ebook img

Mental map preserving graph drawing using simulated annealing PDF

20 Pages·2011·1.35 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mental map preserving graph drawing using simulated annealing

InformationSciences181(2011)4253–4272 ContentslistsavailableatScienceDirect Information Sciences journal homepage: www.elsevier.com/locate/ins q Mental map preserving graph drawing using simulated annealing Chun-Cheng Lina, Yi-Yi Leeb, Hsu-Chun Yenb,⇑ aDepartmentofIndustrialEngineeringandManagement,NationalChiaoTungUniversity,Hsinchu300,Taiwan,ROC bDepartmentofElectricalEngineering,NationalTaiwanUniversity,Taipei106,Taiwan,ROC a r t i c l e i n f o a b s t r a c t Articlehistory: Visualizinggraphshasbeenstudiedextensivelyinthecommunityofgraphdrawingand Received26May2009 informationvisualizationovertheyears.Insomeapplications,theuserisrequiredtointer- Receivedinrevisedform19December2010 actwithagraphbymakingslightchangestotheunderlyinggraphstructure.Tovisualize Accepted2June2011 graphsinsuchaninteractiveenvironment,itisdesirablethatthedifferencesbetweenthe Availableonline6June2011 displays of the original and the modified graphs be kept minimal, allowing the user to comprehendthechangesinthegraphstructurefaster.Asthementalmapconceptrefers Keywords: tothepresentationofaperson’smindwhileexploringvisualinformation,thebetterthe Mentalmap mentalmapispreserved,theeasierthestructurechangeofagraphisunderstood.Itis Simulatedannealing somewhat surprising that preserving the user’s mental map has largely been ignored in Graphdrawing thegraphdrawingcommunityinthepast.Weproposeaneffectivemental-map-preserving graphdrawingalgorithmforstraight-linedrawingsofgeneralundirectedgraphsbasedon thesimulated-annealingtechnique.Ourexperimentalresultsandquestionnaireanalysis suggestthisnewapproachtobepromising. (cid:2)2011ElsevierInc.Allrightsreserved. 1.Introduction Graphsarewidelyrecognizedasapopularandusefulmodelforcapturingawidevarietyofreal-worldconceptsinappli- cationareassuchassocialnetworks,databases,discreteeventsystems,biologicalpathways,andmanymore[17].Througha nicevisualdisplayofagraph,theuserislikelytogainabetterinsightintotheinformationconveyedbythegraph.Asitis virtuallyinfeasibletomanuallydrawgraphsofhighcomplexityinstructureandsize,manysophisticatedautomaticdrawing methodsfordisplayingcomplicatedgraphshavebeendevelopedovertheyears(see,e.g.,[9,10,20]).Theinterestedreaderis referredto[1,21]fornicesurveysongraphdrawing. Inordertofindnicedrawings,graphdrawingalgorithmsareoftendesignedtomeetcertainaestheticcriteria(see,e.g., [31]), which specify the desired graphical structures and drawing properties. Such aesthetic criteria include minimizing thenumberofedgecrossingsorbends,minimizingthedrawingarea,maximizingthedegreeofsymmetry,andmanymore. Unfortunately,theproblemofsimultaneouslyoptimizingtwoormorecriteria,inmanycases,isNP-hard.Althoughthecom- putationalefficiencyaswellasthedrawingquality(i.e.,theextenttowhichtheoutputdrawingsconformtothedesired aestheticcriteria)remainthemostpopularmeasuresforjudgingtheeffectivenessofadrawingalgorithm,moreandmore attentionhasbeengiventotheissueofpreservingthementalmap[30]intheframeworkofinteractivegraphdrawing. In some applications, the user can interact with a graph by applying operations such as adding/deleting one or more nodes/edgestothegraphonaregularbasis.Tocopewiththistypeofdynamicallychanginggraphs,mostautomaticdrawing strategiesrelyonusinganexistingstaticgraphdrawingalgorithmtoredraweachmodifiedgraphfromscratch.Although q ApreliminaryversionofthisworkwaspresentedatAsiaPacificSymposiumonInformationVisualization2006,February1–3,2006,Tokyo,Japan. ⇑ Correspondingauthor. E-mailaddress:[email protected](H.-C.Yen). 0020-0255/$-seefrontmatter(cid:2)2011ElsevierInc.Allrightsreserved. doi:10.1016/j.ins.2011.06.005 4254 C.-C.Linetal./InformationSciences181(2011)4253–4272 suchstrategiesareconvenientandsimple,theysufferfromthefollowingdrawback.Sincetheuserisalreadyfamiliarwith the original drawing, applying an existing static graph drawing algorithm to the modified graph may render the output drawingill-behavedasfaraspreservingtheuser’s‘‘mentalmap’’isconcerned.Toseethis,considerFig.1.Fig.1(a)isthe drawingofagraphproducedbythewell-knownspringalgorithm[12].Supposeweaddnode4andconnectittotheremain- ingnodesofthegraph.Fig.1(b)and(c)aretwopossibledrawingsofthemodifiedgraphproducedbythespringalgorithm underdifferentsettingsofspringlengths.Clearly,Fig.1(c)isabetteroneasfaraspreservingthementalmapisconcerned, sinceitinheritsmoreinformationfromtheoriginaldrawing(i.e.,Fig.1(a)).Fig.2(originallygivenin[22])showsamore dramaticexampleillustratingtheimportanceofpreservingthementalmap.Theinitialgraph(Fig.2(a),excludingthethick curve)consistsofachainofquadrangles,whicharedisplayednicelybythe‘‘CircularwithRadial’’(CRforshort)layoutalgo- rithm[36].WhenweconnectthetwooutermostnodesbyasingleedgewhichismarkedbythethickcurveinFig.2(a),all