ebook img

Medical Imaging Technology PDF

135 Pages·2013·4.382 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Medical Imaging Technology

SPRINGER BRIEFS IN PHYSICS Mark A. Haidekker Medical Imaging Technology SpringerBriefs in Physics Editorial Board Egor Babaev, University of Massachusetts, USA Malcolm Bremer, University of Bristol, UK Xavier Calmet, University of Sussex, UK Francesca Di Lodovico, Queen Mary University of London, UK Maarten Hoogerland, University of Auckland, New Zealand Eric Le Ru, Victoria University of Wellington, New Zealand James Overduin, Towson University, USA Vesselin Petkov, Concordia University, Canada Charles H.-T. Wang, University of Aberdeen, UK Andrew Whitaker, Queen’s University Belfast, UK For furthervolumes: http://www.springer.com/series/8902 Mark A. Haidekker Medical Imaging Technology 123 MarkA.Haidekker College ofEngineering Universityof Georgia Athens,GA USA ISSN 2191-5423 ISSN 2191-5431 (electronic) ISBN 978-1-4614-7072-4 ISBN 978-1-4614-7073-1 (eBook) DOI 10.1007/978-1-4614-7073-1 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013934273 (cid:2)TheAuthor(s)2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Amongmanymajordevelopmentsinthemedicalfieldoverthepasttwocenturies, I personally consider three of them of particularly outstanding importance: The discovery of antibiotics inthe late nineteenth century, the discovery of anesthesia during a period from the late eighteenth century to the mid-1800s, and the dis- covery of methods to look inside the human body without surgery. Out of these three,biomedicalimagingistheyoungestdevelopment,anditsbeginningscanbe pinpointedtoaveryprecisepointinhistory—thediscoveryoftheX-raybyC.W. Röntgen in 1895. The history of medical imaging is a fascinating topic in itself, and it is briefly coveredinChap.1.Mostnotably,thehistoryofmedicalimagingiscloselylinked to the evolution of digital data processing and computer science, and to the evo- lution of digital electronics and the microprocessor. Medical imaging is truly interdisciplinary as it relies on physics, mathematics, biology, computer science, andengineering.Thisbooktriestoprovideasolidfoundationoftheprinciplesthat lead to image formation. Specifically, many books on the same subject are intended for a medical or more general audience and treat the image formation process to some extent as a black box. In this book, the image formation process can be followed from start to end, beginning with the question of how contrast is achieved. To this end, the source/ detector systems that probe the tissue and provide the data necessary for image formation are explained. For each modality, this book explains the type of data collected, and how it is converted into an image. In addition, engineering aspects of the imaging devices, and a discussion of strengths and limitations of the modality can be found. In the first chapter, the basic concepts of contrast and resolutionareintroduced,andsomeconceptsthatarecommontoallmodalitiesare explained. Subsequent chapters cover specific modalities. We can broadlydivide the imaging modalities intotwo groups,thosewith and those without the use of ionizing radiation. Unlike visible light, high-energy photons undergo only moderate scattering in tissue and can be used to penetrate the entire body. Most of the high-energy photons (X-ray and gamma radiation) follow a straight path, and certain geometrical assumptions are allowed that give rise to projection imaging (Chap. 2) and X-ray-based tomography (Chap. 3). Emission tomography, based on radioactive compounds that emit radiation from v vi Preface inside the body (Chap. 4) also belong to this category, since gamma radiation is used for the actual image formation. Imaging modalities with ionizing radiation sharemanycommonprinciples,andChaps. 2through4partlybuildoneachother. Magnetic resonance imaging and ultrasound imaging both use fundamentally different physical phenomena that are covered in Chaps. 5 and 6, respectively. Finally,Chap. 7deals withrecentdevelopmentsboth inthe traditional modalities and in new modalities that are not yet widely used in clinical practice. Since this book places considerable emphasis on the mathematical description of image formation, the reader should be familiar with calculus and have a basic understanding of differential equations. Although the Fourier transform is intro- duced in Sect. 1.4, some familiarity with the Fourier transform is helpful. Prior understanding of digital signal processing is helpful, too, although not a pre- requisite for the topics covered in this book. The chapters in this book can serve as an entry point for the in-depth study of individual modalities by providing the essential