ebook img

Medical Plastics. Degradation Resistance & Failure Analysis PDF

203 Pages·1998·3.227 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Medical Plastics. Degradation Resistance & Failure Analysis

FOREWORD Circumstancesaredevelopingnowtodriveforwardthetechnologyofmedicalapplicationsofplastics atarapidpace.Theexpansionofcomprehensivemedicalcareacrossallsocio-economicboundariesin developed nations combines with penetration ofmodem medical care into undeveloped regions to providethelatentmarketpullformedicaldevicesanddeviceanddrugpackaging. Theoverlayofthe well-knowncostandsafetyconcernsonthisscenarioproducesahugeandrapidlygrowingmarketfor plasticmedicalproducts. Thusthe advancementofthisfieldoftechnology isbeingpursuedonallfronts, atthedrugand device manufacturers, materials suppliers, machine makers, packaging companies, sterilizationpro viders,anduniversitiesandresearchinstitutes.Andwhilethelearningswhicharegainedintheseinsti tutionscarriesforwardtothesupportoftheirindividualpursuits,therealvalueofthisnewknowledge isitspowertoadvancetheentireindustryonceitisfullydisseminatedasthestate-of-the-art.Thegoal hereistointroducetothereaderthismonographasanewandeffectiveapproachtothedistributionof thisinformation. We are fortunate at this time to have in medical plastics active publishers and seminar, short course,andconferenceprovidersallseedingthefieldwiththiskindofinformation.Alargenumberof companies,professionalsocieties,tradegroups,individualsanduniversitiesprovidetrainingcourses, butseveralorganizationsstandoutforthevolumeandqualityoftheirofferings.Amongpublishersof periodicalsCanonCommunicationsleadstheindustrywithitswidevarietyofproductsincludingtrade magazineslikeMedicalDeviceandDiagnosticIndustry,tradejournalslikeMedicalPlasticsandBio materials, and trade shows and conferences like the several Medical Design and Manufacturing (MD&M) conferences heldaround the U.S.A. and in Europe eachyear. William Andrew, Incorpo rated,throughitsPlasticsDesignLibrary(PDL), specializesinthedevelopmentanddisseminationof organizeddataonmaterialbehaviorincludingplasticssubjectedtoprocessesandstressescharacteris ticofmedicalapplicationslikesterilizingdosesofhighenergyradiation.TechnomicPublishingCom panyisalso prominentinthe offeringofshortcourses, seminars,periodicals, andbooks specifically whichfocus onmedicaldevicesandpackaging. Astheworld'sleadingnot-for-profitprofessionalsocietyprovidingscientificandtechnicalinfor mationaboutplastics,theSocietyofPlasticsEngineers(SPE),Internationalofferstothosewhowork inmedicalplasticsanextensiverangeofeducationalproductsandactivitiesincludingseminars,con ferences, andabroadcatalogueofbooks. Throughitsdedicatedtechnicaldivision, theMedicalPlas tics Division, SPEofferstopical conferences andAnnualTechnical Conference sessions. And, most recently,SPEhasembarkedonthepublicationofatruearchival,peerreviewed,medicalplasticsjour nal, TheJournalofAppliedMedicalPolymers. Themagnitudeoftheavailableinformationiscertainlyimpressiveandmustbeusefultothesci entistsandtechnologistspursuingadvancementsinmedicalplastic.Itisnotsurprising,however,that thediversityoftheorganizationsofferingthematerialandtheirdifferingmissionsnaturallyresultsin significantfragmentationoftheinformation.Thatiswhyitissoencouragingtoseetherecenttrendto wardcooperativeconferencing,publishing,andmarketingofpublicationsamongtheseproviders.Ex amples ofthis cooperation abound. The SPE Medical Plastics Division has for the last few years combinedits regionallyofferedtopical conferences with the MD&Mprograms andtherebyreached iv MedicalPlastics