thequadranglescollapseintooneinthelayoutredrawnbytheCRalgorithm(seeFig.2(b)).NotethatthebasicideaoftheCR algorithmistoplaceallthenodesonacircleandthenperformacrossingminimizationheuristic,whichstillresultsinat leastn/4crossings(wherenisthenumberofnodes)inthisexample.Unfortunately,thenewdrawingsuffersfromarather smallangularresolutionsuchthatitishardtorecognizetheoriginalstructure.AnalternativelayoutisdisplayedinFig.2(c) whichshowsacompleteringofquadranglesasitisconstructedfromtheinitialdrawing.Theabovetwoexamplessuggest thatusingastaticdrawingalgorithmtodrawamodifiedgraphfromscratchmayresultinsomethingthatlookscompletely differentfromtheoriginal,causingtheusertohavetospendaconsiderableamountofextratimetocomprehendthenew drawing. Eades,Lai,Misue,andSugiyama[13]werethefirsttoproposethementalmapconceptofgraphdrawing,whichcanbe thoughtofasthepresentationofaperson’smindwhileexploringvisualinformationofagraph.Whatmakesthepreserva- tionofthementalmapimportantingraphdrawingisthattheuserisabletoquicklyrecognizetheredrawnlayoutofthe modifiedgraph,basedonhis/herunderstandingoftheoriginallayout.Mostoftheexistingalgorithmsfortheproblemof preservingthementalmapfocusonpreservingtheorthogonalordering(see,e.g.,[25])oraddingconstraintstotheinputgraph (see,e.g.,[2,19]).Fortwonodesuandvinagraph,thepreservationoftheorthogonalorderingmeanstherelativeabove/ below and left/right positions of the nodes remain unchanged after the graph is redrawn. Preserving the user’s mental map is sometimes referred to as a stability problem(see, e.g., [26]). Recently, Brandes and Pampel [3] have showed that itisNP-hard topreservetheorthogonalorderingevenfor thesimplestgraphs(paths).Forspecificdrawingstylestaking mentalmappreservationintoaccount,thereaderisreferredto[22]forcirculardrawingand[16]foronlinedynamicgraph drawing.Experimentalstudiesconcerningtheeffectofpreservingthementalmapcanbefoundin[32,33,35].Theimpor- tance of preserving the mental map can also be found in applications including distributed mobile object environments [15],onlinelearningenvironments[37],andmore. Thebasicrequirementofagraphdrawingalgorithmistoproduceanaestheticallypleasinglayoutin2-Dor3-D,taking theabstractrepresentationofagraphastheinput.InDavidsonandHarel’swork[6],anice-lookinggraphdrawingreferstoa drawingwhich:(1)distributesnodesevenly,(2)makesedge-lengthsuniform,(3)minimizesedge-crossings,and(4)keeps nodesfromcomingtooclosetoedges.Todrawgraphsnicely,asimulatedannealing(SA)methodwasusedin[6]withthe energycostfunctiondesignedtorespecttheaboverequirements.Theimplementationoftheirworkallowstheusertoadjust therelativeweightsofcriteriaintheenergycostfunctionamongvariousparameters,thoughsomeofthesecriteriamaybe inconflictwitheachother.TheSAmethodoffersamoreflexiblewayofdrawinggraphsthanmanyotheralgorithms.Our simulatedannealinggraphdrawingmethodisbasicallybasedonthestrategyreportedin[6].Theinterestedreaderisalso referredto[7,8]forearlierworkofapplyingtheSAmethodtographdrawing. Astherearemanyintuitivefactorsthataffectthementalmap,BridgemanandTamassia[5]formallydefinedthoseintu- itivefactorsfororthogonaldrawingsandpresentedsomestatisticalresultstoevaluatetheireffectsonhumanperceptionof similarity.Theyusedmanymetricstomeasurethesimilaritybetweendifferentdrawings,andthenaskedrespondentsto evaluatethebestmeasuresthatreflecttheirperceptionofsimilarityamongasetoforthogonaldrawings.Finally,theyused astatisticalmethodtofindtherelationshipbetweenthesemeasurementsandusers’feelings,andsuggestedthefollowing formeasuringthedegreeofpreservationofthementalmap:ranking,orthogonalordering,k-matrix,unweightednearestneigh- borwithin,averagedistance,weightednearestneighborbetween,shape,andrelativedistance.Previousstudies([32,33,35]),on theotherhand,oftenapplystudent-basedsurveystoevaluatingtheperformanceofmental-map-preservinggraphdrawing algorithms. Inthispaper,weproposeamental-map-preservinggraphdrawingalgorithmforstraight-linedrawingsofgeneralundi- rectedgraphs,baseduponthesimulatedannealinggraphdrawingapproachof[6]withtheenergycostfunctionincorporating 1 1 4 1 4 2 3 2 3 2 3 (a) (b) (c) Fig.1. Anexampleofthementalmapproblem. C.