Adaptation, Learning, and Optimization 21 Abhishek Gupta Yew-Soon Ong Memetic Computation The Mainspring of Knowledge Transfer in a Data-Driven Optimization Era Adaptation, Learning, and Optimization Volume 21 Series editors Yew-Soon Ong, Nanyang Technological University, Singapore, Singapore e-mail: [email protected] Meng-Hiot Lim, Nanyang Technological University, Singapore, Singapore e-mail: [email protected] The role of adaptation, learning and optimization are becoming increasingly essential and intertwined. The capability of a system to adapt either through modification of its physiological structure or via some revalidation process of internalmechanismsthatdirectlydictatetheresponseorbehavioriscrucialinmany real world applications. Optimization lies at the heart of most machine learning approaches while learning and optimization are two primary means to effect adaptation in various forms. They usually involve computational processes incorporated within the system that trigger parametric updating and knowledge or model enhancement, giving rise to progressive improvement. This book series serves as a channel to consolidate work related to topics linked to adaptation, learning and optimization in systems and structures. Topics covered under this series include: (cid:129) complex adaptive systems including evolutionary computation, memetic com- puting, swarm intelligence, neural networks, fuzzy systems, tabu search, sim- ulated annealing, etc. (cid:129) machine learning, data mining & mathematical programming (cid:129) hybridization of techniques that span across artificial intelligence and compu- tational intelligence for synergistic alliance of strategies for problem-solving. (cid:129) aspects of adaptation in robotics (cid:129) agent-based computing (cid:129) autonomic/pervasive computing (cid:129) dynamic optimization/learning in noisy and uncertain environment (cid:129) systemic alliance of stochastic and conventional search techniques (cid:129) all aspects of adaptations in man-machine systems. This book series bridges the dichotomy of modern and conventional mathematical and heuristic/meta-heuristics approaches to bring about effective adaptation, learningandoptimization.Itpropelsthemaximthattheoldandthenewcancome together and be combined synergistically to scale new heights in problem-solving. Toreachsuchalevel,numerousresearchissueswillemergeandresearcherswillfind thebookseriesa convenientmediumto track the progresses made. More information about this series at http://www.springer.com/series/8335 Abhishek Gupta Yew-Soon Ong (cid:129) Memetic Computation The Mainspring of Knowledge Transfer in a Data-Driven Optimization Era 123 Abhishek Gupta Yew-Soon Ong Schoolof Computer Science Schoolof Computer Science andEngineering andEngineering NanyangTechnological University NanyangTechnological University Singapore, Singapore Singapore, Singapore ISSN 1867-4534 ISSN 1867-4542 (electronic) Adaptation, Learning,andOptimization ISBN978-3-030-02728-5 ISBN978-3-030-02729-2 (eBook) https://doi.org/10.1007/978-3-030-02729-2 LibraryofCongressControlNumber:2018958923 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Beginningwithsingle-celledorganismsthatcameintoexistencebillionsofyearsago, theguidingprinciplesofevolutionhavegraduallyshapedecosystemscharacterizedby astonishingbiodiversity.Whatismore,themechanismofnaturalselection(orsimply, survival of the fittest) has endowed living organisms with consummate problem- solvingability;asawaytocopeandadapttothemanychallengesthatmaybeposedby thenaturalworld.However,biologicalevolutionisanextremelyslowprocess,espe- cially when viewed against the incredible speed of technological evolution in the present-day. Notably, while it took millions of years for multicellular organisms to evolvefrom(single-celled)bacteria,humancivilizationhasbeenabletoprogressfrom the world’s first land-based mechanical vehicles to supersonic jets, spacecraft, unmanned drones, etc., within a span of merely three centuries. Such radical trans- formationofsocietythroughtechnicaldevelopmentisgovernedbyprocessessimilar tothatofevolution,albeitoccurringinacompletelydifferentspace—namelythatof scientificknowledge,culture,andideasthatexistinourbrainsandcanbedisseminated almostinstantly(atleastincomparisontotherateofdisseminationofgenetictraits) acrosspopulations.Thoughevolutionarymodelsofculturalinformation(knowledge) propagation have been studied since the time of Darwin, it was only in Richard Dawkins’1976book“TheSelfishGene”thatthetopicwasfirstcaptionedbytheterm memetics—withthebasicunitoftransferrableinformationbeinglabelledasameme. This is a book about memetic computation (MC)—a novel computational paradigm that explicitly incorporates the aforementioned notion of memes as building blocks of knowledge for boosting the performance of artificial evolu- tionarysystemsinthedomainofsearchandoptimization.Whiletheadvantagesof exploiting heuristic information to speed up search have been well established for decades,theuniquenessofMCliesinthefactthattheheuristicsneednolongerbe manually specified. In its place, by taking a data-driven view of optimization, it becomes possible to uncover and exploit patterns from the data generated online during the course of a search, so as to autonomously orchestrate custom search behaviors on the fly—in turn, paving the path to optimizers with general purpose problem-solving ability (aka, artificial general intelligence). What is more, akin to their sociocultural origins, the computationalmanifestations of memes need notbe v vi Preface restricted to a single optimizer (read: “hypothetical brain”), but can be sponta- neouslypropagatedacrossdistinctoptimizerscateringtodifferenttasks(read:“leap frombraintobrain”).Weperceivethisoutcomeasakindofmachinethinkingthat, atleastinprinciple,promisestotakethehumanoutoftheloopofalgorithmdesign. It must be emphasized that the motivation behind writing this book is not to comeupwithyetanothernature-inspiredglobaloptimizationalgorithm.Wefurther clarify that neither is our exposition limited to the existing (rather narrow) inter- pretation of memetic algorithms as a hybridization of manually specified local search heuristics with some base evolutionary optimizer. In contrast, our goal isto shed light on the comprehensive realization of MC as a simultaneous problem learning and optimization paradigm that can potentially showcase human-like problem-solving prowess. To this end, we describe a series of data-driven approaches that enable optimization engines to acquire increasing levels of intel- ligence over time, primarily through the adaptive integration of diverse (compu- tationally encoded) memes accumulated with experience and/or via interactions with other engines/systems. In this regard, it is worthmentioning that the practical deployability ofthemethodsputforwardinthebook isdeemed tobewell aligned withmoderncomputingplatformslikethecloudandtheInternetofThings—which promisetofacilitate large-scaledata storage and seamless communication between machines. With the widespread adoption of these technologies, it is believed that the salient features of MC are primed to take center stage in the optimization engines of the future. Thebookisdividedintotwoparts.Forreadersinterestedinthehistoryandrise of memetics in computing, a general overview of the so-called first generation of meme-inspired optimization algorithms is provided in Part I (comprising Chaps. 2 and 3). Chapter 3, in particular, offers a first glimpse of data-driven adaptations in optimization, especially pertaining to the automatic integration of human crafted localsearchheuristics.Ontheotherhand,forthosereaderswhoareonlyinterested inthelatestideasinMC,weencouragethemtoskipaheadtoPartII—whichcanbe read andunderstood independentlyfrom thefirst.Over Chaps.4–7,theconcept of memes is set free from the narrow scope of hybrid (global + local search) algo- rithms, and takes flight to embody potentially diverse forms of fully machine uncovered problem-solving knowledge. Throughoutourdiscussions,wemakeitapointtoconciselypresenttherelevant theoreticalargumentsthathelpexplainthemethodologicaldevelopments.Assuch, wehavemadeanefforttokeepthecontentsofthebookaccessibletoanyresearcher familiar with the classical techniques and terminologies of evolutionary computa- tion. Yet, there are certain subject matters that had to be included that may be considered uncommon to the field. Unfortunately, a detailed exposition of all the necessary ingredients, from the ground up, proved to be too extensive for the compact book that we set out to write. Thus, from Chap. 3 onwards, a prior (undergraduatelevel)readingofprobability,statistics,andbasicmachinelearningis recommended for a full appreciation of the mathematical formalizations and algo- rithmic descriptions. Furthermore, prior know-how about surrogate-assisted/ Bayesian optimization techniques isdeemed helpful,albeit notessential. Preface vii Finally, before we set sail, there is indeed a long list of people who must be acknowledged for having influenced our work, either directly or indirectly, during and prior to the period the book was written. However, a comprehensive recol- lectionofallthenamesispracticallyimpossible.Therefore,justtokeepitshort,we take this opportunity to extend our sincere gratitude to those whose research or adviceisimmediatelyreflectedinthepagesofthebook.Theyare:Dr.LiangFeng, Dr. Ramon Sagarna, and doctoral students (at the time of writing) Bingshui Da, Kavitesh Bali, Xinghua Qu, and Alan Tan Wei Min. Singapore Abhishek Gupta Yew-Soon Ong Contents 1 Introduction: The Rise of Memetics in Computing. . . . . . . . . . . . . . 1 1.1 Simulating Evolution for Search and Optimization . . . . . . . . . . . . 3 1.1.1 The Achilles Heel of Evolutionary Computation . . . . . . . . 5 1.2 Expert Knowledge, Learning, and Optimization . . . . . . . . . . . . . . 6 1.2.1 Stepping-Stones to Comprehensive Memetic Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Outline of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Part I Human Crafted Memes 2 Canonical Memetic Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Local Versus Global Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Pseudocode of the CMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Lamarckian Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 The Baldwin Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Some Numerical Revelations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Results and Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Data-Driven Adaptation in Memetic Algorithms. . . . . . . . . . . . . . . . 27 3.1 Adaptive Meta-Lamarckian Learning . . . . . . . . . . . . . . . . . . . . . . 28 3.1.1 Sub-problem Decomposition. . . . . . . . . . . . . . . . . . . . . . . 29 3.1.2 Reward-Proportionate Roulette Wheel Selection . . . . . . . . 31 3.2 The Evolvability Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Statistical Learning of Evolvability. . . . . . . . . . . . . . . . . . 34 3.3 Meme Complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1 Memeplex Representation . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2 Learning the Memeplex Network Weights. . . . . . . . . . . . . 37 ix x Contents 3.4 Multi-surrogates in Expensive Global Optimization . . . . . . . . . . . 37 3.4.1 Mixture of Experts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Part II Machine Crafting Memes 4 The Memetic Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1 Multi-problems: A New Optimization Scenario . . . . . . . . . . . . . . 48 4.1.1 Qualitative Feasibility Assessment of Meme Transfer . . . . 50 4.1.2 The Importance of Search Space Unification. . . . . . . . . . . 52 4.2 A Probabilistic Formalization of Memes . . . . . . . . . . . . . . . . . . . 55 4.2.1 The Effect of a Large and Diverse Knowledge Base . . . . . 56 4.3 Categorizing Multi-problem Settings . . . . . . . . . . . . . . . . . . . . . . 59 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Sequential Knowledge Transfer Across Problems. . . . . . . . . . . . . . . 63 5.1 A Brief Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Overview of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3 Meme Integration Via Mixture Modeling. . . . . . . . . . . . . . . . . . . 67 5.3.1 Learning Optimal Model Aggregation. . . . . . . . . . . . . . . . 68 5.3.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4 An Adaptive Memetic Transfer Optimizer . . . . . . . . . . . . . . . . . . 72 5.5 Numerical Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5.1 A Toy Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5.2 A Practical Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.6 Knowledge Transfer in Expensive Optimization . . . . . . . . . . . . . . 78 5.6.1 Mixture Modeling for Regression Transfer . . . . . . . . . . . . 78 5.6.2 A Study in Engineering Design . . . . . . . . . . . . . . . . . . . . 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Multitask Knowledge Transfer Across Problems . . . . . . . . . . . . . . . 83 6.1 A Brief Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 Overview of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3 An Adaptive Memetic Multitask Optimizer . . . . . . . . . . . . . . . . . 86 6.4 Numerical Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.4.1 A Toy Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.4.2 A Practical Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 90 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7 Future Direction: Compressed Meme Space Evolutions . . . . . . . . . . 93 7.1 Classification-Based Discrete Optimization. . . . . . . . . . . . . . . . . . 94 7.2 Neural Network-Based Compressed Representation . . . . . . . . . . . 95 7.2.1 Application to Knapsack Problems . . . . . . . . . . . . . . . . . . 97