bothalargerandmorevariedaudiencethanpreviously.Likewise,thepaperswhicharebeingcompiled for the newJournalofAppliedMedicalPolymers appearfirst inMedicalPlastics andBiomaterials wheretheyareseenbyamuchlargerandmorediversereadershipthanwouldbeinterestedinsubscrip tiontothearchivaltechnicaljournal. Justthiskindofcooperationhasbeenemployedinthepreparationofthismonograph. William Andrewdevelopedaconceptfortherapidpublicationinmonographformofcurrentdevelopmentsin medical plastics science and technology centered on a theme ofparticular interest in the field. The naturalsourcesforpapersonthetopicweretheSocietyofPlasticsEngineersandCanonCommunica tions,whichprocessalargevolumeofthismaterialthroughtheirconferenceandperiodicalstructures. Andbythejointeditorialeffortsofthethreeorganizationsthisbookwascreated. The success ofthis book will depend upon the reader's appreciation ofits combination ofan eclecticrangeofpaperswhich,nevertheless,areunifiedbytheunderlyingtheme:improvementofthe performanceofmedicaldevicesandpackagesthroughtheunderstandingoftheirmanymodesoffail ure. Includedarebothtutorialpapersreviewingwellestablishedareasoftechnologyandresearchac counts covering the latest developments in technical areas. There are several papers on analytical methods.Someoftheseareusedtodetermineorpredicttheperformanceorassurethequalityofmedi calgoods.Othersareusedtostudyfailedmedicalpartstoelucidatethecauseoffailure.Becausesterili zationmethodsaresostressfultomanymaterialscommonlyusedinmedicalpartsandpackages,there isextensivecoverageofthistopic,includingpapersonhighenergy,ethyleneoxide,andautoclavester ilization ofpolypropylene, polyethylene, polycarbonate, andpolyvinyl chloride. The closelyrelated areaoftheresistanceofdeviceconstructionmaterialstochemicals andotherenvironmentalstresses likelowtemperatureisalsocoveredinseveralpapers.Sinceerrorfreeassemblyofdevicesisrequired forthemtoresistfailure, this istreatedas well. Andfinally, severalnovelmaterialsare discussedin lightoftheirenhancedpropertieswhichmayreducetheincidenceoffailure. It is hoped that this material will be useful. Itrepresents both the long developed state ofthe medicalplasticsartandthelatestinformationwhichcanbeoffered. RobertC.Portnoy,Ph.D. ExxonChemicalCompany 5200BaywayDrive Baytown,TX77520 USA An Overview of the Use of Polymers in Medical Applications as Illustrated by the Design, Characterization, and Application of Tyrosine-Derived Polymers JoachimKohn DepartmentofChemistry, Rutgers University, NewBrunswick, NJ08904, USA and DepartmentofOrthopaedics, NewJerseyMedicalSchool, Newark, NJ07103, USA Biomaterialsscienceandmedical dtWicedevelopmentpresentuniquelygratifyingareas ofresearch. Theideathatworkdoneinthelaboratorytodaycanalleviatehumansufferingandevensavelivesto morrowisapowerfuldrivingforceformanyofthebasicscientistsworkinginthefieldofbiomaterials andmedicaldevices. Onthe otherhand, the commercializationofbasicbiomaterialsresearchrepre sentsaparticularlydifficultchallenge.Heresomeofthe"opportunities"and"pitfalls"oftechnology developmentinthefieldofbiomaterialsandmedicaldevicesarehighlighted,followedbyadiscussion ofafundamentallynewgroupofmedicalimplantmaterials. BACKGROUND Biomaterialsareindispensablecomponentsofallmedicalimplantsanddevices andwhenpatientsus I ingcontactlenses, transdermal drug delivery systems, dental implants, and otherextracorporeal de vices are included in the total count, over 30 million Americans benefit from biomaterials-based medicaldevices. Sincemanyoftheseimplantsanddevicesarelifesaving,adisruptionintheirsupply couldhavecatastrophicconsequencesformillionsofpeople.Consequently,themedicaldeviceindus