Bjoern H. Menze Georg Langs Le Lu Albert Montillo Zhuowen Tu Antonio Criminisi (Eds.) Medical Computer Vision 6 6 7 7 S Recognition Techniques and Applications C N in Medical Imaging L Second International MICCAI Workshop, MCV 2012 Nice, France, October 2012 Revised Selected Papers 123 Lecture Notes in Computer Science 7766 CommencedPublicationin1973 FoundingandFormerSeriesEditors: GerhardGoos,JurisHartmanis,andJanvanLeeuwen EditorialBoard DavidHutchison LancasterUniversity,UK TakeoKanade CarnegieMellonUniversity,Pittsburgh,PA,USA JosefKittler UniversityofSurrey,Guildford,UK JonM.Kleinberg CornellUniversity,Ithaca,NY,USA AlfredKobsa UniversityofCalifornia,Irvine,CA,USA FriedemannMattern ETHZurich,Switzerland JohnC.Mitchell StanfordUniversity,CA,USA MoniNaor WeizmannInstituteofScience,Rehovot,Israel OscarNierstrasz UniversityofBern,Switzerland C.PanduRangan IndianInstituteofTechnology,Madras,India BernhardSteffen TUDortmundUniversity,Germany MadhuSudan MicrosoftResearch,Cambridge,MA,USA DemetriTerzopoulos UniversityofCalifornia,LosAngeles,CA,USA DougTygar UniversityofCalifornia,Berkeley,CA,USA GerhardWeikum MaxPlanckInstituteforInformatics,Saarbruecken,Germany Bjoern H. Menze Georg Langs Le Lu Albert Montillo Zhuowen Tu Antonio Criminisi (Eds.) Medical Computer Vision RecognitionTechniquesandApplications in Medical Imaging SecondInternationalMICCAIWorkshop,MCV2012 Nice, France, October 5, 2012 Revised Selected Papers 1 3 VolumeEditors BjoernH.Menze ETHZurich,Sternwartstrasse7,8092Zürich,Switzerland E-mail:[email protected] GeorgLangs MedicalUniversityofVienna,WähringerGürtel18-20,1090Wien,Austria E-mail:[email protected] LeLu SiemensCorporateResearch,755CollegeRoadEast,Princeton,NJ08540,USA E-mail:[email protected] AlbertMontillo GEGlobalResearch,1ResearchCircle,Niskayuna,NY12309,USA E-mail:[email protected] ZhuowenTu UniversityofCalifornia,635CharlesE.YoungDriveSouth LosAngeles,CA90095-7334,USA E-mail:[email protected] AntonioCriminisi MicrosoftResearch,7JJThomsonAvenue,Cambridge,CB30FB,UK E-mail:[email protected] ISSN0302-9743 e-ISSN1611-3349 ISBN978-3-642-36619-2 e-ISBN978-3-642-36620-8 DOI10.1007/978-3-642-36620-8 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2013931266 CRSubjectClassification(1998):I.4.6-7,I.4.9,I.4.3,I.2.10,I.5.2-4,J.3 LNCSSublibrary:SL6–ImageProcessing,ComputerVision,PatternRecognition, andGraphics ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,re-useofillustrations,recitation,broadcasting, reproductiononmicrofilmsorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965, inistcurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliable toprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readybyauthor,dataconversionbyScientificPublishingServices,Chennai,India Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The Second MICCAI Workshop on Medical Computer Vision (MICCAI-MCV 2012)washeldinconjunctionwiththe15thInternationalConferenceonMedical Image Computing and Computer-Assisted Intervention (MICCAI) on October 5, 2012 in Nice, France. It succeeded the First Workshop on Medical Computer Vision that was held in September 2010 in conjunction with MICCAI 2010 in Beijing. The workshop aimed at exploring the use of modern computer vision tech- nology in tasks such as automatic segmentationand registration,localizationof anatomicalfeaturesanddetectionofanomalies,aswellas3Dreconstructionand biophysical model personalization. In this it focuses on principled approaches that go beyond the limits of current model-driven image analysis, which are provably efficient and scalable, and which generalize well to previously unseen images. Thegoaloftheworkshopwastofosterdiscussionsamongresearchersworking onnovelcomputationalapproachesatthe interfaceofcomputervision,machine learning, and medical image analysis, and who are interested in pushing the boundaries of what current medical software applications can deliver