MECHANISMS OF ANTIBIOTIC RESISTANCE AND PATHOGENESIS IN Acinetobacter baumannii By Marguerite Indriati Hood Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Microbiology and Immunology August, 2012 Nashville, Tennessee Approved: Date: _Timothy Cover, Chair_______________________________ __5/16/2012_________ _Timothy Blackwell_________________________________ __5/16/2012_________ _Terence Dermody__________________________________ __5/16/2012_________ _Dean Ballard______________________________________ __5/16/2012_________ _Eric Skaar________________________________________ __5/16/2012_________ ACKNOWLEDGEMENTS Throughout my graduate career I have been extremely fortunate to work alongside outstanding colleagues in the laboratory, in the Department of Pathology, Microbiology and Immunology, in the Medical Scientist Training Program and in the Vanderbilt community as a whole. I must begin by thanking my mentor, Eric Skaar, for his overwhelming support and guidance throughout my graduate career. Eric, you have been at various times a cheerleader, a mentor, an advocate and a friend. Thank you for giving me the opportunity to pursue a project that was at many times uncertain, but always challenging and exciting. Thank you also for providing a positive and stimulating work environment and for always challenging me to reach my full potential. Finally, thank you for being a positive example and showing me how much fun a career in science can be. Thanks to all of the members of the Skaar lab with whom I have had the pleasure of interacting over the last five years. Thanks to Amanda McCoy, Keith Adams and Jeff Mason who each contributed directly to my thesis work. Thank you, Victor Torres for helping me get oriented to the lab in the first few months of my rotation and for all of the helpful and entertaining discussions we enjoyed when we shared “The Island”. Thanks to former members Michelle Reniere, Devin Stauff and Ahmed Attia and current members, Gleb Pishchany, Cathy Wakeman, Allison Farrand, Thomas Kehl-Fie, Kate Haley, Laura Anzaldi, Neal Hammer, Jim Cassat, Kyle Becker, Lorenzo Olive and Brittany Mortenson for your friendship, discussions and feedback. Thank you all for making the Skaar lab such fun and stimulating place to work. Thank you, Thomas Kehl-Fie, for all of your help ii with infections and in getting started working with calprotectin. Thanks to Ahmed Attia for helpful discussions. Thanks to Kyle Becker, Brittany Mortenson and Mike Nodo for your willingness to carry on the Acinetobacter work after I leave. I am thankful to my numerous collaborators both at Vanderbilt and at other institutions. Thank you to Paul Dunman and his graduate student, Anna Jacobs and post doctoral fellow, Christelle Roux, for their assistance with transcriptional analyses of A. baumannii. I also thank Anna for helpful discussions regarding the generation of deletion mutants in A. baumannii. Thank you to Lisa Zimmerman of the Ayers Institute for her assistance with proteomic data analyses. Thanks also to Rosemary Verrall of the Vanderbilt Clinical Microbiology Laboratory for providing assistance with interpretation of MIC values for A. baumannii. I would like to thank Drs. Anthony Campagnari (State Univerisity of New York at Buffalo), Robert Bonomo (Case Western Reserve University) and Herbert Schweizer (Colorado State University) for providing A. baumannii clinical strains and plasmids for generating knockouts. I also thank Luis Actis (Miami University) for providing plasmids for complementation and GFP expression as well as for helpful discussions. Thank you Carl Johnson for helpful advice and for allowing us to borrow your dark box for the circadian rhythm project. Thanks to Sebastian Joyce an Charles Spencer for providing the MyD88-/- mice. I am also grateful for the support and guidance I have received from the members of my thesis committee, Timothy Cover (chair), Timothy Blackwell, Terry Dermody and Dean Ballard. Thanks in particular to Timothy Blackwell for helpful discussions and for providing mice and reagents for numerous inflammation-related projects. Thanks to Tim Cover for helpful advice and discussion regarding whole genome sequencing. Thanks to iii Terry also for all of the opportunities and support you have provided through the MSTP. Thank you to the staff of the Department of Pathology, Microbiology and Immunology and the former Department of Microbiology and Immunology for your administrative support. Thank you to my family for always supporting me. I could not have made it this far without you. Thank you to all of my friends in Nashville, at Houghton and back home in Nova Scotia. You have each helped me in getting to where I am today. This work was supported in part by the National Institutes of Health [NIAID AI091771 to E.P.S.]; a Howard Hughes Medical Institute International Student Research Fellowship to M.I.H.; a Burroughs Wellcome Fund grant to E.P.S.; and the National Institute of General Medical Studies [T32 GM07347 to Vanderbilt University Medical Scientist Training Program]. iv TABLE OF CONTENTS PAGE ACKNOWLEDGEMENTS ................................................................................................ ii LIST OF TABLES ............................................................................................................. iii LIST OF FIGURES ........................................................................................................... X LIST OF ABBREVIATIONS .......................................................................................... XII I. INTRODUCTION ......................................................................................................... 