ebook img

Mechatronic Modeling of Real-Time Wheel-Rail Contact PDF

126 Pages·2013·4.813 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechatronic Modeling of Real-Time Wheel-Rail Contact

Nicola Bosso · Maksym Spiryagin Antonio Gugliotta · Aurelio Somà Mechatronic Modeling of Real-Time Wheel-Rail Contact Mechatronic Modeling of Real-Time Wheel-Rail Contact Nicola Bosso Maksym Spiryagin • Antonio Gugliotta Aurelio Somà • Mechatronic Modeling of Real-Time Wheel-Rail Contact 123 Nicola Bosso MaksymSpiryagin Antonio Gugliotta Centre forRailway Engineering Aurelio Somà Central QueenslandUniversity IngegneriaMeccanica eAerospaziale Rockhampton Politecnico diTorino Australia Turin Italy ISBN 978-3-642-36245-3 ISBN 978-3-642-36246-0 (eBook) DOI 10.1007/978-3-642-36246-0 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013931750 (cid:2)Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience?BusinessMedia(www.springer.com) Preface Real-time simulations of the behaviour of a rail vehicle require realistic solutions of the wheel-rail contact problem which can work in a real-time mode. Examples ofsuchsolutionsfortheonlinemodehavebeenwellknownandareimplemented within standard and commercial tools for the simulation codes for rail vehicle dynamics. Theoverallaimofthisinvestigationistodevelopareal-timewheel-railcontact model accounting for wheel and rail geometry, the behaviour of a solid wheelset, frictionparametersandloadcharacteristics.Thebehaviourofawheelsetislimited to the motions in the lateral and vertical directions, and an angular movement around the longitudinal axis. Themodeldesignapproachbasicallyusescombinationsoftheassembliesfrom the well-known theories, which have been developed using the rules of the ‘‘MISRA-C’’ coding standard and the requirements of real-time applications with dSpacesystems.Additionalimprovementshavebeenmadetodelineatethecontact pointsbetweenthewheelandrailsurfacesandthecalculationofcreepagesforthe classicalwheel-railcontact,andthecontactbetweenwheelsandrollersinthecase of the test rig application. Furthermore, the improvements also include the determination of adhesion forces based on the introduction of variable friction coefficientdependantontherollingvelocityandthelongitudinalcreepage,instead of a standard model of creep forces with a constant static friction coefficient. This book presents work on the project for the development of a real-time wheel-railcontactmodelandprovidesthesimulationresultsobtainedwithdSpace real-time hardware. Besides this, the implementation of the contact model for the developmentofareal-timemodelforthecomplexmechatronicsystemofascaled testrigispresentedinthisbookandmaybeusefulforthefurthervalidationofthe real-time contact model with experiments on a full scale test rig. v Acknowledgments TheauthorswouldliketothankTimMcSweeneyforthecarefulproofreadingand valuable comments on this book. vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Structure of the Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Review of Wheel-Rail Contact Models . . . . . . . . . . . . . . . . . . . . . 5 2.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Rigid Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Elastic Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Quasi-Elastic Contact. . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Tangential Problem: Evolution of Theories. . . . . . . . . . . . . . . 9 2.3 Non-Hertzian Contact Methods . . . . . . . . . . . . . . . . . . . . . . . 16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Roller Rigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 Application of Roller Rig to Railway Testing . . . . . . . . . . . . . 21 3.2 Pascal’s Similitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Iwnicki’s Similitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Jaschinski’s Similitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Design of Scaled Roller Rigs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1 Roller Rig Developed at the Politecnico di Torino. . . . . . . . . . 37 4.2 Bogie Prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Single Wheelset Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 Motorisation of the Roller Rig. . . . . . . . . . . . . . . . . . . . . . . . 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 Contact Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Wheelset and its Coordinate System. . . . . . . . . . . . . . . . . . . . 56 5.3 Algorithm for the Wheel-Rail Contact Model . . . . . . . . . . . . . 56 5.4 Simulation Software and Requirements. . . . . . . . . . . . . . . . . . 57 ix x Contents 5.5 Integration Approach for the Real-Time Realisation of the Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.6 Initial Data for the Contact Model. . . . . . . . . . . . . . . . . . . . . 58 5.6.1 Parameterisation of Wheel and Rail Geometries . . . . . 