in both clinical and medical research settings. To this end we invited Nikos Paragios from INRIA and Ecole Centrale Paris and Nassir Navab from TU Munich to discuss challenges and opportunities lying at the interface of medical computer vision and “classic” computer vision. The following panel discussion with the invitedspeakers–inwhichNicholasAyache,INRIASophia-Antipolis,andSimon Mercer, Microsoft Research, joined in – dealt with the following questions: - How do we turn research into clinical use? How do we turn research into products? - How do we make data available to the broader researchcommunity? - What makes medical imaging data special compared to classic computer vision data and problems? - How would we set up large data sets for training efficient computer vision like algorithms? And is this a good idea at all? - Howdowe solvethe annotationproblem?Whatareperspectivesintimes of mechanical turk? What are effective incentives for clinical collaborators to share knowledge and to annotate data image? Central to the workshop were the contributions of the participants. Our call for papers resulted in 42 submissions of up to 12 pages. Each paper received at least three reviews. Based on these peer reviews, we selected 24 submissions for presentation out of which 12 were presented as a poster and 12 as a poster together with a plenary talk. Three talks were awarded the“MCV Best Paper Award”based on the popular vote of the workshop attendees: Herve Lombaert VI Preface etal.“GroupwiseSpectralLog-DemonsFrameworkforAtlas Construction,”To- bias Gass et al. “Semi-supervised Segmentation Using Multiple Segmentation HypothesesfromaSingleAtlas,”andReneDonneretal.“FastAnatomicalStruc- ture Localization Using Top-down Image Patch Regression.” ThepresentvolumecontainsthereworkedpapersoftheMICCAI-MCV2012 workshop. It also features four selected papers by Zhong et al., Li et al., Song et al., and Wu et al. that were presented at the previous CVPR Medical Com- puter Vision Workshop, which was co-organizedby L. Lu, B. Menze, G. Langs, Y. Zhan, and Z. Tu and was held in conjunction with the International Confer- ence on Computer Vision and Pattern Recognition on June 21, 2012, in Provi- dence, Rhode Island, USA. December 2012 Bjoern H. Menze Georg Langs Le Lu Albert Montillo Zhuowen Tu Antonio Criminisi Organization Workshop Chairs Bjoern Menze ETHZurich, INRIA, Switzerland/France Georg Langs MU Vienna, MIT, Austria/USA Albert Montillo GE, USA Zhuowen Tu UCLA, USA Antonio Criminisi Microsoft Research, UK Invited Speakers Nassir Navab TU Munich, Germany Nikos Paragios Ecole Centrale Paris,France Program Committee Alison Noble Oxford, UK Ben Glocker Microsoft Research, UK Cagatay Demiralp Brown University, USA Christian Barillot IRISA Rennes, France Christos Davatzikos University of Pennsylvania,USA Daniel Rueckert Imperial College London, UK Darko Zikic Microsoft Research, UK Ender Konukoglu Microsoft Research, UK Hayit Greenspan Tel Aviv University, Israel Helmut Grabner ETH Zurich, Switzerland Horst Bischof TU Graz, Austria Jan Margeta INRIA, France Juan Eugenio Iglesias Harvard MGH, USA Juergen Gall Max-Planck Gesellschaft Tu¨bingen, Germany Kayhan Batmanghelich MIT, USA Kilian Pohl University of Pennsylvania,USA Koen Van Leemput Harvard MGH, DTU, USA Leo Grady Siemens Corporate Research, USA Lin Yang University of Kentucky, USA Marleen de Bruijne EMC Rotterdam, University of Copenhagen, The Netherlands/Denmark Matthew Blaschko Ecole Centrale Paris,France VIII Organization Michael Kelm Siemens Corporate Research, Germany Michael Wels Siemens Corporate Research, Germany Milan Sonka University of Iowa, USA Paul Suetens KU Leuven, Belgium Rachid Deriche INRIA, France Ron Kikinis Harvard BWH, USA Sebastian Ourselin University College London, UK Tammy Riklin Raviv Harvard BWH, USA Tom Vercauteren Mauna Kea Technology, France Victor Lempitsky Yandex, Russia Yefeng Zheng Siemens Corporate Research, USA Table of Contents Registration Real-Time 2D/3D Deformable Registration Using Metric Learning ..... 