ebook img

MEMS and Nanotechnology, Volume 6: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics PDF

155 Pages·2013·6.293 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MEMS and Nanotechnology, Volume 6: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics

Conference Proceedings of the Society for Experimental Mechanics Series Series Editor Tom Proulx Society for Experimental Mechanics, Inc., Bethel, CT, USA For furthervolumes: http://www.springer.com/series/8922 Gordon A. Shaw (cid:129) Bart Prorok (cid:129) LaVern A. Starman Editors MEMS and Nanotechnology, Volume 6 Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics Editors GordonA.Shaw BartProrok NIST,Gaithersburg AuburnUniversity MD,USA AL,USA LaVernA.Starman AirForceInstituteofTechnology WrightPattersonAirForceBase OH,USA ISSN2191-5644 ISSN2191-5652(electronic) ISBN978-1-4614-4435-0 ISBN978-1-4614-4436-7(eBook) DOI10.1007/978-1-4614-4436-7 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2011923429 #TheSocietyforExperimentalMechanics,Inc.2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherightsof translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Exemptedfromthislegalreservationarebriefexcerptsinconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeof beingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplicationofthispublicationorpartsthereofispermitted onlyundertheprovisionsoftheCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.Permissions for use may be obtained throughRightsLinkat the Copyright ClearanceCenter. Violations are liable to prosecution under the respectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication,neithertheauthorsnortheeditorsnorthe publishercanacceptanylegalresponsibilityforanyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface MEMS and Nanotechnology, Volume 6: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics represents one of seven volumes of technical papers presented at the Society for Experimental Mechanics’ (SEM)12thInternationalCongressandExpositiononExperimentalandAppliedMechanics,heldatCostaMesa,California, June 11–14, 2012. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Challenges in MechanicsofTime-DependentMaterials,andProcessesinConventionalandMultifunctionalMaterials,ImagingMethods forNovelMaterialsandChallengingApplications,ExperimentalandAppliedMechanics,MechanicsofBiologicalSystems andMaterials,andCompositeMaterialsandJoiningTechnologiesforComposites. Each collection presents early findings from experimental and computational investigations on an important area within Experimental Mechanics. The 13th International Symposium on MEMS and Nanotechnology conference track wasorganizedbyGordonA.Shaw,NationalInstituteofStandardsandTechnology;BartonProrok,AuburnUniversity;LaVern A.Starman,AirForceInstituteofTechnology;andsponsoredbytheSEMMEMSandNanotechnologyTechnicalDivision. Microelectromechanical systems (MEMS) and nanotechnology are revolutionary enabling technologies (ETs). These technologiesmergethefunctionsofsensing,actuation,andcontrolswithcomputationandcommunicationtoaffecttheway people and machines interact with the physical world. This is done by integrating advances in various multidisciplinary fields to produce very small devices that use very low power and operate in many different environments. Today, developments in MEMS and nanotechnology are being made at an unprecedented rate, driven by both technology and userrequirements.Thesedevelopmentsdependonmicromechanicalandnanomechanicalanalyses,andcharacterizationof structurescomprisingnanophasematerials. Toprovideaforumforanup-to-dateaccountoftheadvancesinthefieldofMEMSandnanotechnologyandtopromote anallianceofgovernmental,industrial,andacademicpractitionersofET,SEMinitiatedaSymposiumSeriesonMEMSand Nanotechnology. The 2012 Symposium is the 