14 ANTIBIOTIC RESISTANCE MECHANISMS UTILIZED BY A. BAUMANNII ............................... 15 A. BAUMANNII PATHOGENESIS AND HOST RESPONSE........................................................ 17 NUTRITIONAL IMMUNITY: EXPLOITING ESSENTIALITY AND TOXICITY............................ 22 AT THE PATHOGEN-HOST INTERFACE .............................................................................. 22 II. ACINETOBACTER BAUMANNII INCREASES TOLERANCE TO ANTIBIOTICS IN RESPONSE TO EXTRACELLULAR NACL ............................................................ 50 INTRODUCTION .............................................................................................................. 50 MATERIALS AND METHODS ........................................................................................... 51 Bacterial strains, media and antibiotics .................................................................... 51 SDS-PAGE analysis of supernatant proteins ............................................................ 52 Protein sample preparation for proteomic analysis ................................................... 52 LC-MS-MS Analysis and Protein Identification ...................................................... 53 Growth conditions for bacterial RNA isolation ........................................................ 55 GeneChip® Analyses ................................................................................................ 56 Quantitative RT-PCR confirmation of microarray results ........................................ 57 Growth curve and MIC analyses of antimicrobial resistance ................................... 58 RESULTS ........................................................................................................................ 59 A. baumannii secretes antibiotic resistance determinants and virulence factors in response to NaCl. ...................................................................................................... 59 NaCl induces up-regulation of putative efflux transporters. ..................................... 63 NaCl induces tolerance to distinct classes of antibiotics. ......................................... 67 Inhibition of efflux reduces NaCl-induced resistance to amikacin and levofloxacin............................................................................................................... 71 NaCl induces tolerance to colistin in multidrug resistant clinical isolates of A. baumannii. ................................................................................................................ 73 DISCUSSION ................................................................................................................... 76 III. GENETIC DETERMINANTS OF INTRINSIC COLISTIN TOLERANCE IN ACINETOBACTER BAUMANNII ..................................................................................... 83 INTRODUCTION .............................................................................................................. 83 METHODS ...................................................................................................................... 85 Bacterial strains and reagents.................................................................................... 85 Transposon library screen and mutant identification ................................................ 85 v Metabolic pathway analysis ...................................................................................... 86 LPS analysis .............................................................................................................. 86 Complementation of the LPS synthesis defect in 5A7 ............................................. 87 Site-directed insertional mutagenesis of lpsB ........................................................... 87 Microarray analysis. .................................................................................................. 88 Preparation of bacterial cultures for in vivo studies .................................................. 89 A. baumannii pneumonia model ............................................................................... 89 RESULTS ........................................................................................................................ 90 Identification of genes involved in NaCl-induced colistin tolerance........................ 90 LpsB contributes to colistin resistance. .................................................................... 94 Adaptation to chronic membrane instability ............................................................. 95 Involvement of LpsB in the pathogenesis of pneumonia.......................................... 96 DISCUSSION ................................................................................................................... 98 IV. ACINETOBACTER BAUMANNII TRANSPOSON MUTANTS REDIRECT HOST INFLAMMATION TO PROMOTE PATHOGEN CLEARANCE. ................... 102 INTRODUCTION ............................................................................................................ 