basics of each modality in a comprehensive and easy-to-understand manner. As such, this book is equally suitable as a textbook for undergraduate or graduate biomedical imaging classes andasareferenceandself-studyguidethatpreparethereaderformorespecialized in-depth studies. However,anyoneimagingmodalitycouldfillawholebookonitsown,andfor advanced study of a specific modality, more specialized books are also available. In-depth coverage of all modalities with an emphasis on the clinical application (butlessemphasisonthemathematics)isprovidedinthebookbyBushbergetal. [1]. A practice-oriented, user-friendly, yet highly detailed view of computed tomography can be found in [2], although it does not provide the mathematical details of CT image reconstruction. For readers who are interested in image reconstruction algorithms and their mathematical foundation, the books by Kak and Slaney [3] or by Herman [4] are recommended. MRI is a comprehensive subject, and in-depth coverage is provided in the work by Haake et al. [5]. AreferenceforultrasoundimagingcanbefoundinthebookbyHedricketal.[6]. Among many individuals and colleagues who helped to shape this book with comments and discussions, I would particularly like to thank Erin E. Roberts for the help I received with some figures, Richard Speir and Dr. Adnan Mustafic for detailed revisions of the manuscript and helpful ideas how to improve the text, and to Prof. Qun Zhao and Prof. Geoff Dougherty for reviewing the book. Furthermore, I would like to express my gratitude toward the team at Springer: ChristopherCoughlinandHoYingFan,aswellastheproductionteamatSPSwho ensured a smooth path from concept to publication. Athens, January 2013 Mark A. Haidekker Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 A Brief Historical Overview. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Image Resolution and Contrast . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Systems and Signals: A Short Introduction. . . . . . . . . . . . . . . . 6 1.4 The Fourier Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 X-Ray Projection Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 X-Ray Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 The X-Ray Tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 A Focus on Geometry. . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 X-Ray Attenuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Photon-Matter Interaction. . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Macroscopic Attenuation and Lambert-Beer’s Law. . . . . 22 2.2.3 Lambert-Beer’s Law in Inhomogeneous Materials. . . . . . 25 2.2.4 Dual-Energy X-Ray Absorptiometry . . . . . . . . . . . . . . . 26 2.3 X-Ray Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 Film-Based Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Fluoroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3 Semiconductor Detectors . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.4 Photomultiplier Tubes . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Factors that Determine X-Ray Image Quality . . . . . . . . . . . . . . 34 3 Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 CT Image Formation Principles. . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 The Radon Transform and the Fourier Slice Theorem. . . 39 3.1.2 Practical Image Reconstruction. . . . . . . . . . . . . . . . . . . 42 3.2 Engineering Aspects of CT Scanners. . . . . . . . . . . . . . . . . . . . 49 3.3 Quantitative CT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Image Quality and Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Nuclear Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 Radiopharmaceuticals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Production of Short-Lived Radioactive Tracers. . . . . . . . . . . . . 56 vii viii Contents 4.3 Detector Systems and the Anger Camera . . . . . . . . . . . . . . . . . 57 4.4 Single Photon Emission Computed Tomography. . . . . . . . . . . . 59 4.5 Positron Emission Tomography. . . . . . . . . . . . . . . . . . . . . . . . 64 4.6 Multi-Modality Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 Magnetic Resonance Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1 Proton Spins in an External Magnetic Field . . . . . . . . . . . . . . . 67 5.2 The Spin-Echo Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.3 The Spin-Echo Pulse Sequence. . . . . . . . . . . . . . . . . . . . . . . . 76 5.3.1 Measurement of T . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2 5.3.2 Measurement of T Through Incomplete Recovery . . . . . 77 1 5.3.3 Measurement of Proton Density . . . . . . . . . . . . . . . . . . 78 5.3.4 The Significance of T and T . . . . . . . . . . . . . . . . . . . 