-C.Linetal./InformationSciences181(2011)4253–4272 4255 (a) (b) (c) Fig.2. Anexampleofthementalmapproblemincirculardrawing[22]. sixcriteriaof[5]toreflecttheuser’smentalmap.Aspointedoutin[24],student-basedsurveysmaynotalwaysbeappropriate asfarasevaluatingthequalityofamental-mappreservinggraphdrawingalgorithmisconcerned.Hence,inourstudywe considernotonlyexperimentalevaluationbutalsostudent-basedquestionnaireanalysis,inordertobetterjustifytheclaimed performanceofourdesign.Theexperimentalresultsshowthattoacertainextent,ourapproachiscapableofpreservingthe drawingcontourofagraphandtherelativepositionsofnodeswhenapplyingavertex/edgeinsertion/deletionoperationtoa graph.Similarto[6],ourapproachisveryflexibleinthesensethatitallowstheusertoadjusttherelativeweightsofcriteria among various parameters. We also see from the experimental evaluation that there exists a trade-off between drawing graphsnicelyandpreservingthementalmap.Asforthequestionnaireanalysis,ahighpercentageofrespondentschoose themodifieddrawingproducedbyourapproachasthebestmental-map-preservingmodifieddrawingintheirminds. Themaincontributionsofthispaperaresummarizedasfollows: 1. Mostofthepreviousworkofpreservingthementalmapfocusedonhowtopreservetheorthogonalordering(see,e.g., [25])oraddconstraintstotheinputgraph(see,e.g.,[2,19]).Toourknowledge,therehavenotbeengraphdrawingalgo- rithmsaimingatpreservingthementalmaponstraight-linedrawingsofgeneralundirectedgraphswhileusingmore sophisticatedcriteriasimultaneously. 2. Our approach allows the user to adjust the relative weights of various criteria, making our drawing algorithm very flexible. 3. Bytakingsamplesamongagroupofstudentswithbasicknowledgeofgraphsandgraphdrawing,BridgemanandTam- assia[5]suggestedanumberofgoodcriteriasuitableforcapturingthenotionofthementalmap.Ourgraphdrawing approachincorporatesthecriteriaof[5]intotheenergycostfunctionofasimulatedannealinggraphdrawingalgorithm topreservethedrawingcontourofagraphandtherelativepositionsofnodeswhenmodifyingthegraph. 4. Ourapproachobtainsthelocationofeachnodeineachiteration,resultinginasmoothprocessfromtheinitialdrawingto thefinaldrawing–adesirablepropertyininformationvisualization. Therestofthispaperisorganizedasfollows.InSection2,weintroducethesimulatedannealinggraphdrawingmethod, uponwhichourgraphdrawingalgorithmisbased.Section3involvesthedesignofanenergycostfunctiontopreservethe mentalmap.Section4showstheexperimentalresultsofourapproach.Section5givesaquestionnaireanalysisofourap- proach.AconclusionisgiveninSection6. 2.Preliminaries Asmentionedintheprevioussection,thefourrequirementsofa‘‘nicedrawing’’includedistributingnodesevenly,making edge-lengthsuniform,minimizingedge-crossings,andkeepingnodesfrombeingtooclosetoedges.Inthissection,wefirst introducethe generalframeworkof simulatedannealing,and then showhow todraw graphsnicelyusingthe simulated annealinggraphdrawingalgorithmproposedbyDavidsonandHarel(DHforshort)[6]. 2.1.Introductiontosimulatedannealing Simulatedannealing(SA)[23]isageneralizationoftheMonteCarlomethodforexaminingtheequationsofstatesand frozenstatesofn-bodysystems.SAisflexibleandhassuccessfullybeenappliedtosolvingvariouscombinationaloptimiza- tionproblems,includingsolvingthemaximumcliqueproblem[18],determiningthethicknessofagraph[28],etc.Itallows ‘‘uphill’’moves–movesthatspoil,ratherthanimprove,thetemporarysolution.ThisuniquefeatureallowsSAtoescapefrom alocalminimalsolution,thoughitisnotguaranteedthataglobalminimumcanbereachedeventually. ThebasicstepsofSAaregivenasfollows.ThefirststepofSAistogenerateaninitialconfiguration(eitherrandomlyor heuristicallyconstructed)andinitializetheso-calledtemperatureparameterT.Thenthefollowingisrepeateduntiltheter- minationconditionissatisfied.Anewsolutionfromtheneighborhoodofthecurrentsolutionisselectedrandomly.Theen- ergycostofthenewsolutioniscalculatedovertheobjectivefunctionandTisdecremented.Let/and/0denotethecurrent andnewenergycosts,respectively.If/0</,thenewsolutionwillbeaccepted.If/0>/,thissolutionwillbeacceptedwitha probabilityfromaBoltzmanndistributionfunctione(cid:2)ð/0(cid:2)/Þ=kT,wherekistheBoltzmannconstant.Weassumek=1.Thiskind of‘‘uphill’’moveswillbefewerasSAproceeds,becauseTdecreasesaftereachiteration. 4256 C.-C.Linetal./InformationSciences181(2011)4253–4272 2.2.Thegraphdrawingalgorithmusingsimulatedannealing TheinputoftheDHalgorithmisagraphG=(V,E),whereVisthesetofnodesandEisthesetofedges.EachnodeinVhas auniqueindex.ThekeydesigninSAistheenergycostfunction,onwhichtheefficiencyofthealgorithmhighlydepends.A goodenergycostfunctionshouldreflectthepropertiesofnice-lookingdrawings.ThecriteriausedbytheDHalgorithminthe designoftheenergycostfunctionaregivenasfollows,inwhichk ,...,k arenormalizingfactorsthatdefinetherelative 1 5 importanceofeachcriterioncomparedtotheothers. 1. Nodedistribution:"(i,j)2V(cid:3)V,a ¼k =d2 isaddedsothatnodesarespreadevenly,whered isthedistancebetween i;j 1 i;j i,j nodesiandj. 2. Borderlines:"i2V, m ¼k ð1=r2þ1=l2þ1=t2þ1=b2Þisadded so thatnodesarepreventedfrombeingtooclosetothe i 2 i i i i borderlines,wherer,l,t,b standforthedistancesbetweennodeiandtheright,left,topandbottomsidesofthedrawing i i i i frame,respectively. 3. Edgelengths:TheDHalgorithmusesc ¼k d2,whered isthelengthofedgek.Instead,ouralgorithmusesr=k s2,where k 3 k k 3 s is the standard deviationof edge lengths, becausethe utilizationof c tends to producedrawingswith shorteredge k lengthswhichmaynotbedesirableinsomecasesofpreservingthementalmap. 