102 METHODS .................................................................................................................... 103 Bacterial strains ....................................................................................................... 103 Transposon library screen and mutant identification .............................................. 103 Preparation of bacterial cultures for in vivo studies ................................................ 103 A. baumannii pneumonia model ............................................................................. 104 Tissue preparation for histology ............................................................................. 105 RNA isolation and PCR array ................................................................................. 105 Flow cytometric analysis of neutrophils in infected lungs ..................................... 106 Neutrophil depletion experiments ........................................................................... 106 Microarray analysis. ................................................................................................ 107 RESULTS ...................................................................................................................... 109 A. baumannii Tn5A7 attenuates wildtype infection. .............................................. 109 Tn5A7 attenuates wildtype infection by inducing increased bacterial clearance from the lung. .......................................................................................................... 112 Chemically inactivated Tn5A7 is effective in inhibiting WT A. baumannii infection. ................................................................................................................................. 113 Tn5A7 blunts the inflammatory response to A. baumannii. ................................... 115 Attenuation of WT bacteria by treatment with Tn5A7 does not depend on neutrophils or macrophages. ................................................................................... 123 TLR4 is not required for the dominant negative effect of the transposon mutants. 125 The attenuating phenotype of Tn5A7 is not due to disruption of lpsB. .................. 126 Transposon mutagenesis induces the attenuating phenotype with a high frequency................................................................................................................. 127 Attenuating mutants do not share any common secondary mutations. ................... 129 Attenuating mutants share a common pattern of gene dysregulation. .................... 130 The attenuating effect of the transposon mutants requires signaling through MyD88. ................................................................................................................... 133 DISCUSSION ................................................................................................................. 135 vi V. ZNUB CONTRIBUTES TO ZINC ACQUISITION, RESISTANCE TO CALPROTECTIN AND PATHOGENESIS OF ACINETOBACTER BAUMANNII INFECTIONS ................................................................................................................. 140 In vitro growth inhibition assays with calprotectin ................................................. 141 A. baumannii infections .......................................................................................... 142 Transposon mutant library screen ........................................................................... 143 Identification of a putative zur-binding consensus sequence and zur-regulated genes ....................................................................................................................... 143 Construction of znuB ............................................................................................ 144 ICP-MS analyses of intracellular zinc concentrations ............................................ 145 Imipenem inhibition assays..................................................................................... 146 Identification of A. baumannii mutants with altered sensitivity to CP ................... 148 Identification of a Zn uptake system in A. baumannii ............................................ 151 Regulation of znuB in Zn-limiting conditions ........................................................ 154 ZnuB contributes to the pathogenesis of A. baumannii pulmonary infections. ...... 158 Zn chelation reverses carbapenem resistance in MDR A. baumannii. ................... 158 DISCUSSION ................................................................................................................. 160 VI. CIRCADIAN VARIATION IN SUSCEPTIBILITY TO ACINETOBACTER BAUMANNII PULMONARY INFECTIONS. ............................................................... 169 INTRODUCTION ............................................................................................................ 169 METHODS .................................................................................................................... 170 A. baumannii infection model and housing conditions ........................................... 170 Infections with A. baumannii blsA ....................................................................... 170 RESULTS AND DISCUSSION ........................................................................................... 