tryhasgrownintoasignificantsectorofthenation'seconomy,producingabout$50billioninannual salesandbeingoneoftheveryfewmanufacturingsectorsmaintainingapositivetradebalanceinspite 2 ofincreasingcompetitionfrom EuropeanandAsianmanufacturers. Biomaterialsresearchasascientificdisciplineisasound,vibrant,andhighlyinteractivefieldthat has, over the last decade, lead to important scientific breakthroughs in our understanding ofcell materials interactions. These breakthroughshave the potential to provide us with biologically func tionalreplacementsforawiderangeoforgansandbodyparts,leadingtofundamentalimprovementsin thewaywetreatandrepairtraumaoragingrelateddiseases. Unfortunately,biomaterialsscienceand themedicaldevice industryareheldhostage topowerfullegal, regulatory, andeconomic forces that have thepotentialto chokeoffscientific innovationandpreventouradvancingscientificknowledge frombeingdevelopedintoclinicallyusefulproducts.Whileoptimistspointtothehugepotentialofthe underlying science,pessimists argue that the business and legal climate in the United Stateshas be comesounfavorablethatthedemiseoftheU.S.-basedmedicaldeviceindustryisarealpossibility.2 2 MedicalPlastics OPPORTUNITIESAND SCIENTIFIC CHALLENGES Currently,medicaldevicedesignersarelimitedtoarelativelysmallnumberofoff-the-shelfmaterials thatwerenotoriginallydesignedtobeusedinmedicalimplants.InarecentlyconvenedNIHworkshop on"BiomaterialsandMedicalDeviceScience",about 100ofthenation'sleadingexpertsreachedthe conclusionthatthematerialsbaseofthemedicaldeviceindustryisoutdatedandthat"materialsandde vicesendowedwithbiologicalstructureandfunctionmustbedesignedanddeveloped".3Thedevelop ment ofsuch new biomaterials requires a betterunderstanding ofthe mechanisms that control cell materialsinteractions. Thenewmaterialswillprovidebothcarefullytailoredphysicomechanicaland chemicalproperties as wellasbiologicallyfunctional interfaceswithlivingcells. As suchimproved materialsbecomeavailable, thereplacementofwholeorgansbysyntheticsubstitutesbecomesareal possibility. However, the real impactofthe "biomaterials revolution" is in the envisioned improve mentsinsafetyandefficacyofhundredsofmedicaldevices,makingitnecessaryoverthenext20years toredesignalargefraction ofthecurrentlyavailablemedicalimplantsanddevices. Thiswillprovide significantcommercialopportunitiesforcutting-edgecompanies. PRODUCT LIABILITYAND INNOVATION Whileeveryoneinthefieldseemstoagreethatfundamental scientificbreakthroughswilloccurover thenextfewyears,leadingtodramaticallyimprovedtherapeuticapproaches,itisnotcleartowhichex tent these scientific breakthroughs canbe translated into clinically used devices and implants. The medical device industry faces a numberofchallenges in bringing innovative science into the clinic (Table1).Someofthesechallengesareunavoidable,suchasthecost-intensiveandlong-termnatureof medicalresearch.However,therearealsoobstaclesthatareartificiallyimposedupontheindustry.The mostcontroversialissuehereintheUnitedStateshasbeentheeffectofproductliabilitylitigationon themedicaldeviceindustry.Thelackofreasonableprotectionstorawmaterialsuppliersandmanufac turersundercurrentproductliabilitylawsandthehugecostofmedicaltortcasessettheUnitedStates asidefrom allothernations. Productliability,ascurrentlypracticedintheUnitedStates,hasbeenidentifiedasaseriousthreat tothesurvivalofthemedicaldeviceindustry.Thepointhasbeenmadethatlitigationhasdrainedbil lions ofdollars from the medical device industry. These resources, ifused in research and develop ment, wouldhavebeenmore than enoughto improvethe safetyandefficacyofthe medical devices