4. Edgecrossings:"(k,l)2E(cid:3)E,wesimplyaddtheterme whichequalsk f f ifedgeskandlcross;e =0otherwise,where k,l 4kl k,l f (resp.,f)istheweightattributedtoedgek(resp.,l),representingtheimportanceofedgek(resp.,l)notintersecting k l otheredges.Notethatk ¼k =g2 whereg isthegivenminimumdistancebetweennodesandedges. 4 5 min min 5. Node-edgedistances:Fornodeiandedgekwithdistanceg ,thetermh ¼k =g2 isadded. i,k i;k 5 i;k Inlightoftheabove,theenergycost/ofadrawingofgraphG=(V,E)iscomputedasfollows: /¼ X a þXm þrþ X e þ X h ; i;j i k;l i;k ði;jÞ2V(cid:3)V;i–j i2V ðk;lÞ2E(cid:3)E;k–l;kRNðlÞ ði;kÞ2V(cid:3)E;kRNðiÞ whereweslightlyabusethenotationN((cid:4))withN(l)denotingthesetofneighboringedgesofedgel,andN(i)representingthe setoftheedgesincidenttonodei.Infact,onlyanodemovesfromtheoriginalconfigurationtothenewconfigurationineach stepofthealgorithm.Fornotationalconvenience,thenodeintheoriginal(resp.,new)configurationiscalledp(resp.,p0).If thecalculationofacomponenttakesp(resp.,p0)intoaccount,itimpliesthatthecomponentbelongstotheenergycostfunc- tionoftheoriginal(resp.,new)configuration.Therefore,thedifferenceoftheenergycostsbetweentheoriginalandthenew configurations can be computed more efficiently as follows: /0(cid:2)/¼Pðp;jÞ2NðpÞðap0;j(cid:2)ap;jÞþðmp0(cid:2)mpÞþðr0(cid:2)rÞþ ðPðk;lÞ2Nðp0Þ(cid:3)E;k–lek;l(cid:2)Pðk;lÞ2NðpÞ(cid:3)E;k–lek;lÞþPk2E;kRNðpÞðhp0;k(cid:2)hp;kÞ, where r0 is the variance of the edge lengths in the new configuration. 3.Ourmental-map-preservinggraphdrawingalgorithm TheworkofBridgemanandTamassia[5]canberegardedasthemostcompleteworkonmentalmapmetrics.Theypre- sented the results of a user study based on several similarity measures between orthogonal drawings, which reflect the user’smentalmapaccordingtotheuser’sdirectresponses.Asaresult,ourapproachtothementalmappreservationprob- lemistoincorporatesomeofthebestmeasuresusedin[5]forstraight-linedrawingsintotheDHalgorithm.Inwhatfollows, weintroducethemaincomponentsofouralgorithm. 3.1.Configuration GivenagraphG=(V,E),aconfigurationspecifiestheplacementofnodesinVonaplane,assumingthatedgesaredrawnas straight-linesegments,andGisdrawnwithinagivenrectangularframe.Ifthereisnoaprioriinformationaboutthenodes, weplacethenodesrandomlywithinthedrawingframe.TheneighborhoodofaconfigurationCisaconfigurationthatisob- tainedfromCbychangingthelocationofacertainnode.Ineachiteration,wechooseanodearbitrarilyandthenassignita newrandomlocationwithinacircleofdecreasingradiusarounditsoriginallocation.Thesettingofadecreasingradiusmay acceleratetheconvergenceofthealgorithm[6]. 3.2.Thementalmapcostfunction Inordertopreservethementalmap,wedefinethementalmapcostMbetweentheoriginaldrawingDandthemodified drawingD0toreflectthesimilarityofdrawingsbasedoncertain’’components’’usedintheexperimentsreportedin[5].Note thatthevalueofeachcomponentinMisnonnegative,andhenceM=0impliesthatthetwodrawingsareviewedasthesame drawings.AlargermagnitudeofMmeansahigherdegreeofdifferencebetweenthetwodrawings. Notethatallthemeasuresproposedin[5]exceptthe‘‘Shape’’measurearedefinedintermsofpointsets,whicharede- rivedfromtheedgesandnodesofthegraphinsteadoftheedgesandnodesthemselves.Eachpointintheoriginaldrawing hasacorrespondingpointinthemodifieddrawing.Althoughthereareavarietyofwaystoselectthepointsetsasindicated C.-C.Linetal./InformationSciences181(2011)4253–4272 4257 in[5,27],inthispaperwechoosethepointsetincludingallthenodesofthegraph,becausethereisatmostanodemovingin eachtrialofourSAalgorithm–itsufficestocomputeonlythevaluesrelatedtothemovednode. Weadoptthenotationsoriginallyusedin[5]inoursubsequentdiscussion.PandP0alwaysrefertothepointsetsofdraw- ingsDandD0,respectively.SinceonlyonepointmovesineachtrialofourSAalgorithm,weletpdenotethemovedpoint,and p02P0isthecorrespondingpointofp(andviceversa).ThenumberofnodesinVisn.Recallthatd denotestheEuclidean p,q distancebetweenpointspandq. Inthefollowing,wedefinecomponentsusedinM,inwhichg ,...,g arethenormalizingfactorsthatdefinetherelative 1 6 importanceofacriterioncomparedtotheothers. 1. Ranking:Consideringthattherelativehorizontalandverticalpositionsofanodeshouldnotvarytoomuch,weaddtoM thecomponent g rankðP;P0Þ¼ 1 minfjrightðpÞ(cid:2)rightðp0ÞjþjaboveðpÞ(cid:2)aboveðp0Þj;UBg; UB whereUB=1.5(jPj(cid:2)1);right(p)andabove(p)arethenumbersofpointstotherightandaboveofp,respectively.Notethat theupperboundUBissetto1.5(jPj(cid:2)1)ratherthan2(jPj(cid:2)1)becausetheprobabilityunderwhichtheactualmaximum valuehappensisverysmall. 