171 Mice are most susceptible to infection near the onset of their active period. ......... 171 Contribution of a bacterial light sensing protein to A. baumannii infection ........... 172 VII. SUMMARY AND SIGNIFICANCE ...................................................................... 174 RESTORING THE UTILITY OF CURRENTLY AVAILABLE ANTIBIOTICS BY TARGETING ANTIBIOTIC RESISTANCE DETERMINANTS IN A. BAUMANNII. .......................................... 175 Targeting intrinsic and inducible resistance in A. baumannii ................................. 175 Targeting Zn acquisition to combat imipenem resistance ...................................... 176 ALTERNATIVE THERAPEUTIC STRATEGIES THAT ENHANCE HOST DEFENSES TO PREVENT OR REDUCE THE SEVERITY OF A. BAUMANNII INFECTIONS. ............................. 176 Dominant negative mutants of A. baumannii ......................................................... 176 Manipulation of circadian rhythms to reduce susceptibility to A. baumannii infection. ................................................................................................................. 178 ACINETOBACTER BAUMANNII TRANSPOSON MUTANTS AND IMPLICATIONS FOR GENETIC MANIPULATION AND INVESTIGATION OF PATHOGENESIS. ............................... 180 VIII. FUTURE DIRECTIONS ....................................................................................... 181 REDIRECTION OF HOST INFLAMMATION TO PROMOTE BACTERIAL CLEARANCE ............ 181 1a. Develop an in vitro system that recapitulates the pattern of attenuation observed in vivo. ..... 182 1b. Identify bacterial products that are recognized by the host upon treatment with the transposon mutants. ....................................................................................................................... 183 1c. Define the genetic element encoding the bacterial product that elicits the attenuating immune response........................................................................................................................... 184 2. Elucidate the host factors necessary for recognizing the transposon mutants vii and mediating bacterial clearance. .......................................................................... 185 3. Define the mechanism through which transposon mutagenesis induces the attenuating phenotype. ............................................................................................ 186 NUTRIENT METAL ACQUISITION AND METAL DEPENDENT PROCESSES IN A. BAUMANNII 190 1. Elucidate the mechanisms for Zn acquisition in A. baumannii. ......................... 190 1a. Define the inner membrane Zn transport machinery in A. baumannii. ................................... 190 1b. Elucidate the mechanism for translocation of Zn across the outer membrane. ....................... 191 2. Define the A. baumannii Zur regulon and the roles for Zur-regulated genes in Zn uptake and homeostasis. ................................................................................ 192 2a. Elucidate the transcriptional profiles of a zur deletion mutant compared to WT bacteria in Zn-replete and Zn-deplete conditions. ...................................................................................... 192 2b. Determine the function of Zur-regulated genes and define their roles in Zn homeostasis. ..... 192 3. Elucidate the A. baumannii metalloproteome and define changes to the metalloproteome as a result of nutrient metal limitation. ....................................... 193 4. Determine the contribution of transition metal intoxication to A. baumannii pathogenesis. ........................................................................................................... 194 REFERENCES…………………………………………………………………………196 APPENDIX 1. SUPPLEMENTARY TABLES ASSOCIATED WITH CHAPTER II. 232 APPENDIX II. SUPPLEMENTARY TABLES ASSOCIATED WITH CHAPTER III..................................................................................................................................... 269 APPENDIX III. SUPPLEMENTARY TABLES ASSOCIATED WITH CHAPTER IV .................................................................................................................................... 280 viii LIST OF TABLES Table 1. Selected bacterial iron uptake systems referenced in the text. ........................... 30 Table 2. Selected bacterial transporters of Mn and Zn. .................................................... 38 Table 3: Proteins identified by LC/MS/MS analysis of supernatants from A. baumannii cultured in LB or LB + 200 mM NaCl. .................................................................... 61 Table 4: Predicted transporters that were found to be significantly upregulated in response to NaCl by microarray analysis.................................................................. 66 Table 5: Antibiotic susceptibility profiles of clinical isolates obtained from the University of Nebraska Medical Center compared to the reference strain ATCC 17978. ......... 73 Table 6: Colistin MIC values determined in MHB (-) or MHB supplemented with 150 mM NaCl (+). ........................................................................................................... 75 Table 7. Primers and plasmids used in this work.............................................................. 85 Table 8. Transposon mutants with reduced NaCl-induced colistin resistance. ................ 