ebook img

Mendelian Randomization Methods for Causal Inference Using Genetic Variants PDF

240 Pages·2021·12.803 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mendelian Randomization Methods for Causal Inference Using Genetic Variants

Mendelian Randomization Methods for Causal Inference Using Genetic Variants CHAPMAN & HALL/CRC Interdisciplinary Statistics Series Series editors: B.J.T. Morgan, C.K. Wikle, P.G.M. van der Heijden Recently Published Titles Correspondence Analysis in Practice, Third Edition M. Greenacre Capture-Recapture Methods for the Social and Medical Sciences D. Böhning, P. G. M. van der Heijden, and J. Bunge (editors) The Data Book: Collection and Management of Research Data M. Zozus Modern Directional Statistics C. Ley and T. Verdebout Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS K. Bogaerts, A. Komarek, and E. Lesaffre Statistical Methods in Psychiatry and Related Field: Longitudinal, Clustered and Other Repeat Measures Data R. Gueorguieva Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition A.B. Lawson Flexbile Imputation of Missing Data, Second Edition S. van Buuren Compositional Data Analysis in Practice M. Greenacre Applied Directional Statistics: Modern Methods and Case Studies C. Ley and T. Verdebout Design of Experiments for Generalized Linear Models K.G. Russell Model-Based Geostatistics for Global Public Health: Methods and Applications P.J. Diggle and E. Giorgi Statistical and Econometric Methods for Transportation Data Analysis, Third Edition S. Washington, M.G. Karlaftis, F. Mannering and P. Anastasopoulos Parameter Redundancy and Identifiability D. Cole Mendelian Randomization: Methods for Causal Inference Using Genetic Variants, Second Edition S. Burgess, S. G. Thompson For more information about this series, please visit: https://www.crcpress.com/ Chapman--HallCRC-Interdisciplinary-Statistics/book-series/CHINTSTASER Mendelian Randomization Methods for Causal Inference Using Genetic Variants Second Edition Stephen Burgess Simon G. Thompson First edition published 2015 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2021 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf. co.uk Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. ISBN: 9780367341848 (hbk) ISBN: 9781032019512 (pbk) ISBN: 9780429324352 (ebk) Typeset in CMR10 by KnowledgeWorks Global Ltd. Contents Preface to the second edition ix Abbreviations xi Notation xiii I Understanding and performing Mendelian randomization 1 1 Introduction and motivation 3 1.1 Shortcomings of classical epidemiology . . . . . . . . . . . . 3 1.2 The rise of genetic epidemiology . . . . . . . . . . . . . . . 5 1.3 Motivating example: The inflammation hypothesis . . . . . 6 1.4 Other examples of Mendelian randomization . . . . . . . . 9 1.5 Overview of book . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 What is Mendelian randomization? 13 2.1 What is Mendelian randomization? . . . . . . . . . . . . . . 13 2.2 Why use Mendelian randomization? . . . . . . . . . . . . . 19 2.3 A brief overview of genetics . . . . . . . . . . . . . . . . . . 20 2.4 Classification of Mendelian randomization investigations . . 24 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Assumptions for causal inference 27 3.1 Observational and causal relationships . . . . . . . . . . . . 27 3.2 Finding a valid instrumental variable . . . . . . . . . . . . . 30 3.3 Testing for a causal relationship . . . . . . . . . . . . . . . . 42 3.4 Example: Lp-PLA and coronary heart disease . . . . . . . 43 2 3.5 Estimating a causal effect . . . . . . . . . . . . . . . . . . . 45 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Estimating a causal effect from individual-level data 51 4.1 Ratio of coefficients method . . . . . . . . . . . . . . . . . . 51 4.2 Two-stage methods . . . . . . . . . . . . . . . . . . . . . . . 61 4.3 Example: Body mass index and smoking intensity . . . . . 63 4.4 Computer implementation . . . . . . . . . . . . . . . . . . . 64 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 v vi Contents 5 Estimating a causal effect from summarized data 67 5.1 Motivating example: interleukin-1 and cardiovascular diseases 67 5.2 Inverse-variance weighted method . . . . . . . . . . . . . . . 69 5.3 Heterogeneity and pleiotropy . . . . . . . . . . . . . . . . . 74 5.4 Computer implementation . . . . . . . . . . . . . . . . . . . 78 5.5 Example: Body mass index and smoking intensity reprised . 80 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6 Interpretation of estimates from Mendelian randomization 83 6.1 Internal and external validity . . . . . . . . . . . . . . . . . 83 6.2 Comparison of estimates . . . . . . . . . . . . . . . . . . . . 86 6.3 Example: Lipoprotein(a) and coronary heart disease . . . . 89 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.5 Recap of examples considered so far . . . . . . . . . . . . . 95 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 II Advanced methods for Mendelian randomization 99 7 Robust methods using variants from multiple gene regions 101 7.1 Motivatingexample:LDL-andHDL-cholesterolandcoronary heart disease . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.2 Consensus methods . . . . . . . . . . . . . . . . . . . . . . . 104 7.3 Outlier-robust methods . . . . . . . . . . . . . . . . . . . . 108 7.4 Modelling methods . . . . . . . . . . . . . . . . . . . . . . . 110 7.5 Other methods and comparison . . . . . . . . . . . . . . . . 116 7.6 Example: LDL- and HDL-cholesterol and coronary heart disease reprised . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.7 Computer implementation . . . . . . . . . . . . . . . . . . . 119 7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8 Other statistical issues for Mendelian randomization 121 8.1 Weak instrument bias . . . . . . . . . . . . . . . . . . . . . 121 8.2 Allele scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.3 Sample overlap . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.4 Winner’s curse . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.5 Selection and collider bias . . . . . . . . . . . . . . . . . . . 134 8.6 Covariate adjustment . . . . . . . . . . . . . . . . . . . . . 137 8.7 Non-collapsibility . . . . . . . . . . . . . . . . . . . . . . . . 138 8.8 Time and time-varying effects . . . . . . . . . . . . . . . . . 139 8.9 Power to detect a causal effect . . . . . . . . . . . . . . . . 141 8.10 Choosing variants from a single gene region . . . . . . . . . 142 8.11 Binary exposure . . . . . . . . . . . . . . . . . . . . . . . . 143 8.12 Alternative estimation methods . . . . . . . . . . . . . . . . 145 8.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Contents vii 9 Extensions to Mendelian randomization 149 9.1 Multivariable Mendelian randomization . . . . . . . . . . . 149 9.2 Network Mendelian randomization . . . . . . . . . . . . . . 154 9.3 Non-linear Mendelian randomization . . . . . . . . . . . . . 155 9.4 Factorial Mendelian randomization . . . . . . . . . . . . . . 160 9.5 Bidirectional Mendelian randomization . . . . . . . . . . . . 164 9.6 Mendelian randomization and meta-analysis . . . . . . . . . 165 9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10 How to perform a Mendelian randomization investigation 167 10.1 Motivation and scope . . . . . . . . . . . . . . . . . . . . . 170 10.2 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.3 Selection of genetic variants . . . . . . . . . . . . . . . . . . 172 10.4 Variant harmonization . . . . . . . . . . . . . . . . . . . . . 175 10.5 Primary analysis . . . . . . . . . . . . . . . . . . . . . . . . 176 10.6 Robust methods for sensitivity analysis . . . . . . . . . . . 177 10.7 Other approaches for sensitivity analysis . . . . . . . . . . . 178 10.8 Data presentation . . . . . . . . . . . . . . . . . . . . . . . 180 10.9 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 182 10.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 III Prospects for Mendelian randomization 185 11 Future directions 187 11.1 GWAS: large numbers of genetic variants . . . . . . . . . . 187 11.2 -omics: Large numbers of risk factors . . . . . . . . . . . . . 189 11.3 Hypothesis-free: Large numbers of outcomes . . . . . . . . . 190 11.4 Biobanks: Large numbers of participants . . . . . . . . . . . 190 11.5 Clever designs: The role of epidemiologists . . . . . . . . . . 191 11.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Bibliography 193 Index 223 Preface to the second edition The volume of research into the genetics of common diseases has exploded overthelast25years.Whilemanygeneticvariantsrelatedtovariousdiseases have been identified, their usefulness may lie more in what they offer to our understanding of the biological mechanisms leading to disease rather than to, for example, predicting disease risk. To understand mechanisms, we need to separate the relationships of risk factors with diseases into those that are causal and those that are not. This is where Mendelian randomization can play an important role. The technique of Mendelian randomization itself has undergone rapid development, mostly in the last 15 years, and applications now abound in medicalandepidemiologicaljournals.Itsbasisisthatofinstrumentalvariable analysis, which has a much longer history in statistics and particularly in econometrics. Relevant papers on Mendelian randomization are therefore dispersed across the multiple fields of genetics, epidemiology, statistics and econometrics – and increasingly bioinformatics. The intention of this book is tobringtogetherthisliteratureonthemethodsandpracticalitiesofMendelian randomization, especially to help those who are relatively new to this area. In writing this book, we envisage the target audience comprising three main groups, Epidemiologists, Bioinformaticians, and Medical Statisticians, whowanttoperformappliedMendelianrandomizationanalysesorunderstand how to interpret their results. We therefore assume a familiarity with basic epidemiological terminology, such as prospective and case-control studies, and basic statistical methods, such as linear and logistic regression. While Mendelian randomization methods can be applied in a diverse range of areas, we concentrate on applications in epidemiology, and hope that researchers in other areas will still find the content relevant. While we have tried to ensure that this book will be accessible to a wide audience, a geneticist may baulk at the simplistic explanations of Mendelian inheritance,astatisticianmayyearnforadeeperleveloftechnicalexposition, and an epidemiologist may wonder why we don’t just cut to the chase of how to perform the analyses. Our aim is that enough detail is given for those who need it, references are available for those who want more, and a section can simply be glossed over by those for whom it is redundant. We have also tried as far as possible to allow each chapter to be read in isolation. The price of this is that we may introduce a topic in one chapter, only to return to it in more detail in a later chapter. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.