78 E R 5.4 From NMR to MRI: The Gradient Fields. . . . . . . . . . . . . . . . . 79 5.4.1 The Slice Encode Gradient. . . . . . . . . . . . . . . . . . . . . . 81 5.4.2 Fourier-Encoding with the Gradient . . . . . . . . . . . . . . . 84 5.4.3 The Frequency Encode Gradient. . . . . . . . . . . . . . . . . . 85 5.4.4 The Phase Encode Gradient . . . . . . . . . . . . . . . . . . . . . 86 5.5 Putting Everything Together: Spatially-Resolved Spin-Echo Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.6 Other Imaging Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.6.1 Gradient-Recalled Echo Sequences . . . . . . . . . . . . . . . . 89 5.6.2 Inversion Recovery Sequence. . . . . . . . . . . . . . . . . . . . 90 5.6.3 Echo Planar Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.7 Technical Realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.7.1 B Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 0 5.7.2 Gradient Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.7.3 RF Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 Ultrasound Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1 Sound Propagation in Biological Tissue. . . . . . . . . . . . . . . . . . 97 6.2 Ultrasound Image Formation. . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.1 Ultrasound Generation and Echo Detection . . . . . . . . . . 101 6.2.2 A-Mode Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2.3 B-Mode Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.4 M-Mode Scans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.5 Volumetric Scans and 3D Ultrasound . . . . . . . . . . . . . . 108 6.3 Doppler Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7 Trends in Medical Imaging Technology . . . . . . . . . . . . . . . . . . . . 111 7.1 Progress in Established Imaging Modalities . . . . . . . . . . . . . . . 112 7.1.1 X-ray and CT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.1.2 Magnetic Resonance Imaging. . . . . . . . . . . . . . . . . . . . 113 7.1.3 Ultrasound Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Contents ix 7.1.4 PET and Multi-Modality Imaging. . . . . . . . . . . . . . . . . 114 7.1.5 Molecular Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 Optical Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.3 Advanced Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 118 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Chapter 1 Introduction Abstract “Medicalimagingreferstoseveraldifferenttechnologiesthatareusedto viewthehumanbodyinordertodiagnose,monitor,ortreatmedicalconditions”.All imagingmodalitieshaveincommonthatthemedicalconditionbecomesvisibleby someformofcontrast,meaningthatthefeatureofinterest(suchasatumor)canbe recognized in the image and examined by a trained radiologist. The image can be seenasamodeloftheimagedtissue.Imagesinthecontextofthisbookaredigital. Thisimpliesafiniteresolutionwiththepixelasthesmallestelement.Furthermore, all imaging modalities lead to some degradation of the image when compared to the original object. Primarily, the degradation consists of blur (loss of detail) and noise(unwantedcontrast).Someunderlyingprinciplesarecommontoallimaging modalities,suchastheinterpretationasasystemanditsmathematicaltreatment.The image itself can be seen as a multidimensional signal. In many cases, the steps in imageformationcanbeseenaslinearsystems,whichallowsimplifiedmathematical treatment. “Medicalimagingreferstoseveraldifferenttechnologiesthatareusedtoviewthehuman bodyinordertodiagnose,monitor,ortreatmedicalconditions.Eachtypeoftechnology givesdifferentinformationabouttheareaofthebodybeingstudiedortreated,relatedto possibledisease,injury,ortheeffectivenessofmedicaltreatment”. This concise definition by the US Food and Drug Administration illuminates the goal of medical imaging: To make a specific condition or disease visible. In this context, visible implies that the area of interest is distinguishable in some fashion (forexample,byadifferentshadeorcolor)fromthesurroundingtissueand,ideally, fromhealthy,normaltissue.Thedifferenceinshadeorcolorcanbegeneralizedwith thetermcontrast. Theprocessofgatheringdatatocreateavisiblemodel(i.e.,theimage)iscommon toallmedicalimagingtechnologiesandcanbeexplainedwiththesimpleexample of a visible-light camera. The sample is probed with incident light, and reflected light carries the desired information. For example, a melanoma of the skin would reflect lesslightthan thesurrounding healthy skin.The camera lens collects some of the reflected light and—most importantly—focuses the light onto the film or M.A.Haidekker,MedicalImagingTechnology,SpringerBriefsinPhysics, 1 DOI:10.1007/978-1-4614-7073-1_1,©TheAuthor(s)2013

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.