thatwerethesubjectoflitigation.Instead,productsthatbecomeengulfedinlawsuitsareusuallywith drawn from the market, the manufacturers are forced into bankruptcy, and allresearchanddevelop menteffortsaimedattheimprovementoftheproductscometoanend.Theneteffectofmasstortcases isalossofavailabletreatmentoptionsforthepatient,achillingeffectoninnovationandthedevelop mentofbetterimplants,marginalcompensationforasmallnumberofpatients,whilethelawyerswho arguethecasesareassuredofextremelylucrativeprofits. AstudycommissionedbytheHealthIndustryManufacturersAssociation,HIMA,andconducted byAronoffAssociates2 investigatedtheeffectofproductliabilityonthemedicaldeviceindustryand predictedthatamajorpartoftheUnitedStatesbasedmedicaldeviceindustrywillbelostoverthenext fewyears. Inparticular,themarketstudypredictedthatabiomaterialscrisiswilloccurunlesssubsti tute materials are found and approvedfor marketing, thatpatientswill nothave access to lifesaving AnOverviewoftheUseofPolymers 3 Table1. ChallengesandObstaclestotheProcessofInnovationintheMedicalDeviceIndustrya IntrinsicChallenges Implantanddevice developmentrequires significantstartupcapitaland is bynature Highcost veryexpensivetoperform Medicaldevicesrequirehighprofitmarginstocompensateforunsuccessfulresearch Highrisk effortsandforthehighdevelopmentcosts KeyObstaclestotheDevelopmentofImprovedImplantsandDevicesinthe UnitedStates Excessiveand costlylitigation(oftenwithoutscientificbaseormerit)havediverted Productliability researchand developmentfunds, slowedinnovation, andreducedthe willingness of majorcorporationstoparticipateinthemarket Medical device development, manufacture and marketing is highly regulated. The Comprehensive regulatory process discourages fundamental innovation. Compared to many other regulation nations,theregulatoryprocessintheUnitedStatesappearstobeslower Governmentcontrol Governmentcontroloverreimbursementsleads to delays and additionalrisks inthe of the health care marketingofmedicaldevicesandinthetestingofexperimentaldevices market Lack of long-term Whilefundamentalinnovationinbiomaterialssciencerequiresalong-terminvestment financingforstartup view,venturecapitalfunds intheUnitedStatestendtofocusonshort-termgains companies 'adaptedfromdatacontainedin1994ReferenceGuidefor theHealth Care TechnologyIndustry, HealthCareTechnology Institute, 1994;PolicyBriefTheDialogofDeviceInnovation:AnOverviewoftheMedicalTechnologyInnovationProcess, HealthCareTechnologyInstitute,1993. medicalimplants,thataprimarysourceofmedicalimplantinnovationwillvanishwiththedemiseof small manufacturers, and that major segments ofthe medical implant industry will move overseas. Someofthepredictionscanalreadybeconfirmedbystatisticalevidence.Until 1992,themedicalde viceindustrywasthesecondfastestgrowingAmericanindustry,providing64%oftheglobalsalesof medicaldevices.After1992,growthslowedandtheUnitedStatesworldleadershippositionhasbegun to erode. By 1995,theU.S. shareofglobalsaleshaddroppedto46%.4 Insummary,thescientificfoundationisnowinplacetodevelopsignificantlyimprovedmedical implants. Tissueengineeringwillleadtoreplacementsforbodypartsandorgansthatfeelandbehave muchmorelikenaturaltissuethanthe currentlyusedimplantsmanufacturedfrommetalsandsimple engineeringplastics. Promisingadvancesindrugtargeting, theuseofproteinsandpeptidesas drugs, andgene therapyalsobenefitfrom novelbiomaterials-baseddelivery systems. Whilecountrieswith responsive regulatory, legal, and business infrastructures will be able to translate these scientific 4 MedicalPlastics breakthroughs effectivelyintoclinicallyusefulproducts,thedevelopmenteffortintheUnitedStates