59 5.6.2 Definition of Wheel and Rail Surfaces for the Contact Model . . . . . . . . . . . . . . . . . . . . . . . 59 5.6.3 Realisation of the Module. . . . . . . . . . . . . . . . . . . . . 59 5.7 Geometrical Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.7.1 Scenario of One Point Contact. . . . . . . . . . . . . . . . . . 61 5.7.2 Interpolation Algorithm . . . . . . . . . . . . . . . . . . . . . . 64 5.8 Hertz Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.9 Creepage Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.10 Module for the Calculation of Normal Forces . . . . . . . . . . . . . 67 5.10.1 Normal Contact Forces in Wheel-Rail Contact . . . . . . 67 5.10.2 Operation of the Module. . . . . . . . . . . . . . . . . . . . . . 68 5.11 Dynamic Friction Coefficient Module. . . . . . . . . . . . . . . . . . . 69 5.12 Creep Forces Calculation Model . . . . . . . . . . . . . . . . . . . . . . 70 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6 Real-Time Simulation of the Contact Model . . . . . . . . . . . . . . . . . 73 6.1 Integration with Simulink: Model Inputs and Outputs. . . . . . . . 73 6.2 Mechatronic System Model of Test Rig . . . . . . . . . . . . . . . . . 77 6.3 Multibody Model of Test Rig in Simpack. . . . . . . . . . . . . . . . 78 6.4 Control Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.5 Power Converter and Sensors . . . . . . . . . . . . . . . . . . . . . . . . 82 6.6 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 Example of Real-Time Application for Scaled Test Rig. . . . . . . . . 91 7.1 Structure of the Mechatronic Model. . . . . . . . . . . . . . . . . . . . 91 7.2 Multibody Model of Test Rig in SimMechanics . . . . . . . . . . . 92 7.3 Control Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4 Integration with Simulink and SimMechanics . . . . . . . . . . . . . 96 7.5 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 About the Authors Nicola Bosso was born in Vercelli in 1971. He graduatedinMechanicalEngineeringin1996from PolitecnicodiTorino.Heworkedasaconsultantin railwaydynamicsandmultibodysimulationsatFiat Ferroviaria from 1996 to 1998, and as a Research FellowatPolitecnicodiTorinofrom1999to2002. HehasbeenanAssistantProfessoratPolitecnicodi Torino since 2002 and was awarded his Ph.D. in Machine Design there in 2004. Researchactivity:Simulationofrailwaydynamic, wheel-railinteraction,designandexperimentationon scaledprototypesfortherailwaysector. Teaching activity: Technology and design of railway vehicles, multibody simulation, machine design. He has more than 40 scientific publications and 5 patents. MaksymSpiryagin isaresearchfellowatCentral Queensland University, where he works at the Centre for Railway Engineering. His present research interests are rail vehicle dynamics, mechatronics and real-time and software-enabled controlsystems.HewasborninLugansk(Ukraine) in 1975. He graduated from the Department of Transport at the East Ukrainian State University in 1998 with an M.Sc. degree in Railway Transport. Also, he completed his Master’s degree in ComputerEngineeringandNetworksin2003atthe East UkrainianNational University.Hereceived hisPh.D.inthe field ofRailway Transport in 2004 at the same university. After that, he got promotion there and xi xii AbouttheAuthors continuedservingasanassociateprofessor.Inearly2007,hestartedworkingasa research professor in the field of mechatronics and vehicle dynamics at Hanyang University (Seoul, South Korea). At the end of 2008, he commenced work as a foreign senior researcher at Politecnico di Torino (Turin, Italy). His research focused on the development of real-time wheel-rail contact models and vehicle mechatronicsystems.Hehasmorethan50scientificpublicationsand17patentsas one of the inventors. Antonio Gugliotta was born in Sava (Taranto, Italy) in 1949. He graduated in Aeronautical Engineering from the Politecnico di Torino in 1973, and an M.Sc. in Mechanical Engineering from the Carleton University, Ottawa, Ontario, Canada in 1978. He held positions as Assistant Professor of Machine Design at the Politecnico of Torino (1973–1977), Teaching Assistant at the Faculty of Engineering, Carleton University, Ontario, Canada (1977–1978), Associate Professor of Machine Design at the Politecnico of Torino (1983–1987) and since 1987 has been Professor of Machine Design at the University of Roma ‘‘La Sapienza’’ (1987–1990) and at the Politecnico of Torino, Second Faculty of Engineering(since1990).DeanoftheSecondFacultyofEngineering,Politecnico di Torino (1993–2003). President of COREP (Consortium for Research and Continuing Education). He has published more than 100 scientific papers. Research activity: Applied mechanics, mechanical design, finite element method,structuralanalysis,metalforming,crashworthiness,dynamicsandcontact mechanics of railway vehicles, microstructures (MEMS), methodologies for microstructures simulation and experimental characterisation.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.