13th in the series and addresses pertinent issues relating to design, analysis, fabrication, testing, optimization, and applications of MEMS and nanotechnology, especially as these issues relate to experimental mechanicsofmicroscaleandnanoscalestructures.Topicsincludedinthisvolumeare: DevicesandFabrication MeasurementChallengesinSingleMolecule/SingleAtomMechanicalTesting Nanoindentation SizeEffectsinMetals OpticalMethods Reliability,ResidualStressandTribology It is with deep gratitude that we thank the organizing committee, session chairs, authors and keynote speakers, participants,andSEMstaffformakingthe12th-ISMANavaluableandunforgettableexperience. The opinions expressed herein are those of the individual authors and not necessarily those of the Society for Experi- mentalMechanics,Inc. Gaithersburg,MD,USA GordonA.Shaw Auburn,AL,USA BartProrok WrightPattersonAirForceBase,OH,USA LaVernA.Starman v Contents 1 SiliconCarbideHighTemperatureMEMSCapacitiveStrainSensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 R.P.Weisenberger,R.A.CoutuJr.,andLaVernA.Starman 2 CharacterizingExternalResistive,InductiveandCapacitiveLoadsforMicro-Switches. . . . . . . . . . . . . . 11 BenjaminTolerandRonaldCoutuJr. 3 PrinciplesInvolvedinInterpretingSingle-MoleculeForceMeasurementofBiomolecules. . . . . . . . . . . . 19 SitharaS.Wijeratne,NolanC.Harris,andChing-HwaKiang 4 MeasurementoftheGold-GoldBondRuptureForceat4KinaSingle-AtomChain UsingPhoton-Momentum-BasedForceCalibration.. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. 25 DouglasT.SmithandJ.R.Pratt 5 APrecisionForceMicroscopeforBiophysics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 GavinM.King,AllisonB.Churnside,andThomasT.Perkins 6 HydrodynamicForceCompensationforSingle-MoleculeMechanicalTesting UsingColloidalProbeAtomicForceMicroscopy. . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. 37 GordonA.Shaw 7 NewInsightintoPile-UpinThinFilmIndentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 KevinSchwieker,JamesFrye,andBartonC.Prorok 8 Strain-RateSensitivity(SRS)ofNickelbyInstrumentedIndentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 JenniferHay,VerenaMaier,KarstenDurst,andMathiasG€oken 9 FrequencyMultiplicationandDemultiplicationinMEMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 DavidB.Blocher,AlanT.Zehnder,andRichardH.Rand 10 CharacterizingMetalInsulatorTransition(MIT)MaterialsforUseasMicro-SwitchElements. . . . . . . . 59 BrentL.DannerandRonaldA.CoutuJr. 11 StictionFailureinMicroswitchesDuetoElasto-PlasticAdhesiveContacts. . . . . . . . . . . . . . . . . . . . . . . . 67 LingWu,Jean-ClaudeGolinval,andLudovicNoels 12 SimultaneousMeasurementofForceandConductanceAcrossSingleMoleculeJunctions. . . . . . . . . . . . 75 SriharshaV.Aradhya,MichaelFrei,MarkS.Hybertsen,andLathaVenkataraman 13 HighSpeedMagneticTweezersat10,000fpswithReflectedHg-LampIllumination. . . . . . . . . . . . . . . . . 85 BobM.LansdorpandOmarA.Saleh 14 EtchingSiliconDioxideforCNTFieldEmissionDevice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 NathanE.Glauvitz,RonaldA.CoutuJr.,PeterJ.Collins,andLaVernA.Starman 15 ModelingofSheetMetalswithCoarseTextureviaCrystalPlasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 BenjaminKlusemann,AlainFranzKnorr,HorstVehoff,andBobSvendsen vii viii Contents 16 EvaluationofMechanicalPropertiesofNano-structuredAl6061SynthesizedUsingMachining. . . . . . . . 111 PareshS.Ghangrekar,H.Murthy,andBalkrishnaC.Rao 17 HardeningBehaviourofThinWiresUnderLoadingwithStrainGradients. . . . . . . . . . . . . . . . . . . . . . . 119 YingChen,MarioWalter,andOliverKraft 18 MappingtheHistologyoftheHumanTympanicMembranebySpatialDomainOptical CoherenceTomography. . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . 125 CoreyRutledge,MichaelThyden,CosmeFurlong,JohnJ.Rosowski,andJefferyTaoCheng 19 Opto-MechanicalCharacterizationofaMEMSSensorforReal-TimeInfraredImaging. . . . . . . . . . . . . 131 EverettTripp,FrankPantuso,LeiZhang,ElleryHarrington,andCosmeFurlong 20 GlobalDigitalImageCorrelationforPressureDeflectedMembranes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 JanNeggers,JohanHoefnagels,Franc¸oisHild,Ste´phaneRoux,andMarcGeers 21 DesignandDevelopmentofInternalFrictionandEnergyLossMeasurement onNanocrystallineAluminumThinFilms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 T.-C.Hu,F.-C.Hsu,M.-T.Lin,C.-J.Tong,andY.-T.Wang 22 DetectionofDamageofEpoxyCompositesUsingCarbonNanotubeNetwork. . . . . . . . . . . . . . . . . . . . . 149 S.Cardoso,C.Mooney,R.Pivonka,V.B.Chalivendra,A.Shukla,andS.Z.Yang Chapter 1 Silicon Carbide High Temperature MEMS Capacitive Strain Sensor R.P.Weisenberger,R.A.CoutuJr.,andLaVernA.Starman Abstract Strain sensing at high temperatures, greater than 700(cid:1)F, is often difficult. Traditional strain sensing uses the piezoresistiveeffect,whichistemperaturedependent.Toreducethetemperaturedependenceofthestrainsensoronecould bebuiltfromarobustmaterialsuchassiliconcarbide,SiC.Makingmeasurementsusingcapacitiveeffectseliminatesthe effects of temperature within the sensing element. Using the more traditional MEMS materialsilicon is only an option at lowertemperatures.Siliconhasgoodreliabilityasamechanicalstructuretoaround900(cid:1)F,andgoodelectricalpropertiesto 300(cid:1)F. Having good properties above 700(cid:1)F, silicon carbide is a robust material that has the ability to be used in high temperatureMEMSapplications.Usingthecapacitiveeffectformeasuringstrainwastheoriginalwaytoperformthistask until the piezoresistive effect was harnessed. MEMS based capacitive strain sensors that have been built previously are knownasresonantstrainsensors,orthedoubleendedtuningforkresonator.Onestepfurtherfromthedoubleendedtuning fork is a novel capacitive strain sensor device. An examination of the novel approach to measure strain is performed. ModelingandsimulationispresentedusingL-EditandCoventorware.Thisassertsthedevice’scharacteristicsandgivesthe noveldesignmerittobeusedasastrainsensor. Nomenclature MEMS Microelectromechanicalsystems 1.1 Introduction Experimental analysis of materials based properties use Hooke’s Law of the relationship between material stress and deformationofthatmaterial[1].Deformationofmaterialoccursthroughout,includingatitssurface.Measuringdeformation at the surface is typically done using a strain sensor. In hypersonic vehicle applications, there is a need to measure this deformationathightemperatures,oftenexceeding700(cid:1)C[2].Otherapplicationsforhightemperaturestrainmeasurements, exceeding700(cid:1)C,includeoilandgasequipment,nuclearandpowerstationequipment[3]. Hypersonic vehicles experience temperatures in excess of 500(cid:1)C on inlet ramp surfaces at Mach 5 [2]. On that same surface, temperatures exceed 700(cid:1)C at Mach 6. Another point on the hypersonic engine is the stagnation wall of leading edge,whichexperiencestemperaturesexceeding700(cid:1)CatMach5[2].Manypointsonthehypersonicvehiclecouldusea hightemperatestrainsensortomeasuretheeffectsofloadintroducedtothem.Duringthedesignandverificationprocess, conditionsmustbeduplicatedatwhichtheintendedmaterialwouldbesubjectedtoinactualflightconditions. R.P.Weisenberger AirForceResearchLaboratory,2790DStreet,WrightPattersonAirForceBase,OH45433,USA e-mail:[email protected] R.A.CoutuJr.(*)•LaVernA.Starman AirForceInstituteofTechnology,2950HobsonWay,WrightPattersonAirForceBase,OH45433,USA e-mail:ronald.coutu@afit.edu;lavern.starman@afit.edu G.A.Shawetal.(eds.),MEMSandNanotechnology,Volume6:Proceedingsofthe2012AnnualConferenceonExperimental 1 andAppliedMechanics,ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries42, DOI10.1007/978-1-4614-4436-7_1,#TheSocietyforExperimentalMechanics,Inc.2013 2 R.P.Weisenbergeretal. 1.2 Problem Statement and Research Objectives Measuringstrainisdifficultinhightemperatureenvironments,over700(cid:1)F.Theobjectiveofthisresearchistodesign,model andsimulateanovelstrainsensorwhichoperatesatthishightemperature.Withinthisdocumentstress,strain,stressstrain relationship is given as a background. An alternative design for measuring strain using a double ended tuning fork is discussed.Modelingandsimulationofanewhightemperaturecapacitivestrainsensormadewithsiliconcarbideistested withafiniteelementsimulatorknownasCoventorware#. 1.3 Stress and Strain Whenamaterial,suchasametal,issubjectedtoaload,stressispresent.Stressisthemeasureofforcesinternaltoabodyand strainisthemeasureofdeformationofthedisplacementbetweenparticles[4].Uniformlydistributedstressoccurswhena systemofforcesactingonanareagetsdistributeduniformlyoverthearea.Eachelementofthedescribedareaissubjectedto anequalloadingvalue.Stressateachelementwillbeatthesamemagnitudewhichisdefinedastheaveragestressvalue[5]. This is determined by dividing the total force by the total area. Uniformly distributed stress is defined by (1.1). The assumptionisthatstressisuniformlydistributedwithinabody. TotalForce P Stresss ¼ ¼ (1.1) Average TotalArea A Wherestressexistsinamaterialthereissometypeofdeformationofthatmaterial.Thisisknownasstrainandrepresented bye.Likestress,therearetwotypesofstrain,linearstrainandshearstrain.Linearstraincanobtaintwonotablestates,in tensionorcompression.Linearstrainwillbeintension,tensilestrain,orincreasing(positive)strain,ifthemateriallengthens in a straight line. Linear strain will be in compression, compressive strain, or decreasing (negative) strain, if the material shortens in a straight line [5]. Assume a bar of some length L is loaded longitudinally, and assume that bar elongates uniformly, and the cross sectional area keeps its shape as a plane and perpendicular to the loading axis throughout the elongation process. This bar is represented in Fig. 1.1. Unit strain of elongated bar is given by (1.2), which represents averagestrain.Listheoriginallengthofthebar,anddisthetotalelongationofthebar[5].Equation1.2cannotbeusedifthe bar’s cross sectional area is not constant or of the load is not uniformly distributed. Then strain per unit, or unit strain, is determinedbydifferentialelongationatapointonthebarorddofacrosssectionallengthdL,asexpressedin(1.3)[5]. d Strain¼e¼ (1.2) L dd e¼ (1.3) dL Stress and strain are depended upon each other, and related through material properties. Robert Hooke stated this relationship is accomplished by a constant of proportionality known as the modulus of elasticity, E (need reference). For the bar subjected to elongation is shown as (1.4). sL is known as the longitudinal stress, elongation direction. eL is the longitudinalstrain. s ¼Ee (1.4) L L Strain is measured using a strain sensor [5], a device which is mounted or manufactured on the straining surface that translatesstrainintoanelectricalsignal.Conventionalstraintransducer,knownasastraingauge,usesaninsulatingflexible backingthatsupportsametallicfoilelement.Theflexiblebackingisadheredtothestrainingsurface,suchasametallicbeam put under stress. The object becomes deformed when the backing flexes and the foil becomes deformed, and changes its electricalresistance.Thefoilcanbemodeledasastrainedconductor.Let’sassumeaconductorisunrestrainedlaterallyand is strained in its axial direction, its length will change and its cross section will also change, this effect is known as the Poisson Effect (reference needed), this is shown in Fig. 1.2. If the strain increases the length of the conductor its cross sectionalareawilldecrease,andviceversaifstraindecreasesthelengthitscrosssectionalareawillincrease.Alsoresistivity

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.