2. k-matrix: Two point sets P and P0 have the same order type if, for every triple of points (p,q,r), they are oriented counterclockwiseifandonlyif(p0,q0,r0)arealsoorientedcounterclockwise.Thek-matrixisdesignedtopreserveanorder typeofpoints.Hereweuseasimplifiedversion,whichcalculatesthenumberofnodestotheleftoftwodesignatednodes. Letk(p,q)bethenumberofpointsinPtotheleftofthedirectedlinefromptoq.WeaddtoMtheterm g X lambdaðP;P0Þ¼ 2 jkðp;qÞ(cid:2)kðp0;qÞj; UB q2P;q–p whereUB¼njðn(cid:2)1Þ2k. 2 3. Unweighted nearestneighbor within: This componentcapturesthe intuitive idea thata node’s nearest neighborshould remainitsclosestneighborafterthegraphisredrawn.Letnn(p)bethenearestneighborofpinPandnn(p)0bethecor- respondingnodeinP0 tonn(p).Thecomponentisdefinedas: nnwðP;P0Þ¼ g3 XminfjnearerðpÞj;1g; UB p2P whereUB¼jPj;nearerðpÞ¼fqjdp0;q<dp0;nnðpÞ0;q2P;q–p;q–nnðpÞg. 4. Weightednearestneighborbetween:Thisconceptisbasedontheassumptionthatanodeshouldnotmovetoofarfromthe originalposition,andhenceitsnewpositionshouldbeasclosetoitsoriginalpositionaspossible.Asthenewdrawingis presented,theuseroughttobeabletofindacertainnodewhichisrecordedinhis/hermentalmap.Thecomponentis definedas: g X nnbðP;P0Þ¼ 4 jnearerðpÞj; UB p2P whereUB¼jPjðjPj(cid:2)1Þ;nearerðpÞ¼fqjdp;q<dp;p0;q2P;q–pg. 5. Shape:Thiscomponentrecordstheedgeorientationofthegraph.Notethattheoriginalmeasurein[5]wasdesignedfor orthogonaldrawings.Tocopewithstraight-linedrawings,themeasureismodifiedasfollows: g X shape¼ 5 editsðe;e0Þ; UB e2E whereUB=jEjand (cid:2)1; if theincludedanglebetweene and e0 issmall; editsðe;e0Þ¼ 0; otherwise; inwhiche0isthecorrespondingedgeofeinD0.Notethatwhethertheincludedanglebetweentwoedgesissmallisdeter- minedbyusers. 6. Average relative distance: The average relative distance is the average of the distances from p to the remaining nodes. Therefore,weaddtheterm rdistðP;P0Þ¼nðng(cid:2)6 1Þ Xjdp;q(cid:2)dp0;qj: p;q2P Althougheightbestsimilaritymeasuresfororthogonaldrawingsweresuggestedin[5],onlysixofthemareincludedin ourmentalmapcostfunction.Thetwomeasuresdesignedforpreservingtheorthogonalordering(calledOrthogonalOrdering 4258 C.-C.Linetal./InformationSciences181(2011)4253–4272 in[5])ofnodesandminimizingthemovementdistanceoftheselectednode(calledAverageDistancein[5])areexcludedin ourworkforthereasonsgivenbelow.First,ifsomenewnodesandedgesarearbitrarilyaddedtoadrawingcausingnew edgecrossings,thenthosenewedgecrossingscannotbeeliminatedbyanalgorithmwhichpreservestheorthogonalorder- ingofnodes.Also,minimizingthenumberofedgecrossingsisusuallyregardedasthemostimportantaestheticcriterionin graphdrawing[29].Therefore,weexcludethemeasureofpreservingtheorthogonalorderingofnodes.Asourexperimental resultsindicate,ahighdegreeoforthogonalorderofnodesisstillpreservedwithouttakingthismeasureintoaccount.On theotherhand,themeasureofminimizingthemovementdistanceoftheselectednodeisexcludedbecauseithasbeenim- pliedbytheselectionoftheneighborhoodofaconfigurationintheSAalgorithm.Inaddition,itcanalsobeviewedasbeing achievedinpartbytheedgelengthcomponentintheenergycostfunction.Finally,theexclusionofthetwomeasuresresults inamoreefficientSAalgorithm,asexpected. 3.3.Ouralgorithm Ouralgorithm,describedinAlgorithm1,isalmostthesameastheDHalgorithmexcepttheifconditionatstep2(b)is replaced by the conjunction of the original condition and M0< (cid:2) , where M0 is the value of the mental map function at M thenewdrawingD0 and(cid:2) isthemaximaltoleranceofthementalmapcostthatacceptsthenewdrawingD0. M Algorithm1SA_MENTAL_MAP 1:denotetheinputdrawingasDandsetaninitialtemperatureT ; 0 2:fori-thstage,denotethetemperatureasT,andrepeatthefollowingfor30jVjtrials: i (a) randomlyselectapointp2P(notethatPisthepointsetofD);selectanewpositionp0 inadecreasing-radius circlearoundp;letD0 beanewdrawingwhichisalmostthesameasDexceptpisreplacedbyp0; (b) let/and/0bethevaluesoftheenergycostfunctionatDandD0respectively;letM0bethevalueofthemental mapfunctionatD0;if(/0(cid:2)/<0orrandom<e(cid:2)ð/0(cid:2)/Þ=Ti)and(M0<(cid:2)M),thensetD D0; 3:T =cT; i+1 i 4:iftheterminationconditionissatisfied,stop;otherwisegotostep2. TheenergycostandthementalmapcostareconsideredindependentlyinAlgorithm1,becausetheyservefordifferent purposes.Theformerisusedfordrawinggraphnicely,whereasthelatterisusedforpreservingthementalmap.Eachcom- ponentinthementalmapcostcanbenormalizedwiththeupperboundofvalue1exceptforthe‘Averagerelativedistance’ component(whichisofsmallvaluewhilepreservingthementalmap),andhence,itiseasytocontroltherelativeweightsof thesecomponentstopreservethementalmap.However,thevaluesofthecomponentsintheenergycostaresodiversethat itisdifficulttoadjusttheirweightstogenerateanicedrawingwhenthealgorithmconverges.Consolidatingthetwocosts withdifferentscalesintoonedoesnothelp,sinceitbecomesmoredifficulttoadjusttheweightstoreachconvergence,and moreimportantly,thegoalsassociatedwiththetwocostsarelikelytobeinconflictwitheachother.Asaresult,theenergy costandthementalmapcostareconsideredindependentlyinAlgorithm1. AlsonoteinAlgorithm1thattheSAschemeisonlyappliedtotheenergycost,becauseitwouldbedifficulttoachieve convergence if applyingto the two costs simultaneously. In addition,we believe that in most cases a user prefers a nice drawingwithareasonablepreservationofthementalmapthanabaddrawingwithawell-preservedmentalmap.Conse- quentlyweapplytheSAschemeonlytotheenergycost. ThecoolingscheduleusedinAlgorithm1followsthebasicgeometricscheduledescribedin[23]. 