93 Table 9. HR-ICP-MS parameters. ................................................................................... 146 Table 10. Transposon mutants with altered sensitive to CP. .......................................... 151 Table 11. Locus tags and descriptions of predicted Zur-regulated genes ....................... 156 Table 12: Primers used for real-time PCR ...................................................................... 232 Table 13: Transcripts that increased significantly upon NaCl exposure as determined by microarray analysis ................................................................................................. 233 Table 14: Transcripts that decreased significantly upon exposure to NaCl as determined by microarray analyses ........................................................................................... 237 lpsB compared to WT. ............ 269 lpsB compared to WT ........ 275 Table 17. Genes that are significantly upregulated in Tn5A7 and Tn20A11 compared to WT and lpsB. ........................................................................................................ 280 Table 18. Genes that are significantly downregulated in Tn5A7 and Tn20A11 compared to WT and lpsB. .................................................................................................... 282 ix LIST OF FIGURES Figure 1. Schematic diagram of the LPS structure from A. baumannii strain 19606……24 Figure 2. Fe limitation and Fe acquisition during bacterial infections. ............................ 26 Figure 3. Mn and Zn homeostasis at the pathogen-host interface. ................................... 33 Figure 4. New insights into the roles for Cu in innate immunity. .................................... 43 Figure 5. Overview of the impact of CP on S. aureus superoxide defenses. .................... 47 Figure 6. NaCl induces increased release of proteins into culture supernatants. .............. 59 Figure 7: A. baumannii up-regulates putative efflux transporters upon culture in high NaCl media ............................................................................................................... 67 Figure 8. SDS-PAGE analyses of proteins released into culture supernatants. ................ 68 Figure 9. NaCl induces increased tolerance to distinct classes of antibiotics in A. baumannii. ................................................................................................................ 69 Figure 10. Effects of KCl on resistance to antibiotics and on release of proteins into culture media. ............................................................................................................ 71 Figure 11. NaCl-induced resistance to levofloxacin and amikacin is due in part to increased antibiotic efflux. ........................................................................................ 73 Figure 12. NaCl-induced resistance to colistin is conserved among drug susceptible and multidrug resistant A. baumannii. ............................................................................. 75 Figure 13. Schematic overview of the transposon library screen to identify genes involved in NaCl-induced colistin resistance. .......................................................... 91 Figure 14. Metabolic pathways disrupted in colistin-sensitive mutants of A. baumannii. 94 Figure 15. Demonstration of the LPS synthesis defect and colistin sensitivity of 5A7. ... 95 Figure 16. A. baumannii strains lacking LpsB are attenuated for virulence in the lung. .. 97 Figure 17. A. baumannii strains lacking LpsB are attenuated for virulence and promote bacterial clearance in vivo. ...................................................................................... 112 Figure 18. Application of Tn5A7 to the treatment of A. baumannii pneumonia. ........... 113 Figure 19. Cluster analysis of all genes regulated at least 5-fold in at least one experimental group compared to uninfected control. ............................................. 116 Figure 20. PCR array data for all genes that demonstrated at least 5-fold regulation in at least one experimental group compared to uninfected control. .............................. 119 Figure 21. Measurement of the inflammatory response to WT and Tn5A7. .................. 122 Figure 22. Effect of neutrophil depletion on the attenuating effect of Tn5A7. .............. 123 Figure 23. Macrophages contribute to defense against A. baumannii but are not required for the attenuating phenotype. .......................................................................... 124 Figure 24. TLR4 is not required for the attenuating phenotype of Tn5A7. .................... 126 Figure 25. Disruption of lpsB is not responsible for the attenuating phenotype of Tn5A7. ............................................................................................................................ 127 Figure 26. Demonstration of the attenuating phenotype in a separate transposon mutant. ................................................................................................................................. 128 Figure 27. Induction of the therapeutic phenotype by transposon mutagenesis. ............ 129 Figure 28. Subtractive microarray defining a conserved pattern of gene expression in attenuating strains. .................................................................................................. 132 x
Description: