,P.,Joutel,F.,Gastineau,M.,Correia,A.C.M.,Levrard,B., becomes easier to escape from the capture in spin-orbit reso- Dec.2004b.Along-termnumericalsolutionfortheinsolationquantitiesof nances, andallthosetrajectoriesthatalsoescapethe3/2reso- theEarth.Astron.Astrophys.428,261–285. Lumb,L.I.,Aldridge,K.D.,1991.OnviscosityestimatesfortheEarth’sfluid nance can be later trapped there when the eccentricity experi- outercore-mantlecoupling.J.Geophys.Geoelectr.43,93–110. ences a period with e > 0.325(Paper I). We then believe that Margot,J.L.,Peale,S.J.,Jurgens,R.F.,Slade,M.A.,Holin,I.V.,May2007. thetruescenariofortheevolutionofthespinofMercurymay LargeLongitudeLibrationofMercuryRevealsaMoltenCore.Science316, besomewherebetweenthescenariodescribedhere,withanef- 710–714. Mathews, P. M., Guo, J. Y., Feb. 2005. Viscoelectromagnetic coupling in ficientcore-mantlefrictioneffect,andthescenariodescribedin precession-nutationtheory.J.Geophys.Res.(SolidEarth)110,B02402–16. PaperI,foratotalabsenceofcore-mantlefriction.Inthefuture, Mignard,F.,May1979.Theevolutionofthelunarorbitrevisited.I.Moonand differentdissipative parametersand modelscould be tested as Planets20,301–315. wellastheeffectoftheobliquity,thatwassupposedtobezero Mignard,F.,Oct.1980.Theevolutionofthelunarorbitrevisited.II.Moonand Planets23,185–201. inthepresentstudy. Ness,N.F.,Mar.1978.Mercury-Magneticfieldandinterior.SpaceScience Reviews21,527–553. Ness,N.F.,Behannon,K.W.,Lepping,R.P.,Whang,Y.C.,Schatten,K.H., Acknowledgments Jul. 1974. Magnetic field observations near Mercury: Preliminary results fromMariner10.Science185,153–162. The authors thank S.J. Peale for discussions. This work Peale, S.J.,Nov.2005.ThefreeprecessionandlibrationofMercury.Icarus was supported by the Fundac¸a˜o Calouste Gulbenkian (Portu- 178,4–18. Peale,S.J.,Boss,A.P.,Aug.1977.Spin-orbitconstraintontheviscosityofa gal),Fundac¸a˜oparaaCieˆnciaeaTecnologia(Portugal),andby Mercurianliquidcore.J.Geophys.Res.82,743–749. PNP-CNRS(France). Pettengill,G.H.,Dyce,R.B.,1965.ARadarDeterminationoftheRotationof thePlanetMercury.Nature206,1240. Poincare´,H.,1910.Surlapre´cessiondescorpsde´formables.Bull.Astron.27, References 321–356. Poirier,J.P.,Jan.1988.Transportpropertiesofliquidmetalsandviscosityof Anderson,J.D.,Colombo,G.,Espsitio,P.B.,Lau,E.L.,Trager,G.B.,Sep. theearth’score.GeophysicalJournal92,99–105. 1987.Themass,gravityfield,andephemerisofMercury.Icarus71,337– Rochester, M.G.,1976.Theseculardecrease ofobliquity duetodissipative 349. core-mantlecoupling.Geophys.J.R.A.S.46,109–126. Boue´,G.,Laskar,J.,Dec.2006.Precessionofaplanetwithasatellite.Icarus Smart, W. M., 1953. Celestial Mechanics. London, New York, Longmans, 185,312–330. Green. Colombo,G.,1965.RotationalPeriodofthePlanetMercury.Nature208,575– Spohn,T.,Sohl,F.,Wieczerkowski, K.,Conzelmann, V.,Dec.2001.Thein- 578. terior structure of Mercury: what we know, what we expect from Bepi- Correia, A.C.M., Dec.2006.Thecore-mantle friction effect onthesecular Colombo.Plan.SpaceSci.49,1561–1570. spinevolutionofterrestrialplanets.EarthPlanet.Sci.Lett.252,398–412. Tisserand,F.,1891.Traite´ deMe´caniqueCe´leste(TomeII).Gauthier-Villars, Correia,A.C.M.,Laskar,J.,Jun.2001.ThefourfinalrotationstatesofVenus. Paris. Nature411,767–770. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.