1. Initialtemperature:Wesettheinitialtemperaturehighenoughinorderforanyconfigurationtoworkasthestartingpoint ofthealgorithm.Alowerinitialtemperaturecanbechoseninthebeginning,iftheinitialconfigurationisknowntobear someresemblancetothedesiredfinalresult. 2. Temperaturereduction:Thetemperaturereductionstagedetermineswhentochangethetemperatureandhowtochange it.Thisstageaffectsthenumberofmovesateachtemperatureandtherangeofeachmove.Typicalapplicationssetthe numberoftrialsateachtemperaturetobepolynomialinthesizeoftheinput.Inoursetting,thenumberofmovesateach temperatureissetto30jVj,suggestedbytheDHalgorithm.Thecoolingscheduleruleisgeometric.IfT denotesthetem- i peratureatthei-thstage,thenthetemperatureatthenextstageisT =cT,wherecisarealnumberbetween0.6and i+1 i 0.95.SimilartotheDHalgorithm,weletc=0.75.Therangeofeachmovedecreaseswhenthetemperaturereduces.Ifthe rangeofmovementatthei-thstageisR,thentherangeofmovementservingforthenexttemperatureiscR,whichaccel- eratestheconvergenceofthealgorithm. 3. Termination condition: This is to decide when to stop the algorithm. Commonly used termination conditions include: stopping the algorithm when the solution is not modified after several consecutive stages, or fixing the number of stages to be a constant. To carry out a fair comparison between our algorithm and the DH algorithm, the number ofstagesinourexperimentsissettoten,whichisidenticaltothatusedin[6].Experimentalresultshaveshownthat, in many cases, substantial changes only happen in the early stages; subsequent stages yield only marginal improvement. C.-C.Linetal./InformationSciences181(2011)4253–4272 4259 Nowweturnourattentiontothetimecomplexityofouralgorithm.AsouralgorithmisbuiltupontheDHalgorithm,it sufficestoconsiderthetimecomplexityoftheDHalgorithm.Asindicatedin[6],theDHalgorithmrunsinO(jVj2jEj)time becausethenumberofstagesisaconstant,thenumberoftrialsineachstageis30jVj,andeverytermintheenergycost functioncanbecomputedinO(jVjjEj)time.Also,itisobviousthateverycomponentofthementalmapcostcanbecomputed intimenomorethanO(jVjjEj).Hence,Algorithm1alsorunsinO(jVj2jEj)time. 4.Experimentalresults Thissectionshowsfourexperimentalresultsforevaluatingtheperformanceofourmental-map-preservinggraphdraw- ingalgorithm.Ineachexperiment,theinitialdrawingoftheinputgraphisarandomdrawing,andthenanicedrawingis producedbytheDHalgorithm.Subsequently,liketheexperimentdesignedin[5],thegraphismodifiedbyaddingtwonodes with two and four incident edges, respectively. The locations of the two nodes are decided randomly, and the other end pointsofthesixedgesareconnectedtoarbitrarynodesintheoriginalgraph.Finally,wecomparethedrawingsofthemod- ifiedgraphproducedbyouralgorithmandtheDHalgorithm. OurprototypesystemrunsonanIntelCore2DuoCPUE8400@3.00GHzPCwith3.00GBmemory.Thestatisticsonthe runningtimeoftheDHalgorithmandouralgorithmwithrespecttofourexamplesaregiveninTable1.Ouralgorithmrunsa bitslowerthantheDHalgorithmsincemorecriteriaaretakenintoaccount.Liketheconclusiongivenin[6]regardingtheDH algorithm,ouralgorithm,fromapracticalviewpoint,isonlysuitablefordrawingdynamicgraphsofsmall-size. Inordertoseehowtherunningtimeofouralgorithmincreaseswhenthesizeoftheinputgraphgrows,weconsidersev- eralgraphstakenfromthewell-knowngraphdataset–RomeGraphs,1whichareoriginatedfrompracticalapplicationsranging fromdataflowdiagramstoPetrinets.ThelargestgraphintheRomeGraphdatasethas110nodes.Weconductexperimentson thefirst100graphsintheRomeGraphset,andrecordtherunningtimeofredrawingthemodifiedgraphofeachofthe100 graphs.Tothisend,weaddtwonodes,onewithtwoedgesandtheotherwithfouredges,tothenicedrawingofeachgraph. TheaveragerunningtimeversusthenumberofnodesisplottedinFig.3.Itturnsoutthatittakesabout25storedrawa100- nodegraph,whichissomewhatunacceptableforapplicationsthatrequirereal-timeresponses. ConsiderthefirstsimpleexperimentshowninFig.4.AninitialrandomdrawingisgiveninFig.4(a).AfterapplyingtheDH algorithmunderdifferentsettingsofparameterk ,threepossiblenice-lookingdrawingsaredisplayedinFig.4(b),inwhich 4 (i)–(iii)illustratehowlesspenaltiesonedgecrossingsaffecttheoutcomesofthealgorithm.Nowwearbitrarilyaddtwonew nodes7and8toeachofthethreedrawings,wherenode7isconnectedtonodes4and5,andnode8isconnectedtonodes1, 3,4,and5(seeFig.4(c)).Themodifiedgraphsareredrawnbyouralgorithm,asshowninFig.4(d).Forthesakeofcompar- ison,considerFig.4(e)and(f).Fig.4(e)showsthethreedrawingsobtainedbyapplyingtheDHalgorithmtodrawingsin(i)– (iii)inFig.4(c)directly.Ontheotherhand,Fig.4(f)displaystheoutcomesofapplyingtheDHalgorithmtorandomdrawings ofgraphsassociatedwith(i)–(iii)inFig.4(c)underthesamesettingofparameters. InviewofFig.4(c)and(d),itisobviousthatouralgorithmiscapableofgeneratingnicedrawings.Itisalsonothardtosee