1 Chen-Rui Chou and Stephen Pizer Groupwise Spectral Log-Demons Framework for Atlas Construction .... 11 Herve Lombaert, Leo Grady, Xavier Pennec, Jean-Marc Peyrat, Nicholas Ayache, and Farida Cheriet Robust Anatomical Correspondence Detection by Graph Matching with Sparsity Constraint.......................................... 20 Yanrong Guo, Guorong Wu, Yakang Dai, Jianguo Jiang, and Dinggang Shen Segmentation Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas .................................... 29 Tobias Gass, Ga´bor Sz´ekely and Orcun Goksel Carotid Artery Wall Segmentation by Coupled Surface Graph Cuts..... 38 Andres Arias, Jens Petersen, Arna van Engelen, Hui Tang, Mariana Selwaness, Jacqueline C.M. Witteman, Aad van der Lugt, Wiro Niessen, and Marleen de Bruijne Graph Cut Segmentation Using a Constrained Statistical Model with Non-linear and Sparse Shape Optimization .......................... 48 Tahir Majeed, Ketut Fundana, Silja Kiriyanthan, J¨org Beinemann, and Philippe Cattin Novel Context Rich LoCo and GloCo Features with Local and Global Shape Constraints for Segmentation of 3D Echocardiograms with Random Forests ................................................. 59 Kiryl Chykeyuk, Mohammad Yaqub, and J. Alison Noble Novel Vector-Valued Approach to Automatic Brain Tissue Classification.................................................... 70 Nataliya Portman and Alan Evans Atlas-Based Whole-Body PET-CT Segmentation Using a Passive Contour Distance ................................................ 82 Fabian Gigengack, Lars Ruthotto, Xiaoyi Jiang, Jan Modersitzki, Martin Burger, Sven Hermann, and Klaus P. Sch¨afers X Table of Contents Spatially Aware Patch-Based Segmentation (SAPS): An Alternative Patch-BasedSegmentation Framework.............................. 93 Zehan Wang, Robin Wolz, Tong Tong, and Daniel Rueckert Efficient Geometrical Potential Force Computation for Deformable Model Segmentation.............................................. 104 Igor Sazonov, Xianghua Xie, and Perumal Nithiarasu Shape Prior Model for Media-Adventitia Border Segmentation in IVUS Using Graph Cut ................................................ 114 Ehab Essa, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu, and Dave Smith Multiple Atlases-Based Joint Labeling of Human Cortical Sulcal Curves ......................................................... 124 Ilwoo Lyu, Gang Li, Minjeong Kim, and Dinggang Shen Detection, Localization, Tracking Fast Anatomical Structure Localization Using Top-Down Image Patch Regression ...................................................... 133 Ren´e Donner, Bjoern H. Menze, Horst Bischof, and Georg Langs Oblique Random Forests for 3-D Vessel Detection Using Steerable Filters and OrthogonalSubspace Filtering........................... 142 Matthias Schneider, Sven Hirsch, Ga´bor Sz´ekely, Bruno Weber, and Bjoern H. Menze Pipeline for Tracking Neural Progenitor Cells........................ 155 Jacob S. Vestergaard, Anders L. Dahl, Peter Holm, and Rasmus Larsen Automatic Heart Isolation in 3D CT Images......................... 165 Hua Zhong, Yefeng Zheng, Gareth Funka-Lea, and Fernando Vega-Higuera RandomnessandSparsityInducedCodebookLearningwithApplication to Cancer Image Classification..................................... 181 Quannan Li, Cong Yao, Liwei Wang, and Zhuowen Tu Context Enhanced Graphical Model for Object Localizationin Medical Images ......................................................... 194 Yang Song, Weidong Cai, Heng Huang, Yue Wang, and David Dagan Feng A Cascade Learning Method for Liver Lesion Detection in CT Images ......................................................... 206 Dijia Wu, David Liu, Michael Suehling, Kevin S. Zhou, and Christian Tietjen