hasbegunto lagbehinditsEuropeanandAsiancompetitors. IntheUnitedStates,productliabilityhasemergedasasignificantobstacletothedevelopmentof improvedproductsbasedonfundamentalbreakthroughsinbasicscience.Thereismountingevidence thatalegalsystemthataffordssubstantialfinancialgaintolawyerswhoinitiatelawsuitsirrespectiveof scientificandrationalbasisisnotpromotingbettertreatmentoptionsfortheindividualpatientandis notinthebestnationalinterest. Inthefinal analysis,everyonestandstogainbytheadoptionofrational,fair, andjuststandards governingtheconductofthemedicaldeviceindustry.Ifoneconsidersthatlawyers'feesandprofitsare expectedtoexceed$2billioninthebreastimplantlitigationalone,onemayconcludethatakeyissueis to redirect valuable resources from unproductive legal costs back to R&D efforts leading to better products. Table2. MaterialsCommonlyUsed inthe ManufactureofMedicalImplantsand Devices TypeofMaterial SpecificExamples Biostable polymers and Polyurethanes,siliconerubber,Teflon®,Dacron®,nylon,polymethylmethacrylate, resins PMMA Biodegradablepolymers Poly(lacticacid),poly(glycolicacid),polydioxanone Natural and semi- Treated porcine grafts, bovine pericardium, processed cellulose, processed syntheticproducts collagen 316and316Lstainlesssteel,Vitallium®,titaniumalloys,Co-Cralloy,Co-Cr-Mo Metals alloy Aluminum oxides, calcium aluminates, titanium oxides, pyrolytic carbon, Ceramics Bioglass®,hydroxyapatite Composites Apatitecomposites,carboncoatedmetals,carbonreinforcedpolymers NEWPOLYMERS DERIVED FROM THE NATURALAMINOACID L·TYROSINE As mentionedabove, one ofthe limitingfactors inthe designofimprovedmedicalimplantsandde vices is the lackoffundamentallynewmaterials. As showninTable2,mostofthematerialsusedin implantand device manufacturearesimpleengineeringplasticsandmetals whichwerenotintended initiallyformedicalapplications. Toaddress thisproblem,thenaturalaminoacidL-tyrosinewasusedas thebuildingblockfora widerange ofnewpolymers. Firstdescribedin 1987,5degradablepolymersderivedfrom L-tyrosine areoneofthenewestclassesofpolymersbeinginvestigatedasimplantable,degradablematerialsfor medicalapplications. Inherentto alltyrosine-derivedpolymersisthatnon-amidebondsare incorpo rated into thebackbone ofthepolymersby linkingindividual aminoacid-derivedmonomers viathe AnOverviewoftheUseofPolymers 5 functional groups on the amino acid side chains. The resulting materials have been found to be uniquelydifferentfromconventionalpoly(aminoacid)sinthattheyexhibitedsolubilityinorganicsol ventsandprocessibilitybyconventionalmeltprocessingtechniques. Consequently,thefeasibilityof fabricating tyrosine-derived polymers into fibers, films, rods, microspheres, porous foams, or other configurationsappropriateformedicaldeviceshasbeenestablished.Theunderlyinghypothesisofthe design oftyrosine-derived polymers was that a material consisting ofand degrading into nontoxic, naturallyoccurringmetabolites(aminoacids)willelicitafavorable biologicalresponse. Recentbio compatibility studies have exploredthis hypothesis. The following isa shortsummaryofproperties andpossibleapplicationsofthesepolymers. TYROSINE-DERIVED POLYCARBONATES Thefamilyoftyrosine-derived A polycarbonatesbasedonalkyl o0~ #-CH2-CH2oII-C-NH'1H-~CH~2~O"-C0 esters of desaminotyrosyl tyrosine has been studied in c=o oI great detail.6•9 This polymer family consists of four tyrosine-basedpolycarbonates designated poly(DTE carbon dlphenol component ate), poly(DTB carbonate), n poly(DTH carbonate), and -a---------------------- poly(DTO carbonate) that re- spectively carry either ethyl, dlacnld component butyl, hexyl, or octyl ester pendent chains (Figure 1). Synthesizingthisfamilyofre lateddegradablepolymershas 2Q~tOo-CH2-CH.J-NH'9H-CH2D-O provedfruitfulforithasfacili c=o I tated the study of structure o property correlation and pro vided a series of polymers with a gradient in material dlphenol component n properties. Tyrosine-derived poly carbonateswerefoundtohave Figure1.