fromFig.4(b)and(d)thatthecontoursofdrawingsandtherelativepositionsofnodesareverysimilarinthetwosetsof drawings,suggestingthatouralgorithmpreservesahighdegreeofthementalmap.Incontrast,thedrawingsinFig.4(e) and(f)producedbytheDHalgorithmsharelittlesimilaritywiththoseinFig.4(b). Ifweremovetheadditionalnodes7and8andtheiradjacentedgesfromthedrawingsinFig.4(c)–(f),itbecomesclearer whythedrawingsinFig.4(d)preservebettermentalmaps.SeeFig.5.Sincethementalmapcriteriaandtheaestheticcriteria areofteninconflictwithoneanother,thereisatrade-offbetweenpreservingahighdegreeofthementalmapandachieving someaestheticcriteriasuchasminimizingthenumberofedgecrossings.Fortunately,ouralgorithmallowstheusertoadjust the weights between different criteria, in order to fit his/her drawing requirements. For example, node 5 in Fig. 5(b) (i) (whichisproducedbyouralgorithm)doesnotpreserveitsoriginalrelativeposition(i.e.,notsatisfiableasfaraspreserving thementalmapisconcerned).ConsiderFig.4(c)(i).Tokeepnode5inthesamerelativeposition(bychangingthesettingsof parameters),node8cannotmoveintothequadrangleboundedbynodes1,2,3,and6,whichinturn,inducesadditionaledge crossings,thoughnode8,inthiscase,keepsitsoriginalrelativepositionintact. Inthesecondexperiment,theinitialgraphFig.6(b)isacompletedegree-fourtreewith21nodesand20edges.Takingthe initialrandomdrawingshowninFig.6(a)astheinput,theDHalgorithmoutputsthedrawinginFig.6(b).Fig.6(c)showsthe graphtransformedbyinsertingnodes22and23(togetherwithsixedges)intothetree.Fig.6(d)isthedrawingproducedby applyingouralgorithmtothedrawinginFig.6(c).WecanobservethattherearenodrasticdifferencesbetweenFig.6(b)and (d).Fig.6(e)(resp.,Fig.6(f))isthedrawingproducedbyapplyingtheDHalgorithmtothedrawinginFig.6(c)(resp.,aran- domdrawingofthemodifiedgraph).AlthoughthedrawinginFig.6(f)almosthasnocommonpointswiththedrawingin Fig.6(b),thereareonlytwoedgecrossingsinthedrawinginFig.6(f),whichachievestheminimumnumberofedgecrossings amongallpossibledrawingsofthemodifiedgraph. Fig.7(a)–(d)simplydisplaythedrawingsafterremovingtheadditionalnodes22and23fromFig.6(c)–(f),respectively.By comparingFig.7(b)withFig.7(a),itcanbeobservedthatthedrawinginFig.7(b)almostpreservestheshapeandstructureof thedrawinginFig.7(a)exceptthattheorderingsofnodepairs(6,7)and(15,16)aredifferent.Asmentionedearlier,preserv- ingthementalmapandoptimizingsomeaestheticcriteriamaynotbeachievedsimultaneously.Thereasonwhytheorder- 1 http://www.dia.uniroma3.it/(cid:5)gdt/. 4260 C.-C.Linetal./InformationSciences181(2011)4253–4272 Table1 ThestatisticsonthetotalrunningtimeoftheDHandouralgorithms. Problem jVj jEj DH our Fig.4(c) 8 15 0.1453s 0.1781s Fig.6(c) 23 26 0.7206s 0.9837s Fig.8(c) 65 68 5.7500s 8.5030s Fig.10(c) 102 130 19.3353s 28.1252s 35 ec.) 30 me (s 25 ng ti 20 ni un 15 e r ag 10 er av 5 0 0 20 40 60 80 100 120 number of nodes Fig.3. Plotofaveragerunningtimeversusnumberofnodes. ingsofthetwopairsofnodesaredifferentisthatthedrawinginFig.7(b)correspondstothedrawinginFig.6(d)whichin- ducesfeweredgecrossingsthanthecasewhentheorderingsarenotmodified.IfwecompareFig.7(c)withFig.7(a)assum- ingnode1tobetherootofthetree,thesubtreesrootedatnodes2,3,and4lookdifferentalthoughthecounterclockwise orderingofthechildrenofnode1ispreserved.BycomparingFig.7(d)withFig.7(a),itisobviousthatthementalmapisnot preserved. Wealsocarryoutanexperimentonacompletebinarytreewith63nodesand62edges.Similartothepreviousexper- iments,Fig.8(a)–(f)showarandomdrawingoftheinitialgraph,thenicedrawingproducedbytheDHalgorithm,thedraw- ing ofthe modifiedgraphby addingtwo nodes, themodifieddrawingproducedby our algorithm,themodifieddrawing producedbytheDHalgorithm,andthedrawingproducedbyapplyingtheDHalgorithmtoarandomdrawingofthemod- ified graph, respectively. Fig. 9(a)–(d) show the drawings after the two added nodes are removed from Fig. 8(c)–(f), respectively. IfwelookatFig.8(b)and(d),thereareonlyslightmodificationsbetweenthetwodrawings,asonlynodepairs(7,15), (32,33),(36,37),(40,41),(58,59),and(60,61)areofdifferentorderings.Thisismainlycausedbythefactthatthemeasure ofpreservingtheorthogonalorderingofnodesisexcludedinourmentalmapcostfunction.If,ontheotherhand,sucha measureisincluded,thenadditionaledgecrossingsbecomeinevitable,causingtheoutputtobelessattractivefromtheaes- theticviewpoint.Incontrast,althoughthedrawinginFig.8(e)hasfeweredgecrossingsthanthedrawingproducedbyour algorithm,itdiffersalotincomparisonwiththeoriginaldrawingillustratedinFig.8(b),especially,inthelefthalfofthe drawing.Assuming node 1tobe theroot of thetree, the subtreesrootedat nodes8, 9,14, 20, and 26in thedrawing of Fig.8(a)aretotallydifferentfromthoseinthedrawingofFig.8(e).AsforFig.8(f),thedrawinghasonlyoneedgecrossing, whichachievestheminimumnumberofedgecrossingsamongallthepossibledrawingsofthemodifiedgraph.FromFig.9, theadvantageofourdrawingalgorithmbecomesapparentwhentheprimaryconcernisplacedonthepreservationofthe mentalmap. Finally,wepresentanexperimentcarriedoutonagraphwith100nodesand124edgeschosenfromtheRomeGraphdata set.Similartothepreviousexperiments,Fig.10(a)–(f)showarandomdrawingoftheinputgraph,thenicedrawingproduced bytheDHalgorithm,thedrawingofthemodifiedgraphbyaddingtwonodesandsixedges,themodifieddrawingproduced byouralgorithm,themodifieddrawingproducedbytheDHalgorithm,andthedrawingproducedbyapplyingtheDHalgo- rithmtoarandomdrawingofthemodifiedgraph,respectively. AlthoughthedrawingsinFig.10aremorecomplicated,thereisacommonfeaturein(b)–(e)thatmostnodesarecentral- izedinthebottomrightpartofthewholearea.BycomparingFig.10(b)withFig.10(d)and(e),itisclearthatdrawing(d)by ouralgorithmpreservesthecontouroftheoriginaldrawing(b),butdrawing(e)bytheDHalgorithmdoesnothavethis property. Figs.11and12showhowourSAalgorithmiscapableofescapingfromlocalminima.Fig.11givestheplotoftheenergy costversusthenumberoftrialsintheprocessofapplyingtheDHalgorithmtoFig.8(c)toyieldFig.8(e).RecallfromAlgo- rithm1thatthenumberoftrialsisequalto30jVjmultipliedbythenumberofexecutedstagesplusthenumberoftrials executedatthecurrentstage.Fig.11illustratesthatsome‘uphill’movescansuccessfullyescapefromlocalminimabyusing theDHalgorithm.Toseethis,considertheenergycostsinthewindowbetweenthe16500-thtrialandthe18000-thtrialin C.-C.Linetal./InformationSciences181(2011)4253–4272 4261 2 3 2 1 1 2 6 1 4 4 2 6 5 6 5 4 6 3 1 3 4 3 (i) (ii) (iii) 5 5 (a) the initial drawing.(b) applying the DH algorithm to (a) under different settings of parameters. 3 8 8 8 2 1 2 6 1 4 7 2 7 67 5 4 6 5 3 1 4 3 (i) (ii) (iii) 5 (c) adding nodes 7 and 8 to each of the three drawings in (b). 3 8 8 1 2 6 2 7 4 2 1 7 5 4 5 6 8 1 6 3 3 5 7 4 (i) (ii) (iii) (d) applying our algorithm to each of the three drawings in (c). 3 7 1 2 6 4 1 6 7 2 8 5 4 5 1 4 6 2 3 5 8 8 7 (i) (ii) (iii) 3 (e) applying the DH algorithm to each of the three drawings in (c). 6 4 3 4 8 1 3 7 5 8 5 2 3 2 7 1 5 6 2 1 8 4 6 7 (i) (ii) (iii) (f) applying the DH algorithm to a random drawing of the graph in (c). Fig.4. Theexperimentforaninitialcubicgraphwithsixnodes. Fig.11.Thecurveoftheenergycostbetweenthe16500-thtrialandthe17000-thtrial(‘plain’-moving)isalmostflat.How- ever,‘downhill’-movingfollowedby‘uphill’-movingnearthe17000-thtrialyieldsabettersolution,whichillustratesthe advantageoftheSAmethod. 4262 C.-C.Linetal./InformationSciences181(2011)4253–4272 3 2 1 2 6 1 4 2 6 5 4 6 5 3 1 4 3 (i) (ii) (iii) 5 (a) Figure 3(c) without nodes 7 and 8. 3 1 2 2 6 4 1 2 5 5 6 4 6 3 1 3 4 (i) (ii) (iii) 5 (b) Figure 3(d) without nodes 7 and 8. 1 3 1 2 4 2 6 6 5 6 4 4 5 1 2 3 5 (i) (ii) (iii) 3 (c) Figure 3(e) without nodes 7 and 8. 4 3 6 1 5 4 2 3 3 5 5 6 2 2 1 1 4 6 (i) (ii) (iii) (d) Figure 3(f) without nodes 7 and 8. Fig.5. Removingnodes7and8fromFig.4(c)(d)and(f). Fig.12illustratesa‘‘costversustrialnumber’’plotintheprocessofyieldingFig.8(d)fromFig.8(c)usingouralgorithm. Fig.12(a)and(b)givetheplotsoftheenergycost/andthementalmapcostM,respectively,againstthenumberoftrials. Fig.12(c)and(d)givedetailedviewsofthedotted-lineboxesin(a)and(b),respectively.Notethatthetolerance(cid:2) ofMis M setto0.3inthisexperiment,causingtheconfigurationwiththevalueofMlargerthan0.3toberejectedinFig.12(b)and(d), whichinturnyieldsaconsiderableamountof‘plain-moving’inFig.12(a).FromFig.12(a)and(c),weobservethatouralgo- rithm,anSA-basedmethod,alsohastheabilitytoescapefromlocalminimainmanycases.Itshouldbenotedthatthemax- imumenergycostinFig.11(undertheDHalgorithm)islargerthanthatinFig.12(a)(underouralgorithm)byapproximately 4billion.Suchadisparityisduetothefactthattheweightofthemeasureofpenalizingthenumberofedgecrossings(oneof themostimportantmeasuresinproducinganicedrawing)issettoahugevalue.Inordertopreservethementalmap,our algorithmproducesthedrawinginFig.8(d)withthreemoreedgecrossingsthanthedrawinginFig.8(e),causingtheextra4 billioninthecorrespondingenergycost. Asouralgorithmisbasedonthestochasticsimulatedannealing(SSA)strategy,itisnotsurprisingthatouralgorithmis somewhatslowwhenapplyingtolargegraphs.Apossiblewaytoimprovetheperformanceofouralgorithmistoconsider usingthedeterministicsimulatedannealing(DSA)technique[11]instead,whichrunsfasterinmanyreal-worldproblemsof largescalewithoutsacrificingtheaccuracyofthesolution.ThebasicideaofDSAistouseahyperbolictangentfunctionto transformdigitalvaluesoftheenergycostinSSA(seeFig.11)intoanalogvalues.DesigningaDSA-basedmental-map-pre-

Description:
mental map is preserved, the easier the structure change of a graph is cation areas such as social networks, databases, discrete event systems, Unfortunately, the problem of simultaneously optimizing two or more criteria, . Section 3 involves the design of an energy cost function to preserve the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.