(A):Thechemicalstructureoftyrosine-derivedpolycarbonatesconsistsof relatively high strengths (50 desaminotyrosyl-tyrosinealkylesterswithdifferentestergroups:ethyl(x=2),butyl 70 MPa) and stiffness (I - 2 (x=4),hexyl(x=6),octyl(x=8).Inthetext,thecorrespondingdiphenolcompo nentsareabbreviatedasDTE,DTB,DTH,andDTO,respectively.(B):Thechemical GPa).6The strongestandstiff structureofpolyarylatesconsistsofadiacidcomponentandadiphenolcomponent. est polymer was poly(DTE Thediacidsselectedforthepreparationofbiocompatiblepolyarylatesincludesuc carbonate). Increasing the cinicacid(y=2),adipicacid(y=4),subericacid(y=6),andsebacicacid(y=8). pendent chain length was Thediphenolcomponentsarethesamedesaminotyrosyltyrosinealkylestersusedin found to decrease the strength polycarbonatesynthesis. 6 MedicalPlastics andstiffnessofthepolymer.Noteworthyisthatthestiffuessofpoly(DTEcarbonate)exceedsthatof otherdegradablepolymersproposedformedicalusesuchaspoly(e-caprolactone),polydioxanone,and poly(orthoester)s. However,poly(DTEcarbonate)is moreflexible thanpoly(L-lacticacid) (2.4 - 10 GPa)andpoly(glycolicacid)(6.5GPa),twodegradablepolymerswhicharealreadyinclinicaluseas pinsfor smallbonefixation. The glass transition temperatures ofthis family ofamorphous polymers decreased from 93 to 52°Cwhenthelengthofthependentchainwasincreasedfromtwotoeightcarbonatoms.6Asexpected, successive additionofmethylene groups to thependentchainmade a fairly constantcontributionto loweringtheglasstransitiontemperature.Thedecompositiontemperaturesoftheentireserieswerein dependentofthependentchainlengthandexceeded290°C.6Thewidegapbetweentheglasstransition and thermal decomposition temperatures makes these polymers readilyprocessiblebyconventional polymer processing techniques including extrusion, compression molding, and injection molding. This highdegree ofprocessing stability is unusual among amino acidderivedpolymers whichtypi callydecomposeinthemoltenstate. Beingabletosystematicallyvarytheglasstransitiontemperaturesovera40°Crangetoalowof 52°Ccanbeasignificantadvantageinfacilitatingthethermalfabrication ofcontrolleddrugdelivery devicescontainingheatsensitivedrugs. Forexample, Integrilin™ (acyclicheptapeptidethatinhibits plateletaggregationlO) anddopamine (usedto treatParkinson'sdiseasell) were successfullyincorpo ratedintopolymermatricesatprocessingtemperaturesaslowas80°e.Thisisinmarkedcontrasttothe widelyinvestigatedpoly(L-lacticacid) whichrequiresprocessingtemperaturesupwards ofl70°e. Inin vitro andin vivo studieshave found tyrosine-derivedpolycarbonatesto degraderelatively slowly,retaining50-70%oftheirinitialmolecularweightsaftersixmonthsofincubation. Theinher 6-8 enthydrophobicityofthese materials prevents significantwatermigration requiredto hydrolyze the polymer. Themosthydrophilicofthepolycarbonateseries,poly(DTEcarbonate),hasanequilibrium watercontentofonly3-5%.Thedegradationratesoftyrosine-derivedpolycarbonatesarecomparable tothedegradationrate ofpoly(L-lacticacid). MEDICALAPPLICATIONS FORTYROSINE-DERIVED POLYCARBONATES Controlledintracranialreleaseofdopamine from apoly(DTH carbonate)matrixwas oneofthe first medicalapplicationsinvestigatedfortyrosine-derivedpolycarbonates.12 Poly(DTHcarbonate)hasa ,13 relatively low processing temperature and its backbone is structurally related to dopamine which seemedto improvedopamine incorporationintothepolymer. Inin vitroexperiments, dopaminewas releasedfromthematricesatafairly consistentrateof1-2llg/dayoveraprolonged 180dayperiod. Thisreleaserateiswithinthetherapeuticallyusefulrangeandsetsthestagefordetailedinvivostudies. Tyrosine-derivedpolycarbonatesappearparticularlysuitedfororthopedicdevicessuchassmall bonefixation pinsforthe handandwrist. Consequently,biocompatibilitytestingoftyrosine-derived polycarbonates has focused on the response ofbone to these materials. In a canine bone chamber mode1,7theboneresponsetotyrosine-derivedpolycarbonateswassignificantlydifferentfromthere sponseelicitedbymedicalgradepoly(L-lacticacid):Thetyrosine-derivedpolycarbonatesmaintained closeappositiontobone,appearedtobestronglyosteoconductive,andthebone-materialinterfacewas free ofan intervening fibrous tissue layer. In contrast, bone ingrowth into poly(L-lactic acid) test chamberspeakedat24weeksandfelloffdramaticallyby48weeks.Histologicalanalysisofthebone- AnOverviewoftheUseofPolymers 7 poly(L-lacticacid) interfacerevealedaninterveningfibrous tissue layerandsignificantboneresorp tionwithaninflammatoryresponse atthe latertimepoints. Theseresults confirmedobservationsre ported earlier when the bone response to poly(DTH carbonate) pins was compared to the response elicitedbyOrthosorb™ pinsimplantedtranscorticallyinrabbitfemurs andtibiae.8 Thebiologicalresponse totyrosine-derivedpolycarbonatesappears tobefundamentally differ entfromotherwidelyinvestigateddegradablepolymersfororthopedicapplications.Thefactthatthese polymers do not degrade to crystalline particulate nor release acidic degradation products may be partlyresponsible. Likewise, the use ofthe naturally occurring amino acid tyrosine as the building blockforthesepolymersmaycontribute, inwaysnotfullyunderstood,tothefavorablebiologicalre sponse elicited. Currently, long-termstudiesusing arabbitmodelare underway to documentfull re sorption and to assure long-term biocompatibility ofthe series oftyrosine-derived polycarbonates. Also, studies are ongoing using radioactively labeled polymers to track the fate ofthe degradation productsinlivinganimals.Thesestudiesmayleadtotheinitiationofclinicaltrialsinhumansinthefu ture. TYROSINE-DERIVED POLYARYLATES Thecharacterizationoftheseriesoftyrosine-derivedpolycarbonateshintedatthepromiseoftailoring polymerpropertiesforspecificapplicationsbysynthesizingfamilies ofrelatedpolymersthatencom pass a range ofproperties. To extend this concept, a series oftyrosine-derived polyarylates was re centlysynthesizedwhichexhibitedcontinuousgradientsofchemicalmaterialandpossiblybiological properties.14·17 Tyrosine-derivedpolyarylatesarestrictlyalternatingcopolymersofadiacidcomponentandadi phenol component (Figure 1). By selecting a series ofdiacids with variable numbers ofmethylene groupsandaseriesofdiphenolswithvariablependentchains,thestructureofthepolymerbackbone and the structure of the pendent chain could be changed independently. Therefore, the series of tyrosine-derivedpolyarylates encompasses abroadrange ofphysicalproperties. Theglass transition temperatures,Tg'withinthisseriesofpolyarylatesrangedfrom7SoCtowellbelowbodytemperatureat 12°C.14Theadditionofmethylenegroupstoeitherthebackboneorpendentchainwasequallyeffective inreducingtheT Likewise,concomitantwithanincreaseinpendentchainlengthfromtwoto eight g' carbons,asignificantdecreaseinstrengthandstiffnesswasobserved.Poly(DTEadipate),thestiffest andstrongestpolymerofthefamily,approachesthepropertiesofthetyrosine-derivedpolycarbonates. However, the tensilemodulusofpoly(DTOadipate)wasreducedbytwo ordersofmagnitudebythe additionofsixcarbonstothependentchain.Themoreflexiblematerials,suchaspoly(DTOsebacate), resemblesoftsiliconrubberintheirgeneralpropertiesandmayindeedbyasuitablereplacementfor siliconesinanumberofmedicalapplications. Tyrosine-derivedpolyarylatesillustratethatstructure-propertycorrelationestablishedattheout setmaybeeffectivelyusedtohelptailormaterialpropertiestospecificapplications.Forexample,one canselectmaterialsfrom amongthepolyarylatesthatrangefrom softandrubberytostrongandstiff, i.e.,polymerssuitedforapplicationsasdiverseasvasculargraftsorbonefixation.Itisalsoreasonable to assume that alterations in polymerchemistry can impactthe degradation rates and biological re sponsetothesematerials. Oncethisfamilyofpolymersisfullycharacterized,itshouldbepossibleto select candidate polymers that address specific application requirements. To date, tyrosine-derived 8 MedicalPlastics polyarylateshavebeeninvestigatedasdrugdeliverysystemsfortheantithrombotic,cyclicheptapep tideIntegrilinTM.18Promisinginvitrodatahaveledtotheinitiationofinvivoexperimentstodetermine whetherpolyarylatefilmscanlocallyreleasethedrugatvascularstentimplantsitesandhinderthrom busformation. Biocompatibilitystudiesofthispolymerseriesarealsounderway. ACKNOWLEDGMENTS TheworkreviewedinthispublicationwassupportedbyNIHGrantsGM39455andGM49894,byan "AdvancedTechnologyProgram"grantoftheNationalInstituteofStandardsandTechnology,andby several seed grants provided bythe New Jersey Center for Biomaterials and Medical Devices. The authoralsoacknowledgesthesupportofaNIHResearchCareerDevelopmentAward(GM00550). REFERENCES 1. F.SilverandC.Doillon, Biocompatibility:Interactionsofbiologicalandimplantablematerials,Volume1, VCHPublishers,NewYork,NY,1989. 2. AronoffAssociates,MarketStndy:BiomaterialsSupplyforPermanentMedicalImplants,Commissionedby RIMA,March1994. 3. P.Eisenberger, NIHWorkshop:BiomaterialsandMedicalImplantScience,NationalInstitutesofHealth,Bethesda, MD,1995. 4. R.Bhatt,Biomaterialsinaproductliabilityperspective:Implicationstopublichealthandmattersofnational interest, RANDInstitute,Washington,DC,1996. 5. J.KohnandR.Langer,J.Am. Chem.Soc.,109,817(1987). 6. S.1.ErtelandJ.Kohn, J.Biomed. Mater.Res.,28,919(1994). 7. J.Choueka,J.L.Charvet,K.J.Koval,H.Alexander,K.S.James,K.A.Hooper,andJ.Kohn,J.Biomed.Mater. Res.,31,35(1996). 8. S.1.Ertel,J.Kohn,M.C.Zimmennan,andJ.R.Parsons,J.Biomed.Mater.Res.,29(11),1337(1995). 9. S.PulapuraandJ.Kohn,Biopolymers,32,411(1992). 10. J.Tcheng,R.Harrington,K.Kottke-Marchant,N.Kleiman,S.Ellis,D.Kereiakes,M.Mick,F.Navetta,J.Smith, S.Worley,J.Miller,D.Joseph,K.Sigmon,M.Kitt,C.D.Mee,R.Califf,andR.Topol,Circulation,91(8),2151 (1995). II. M.J.During,A.Freese,A.Y.Deutch,P.G.Kibat,B.A.Sabel,R.Langer,andR.H.Roth,Exp.Neural.,115(2),193 (1993). 12. D.Coffey,Z.Dong,R.Goodman,A.1srani,J.Kohn,andK.O.Schwarz,SymposiumonPolymerDeliverySystems presentedatthe203rdMeetingofACS,SanFransisco,CA,CELL0058,1992. 13. Z.Dong,M Sc. Thesis,RutgersUniversity, 1993. 14. J.Fiordeliso,S.Bron,andJ.Kohn, J.Biomater.Sci., Polym.Ed.,5(6),497(1994). 15. J.Kohn,20thAnnualMeetingoftheSocietyforBiomaterials,BostonMA, 1994. 16. S.BrocchiniandJ.Kohn,Pseudo-poly(aminoacid)s,in:ThePolymericMaterialsEncyclopedia, Ed.J.C.Salamone,CRCPress,BocaRaton,FL,p.649,1996. 17. V.Tangpasuthadol,A.Shefer,C.Yu,J.Zhou,andJ.Kohn,J.Appl.Polym.Sci., 1996. 18. D.M.Schachter,S.Brocchini,andJ.Kohn,ProceedingsoftheSymposiumonControlledReleaseofBioactive Materials,Baltimore,MD,ControlledReleaseSociety,1996.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.