MECHANISMS OF ACTION OF DRUGS WITH DUAL OR MULTIPLE ANTIVIRAL ACTIVITIES Egor Petrovitch Tchesnokov Department of Microbiology & Immunology McGill University, Montreal June, 2009 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Egor Petrovitch Tchesnokov i ABSTRACT Viral enzymes that catalyze replication of the viral genome remain the main subject of currently available antiviral therapies. This work focuses on three anti- viral agents that target viral DNA polymerases: foscarnet, acyclovir and entecavir. Though the broad spectrum of antiviral activities of foscarnet has been recognized for decades, only recently has it been shown that the anti-herpesvirus drug acyclovir and the anti-hepatitis B virus drug entecavir are also active against the human immunodeficiency virus (HIV) 1. The clinical benefits of the multiple antiviral activities of foscarnet have been demonstrated in treating HIV/herpesvirus co-infections. Foscarnet is currently approved for treating human cytomegalovirus infections. But the precise molecular mechanism of foscarnet action and resistance remains poorly understood. The study of foscarnet’s mode of action against the HCMV DNA polymerase (UL54) is complicated in part by the difficulty in expressing and purifying the viral enzyme. To address the first issue, I conducted biochemical studies of foscarnet/UL54 interactions using an unpurified viral enzyme. I then proposed a model based on these studies for the presumptive foscarnet binding site within UL54. To address the second issue I generated the RB69 bacteriophage/HCMV polymerase chimera, which is easily purifiable and displays the UL54 phenotype with respect to foscarnet and acyclovir. The recent discovery of the anti-HIV activity of acyclovir has been followed by a report showing the selection of the V75I mutation within HIV-1 reverse transcriptase (RT) under the selective pressure of acyclovir. My own biochemical studies have revealed that the major effect of V75I substitution involves reducing the catalytic rate of acyclovir incorporation. The recent report of entecavir anti-HIV-1 activity has demonstrated the selection of M184V- containing HIV-1. Subsequent biochemical studies have revealed that M184V- containing RT discriminates against entecavir at the level of incorporation. My own studies show that the major effect of entecavir incorporation has been the delayed chain termination (DCT) of the DNA synthesis. DCT protects the incorporated drug from excision. The research project described in this thesis ii provides novel tools and reveals new concepts for future drug design and development. iii RÉSUMÉ Les enzymes virales qui sont responsables pour la réplication du génome viral constituent l’objet principal des thérapies antivirales actuelles. Ce travail se concentre sur trois agents anti-viraux qui inhibitent les polymérases d’ ADN virales. Malgré le fait que plusieurs activités antivirales du foscarnet sont connues depuis des décennies, il a éte démontré seulement récemment que l’acyclovir, un agent contre le virus de l`herpes, et entecavir, un agent contre le virus de l`hepatite B, ont une activité anti-VIH-1. Les avantages cliniques des multiples activités antivirales du foscarnet dans le traitement des co-infections VIH/herpes ont été démontrés. Le foscarnet est présentement approuvé pour traiter les infections du cytomégalovirus humain. Le mécanisme précis de l’action antivirale du foscarnet, ainsi que le mécanisme de résistance au foscarnet demeurent mal compris. L’étude du mécanisme d’action de foscarnet contre l’ADN polymérase du VCMH (UL54) est compliquée en partie par deux problématiques : l’expression de l’enzyme virale et la purification de cette protéine. Pour adresser le premier problème, j’ai poursuivis des études biochimiques sur les interactions foscarnet- UL54 en utilisant une enzyme virale non-purifiée. En se basant sur ces études, j’ai ensuite proposé un model du site de liaison du foscarnet. Pour addresser le deuxième problème, j’ai généré une protéine chimère bactériophage/HCMV polymérase. Cette protéine est facilement purifiable et possède le profile de la UL54 polymérase envers foscarnet et acyclovir. La découverte récente de l’activité anti-VIH de l’acyclovir a été suivie d`une étude démontrant la sélection de la mutation V75I dans la transcriptase inverse (TI) du VIH-1 sous la pression sélective de l’acyclovir. Mes propres études biochimiques ont révélées que l’effet majeur de la substitution V75I implique la réduction du rythme catalytique de l’incorporation de l’acyclovir. L`étude récente portant sur l’activité anti-VIH-1 d’entecavir a démontré la sélection de TI contenant la mutation M184V. Des études biochimiques subséquentes ont révélées que la TI contenant la M184V démontre une préférence sélective envers l’entecavir au niveau de l’incorporation. Mes propres études démontrent que l’effet majeur se situe au niveau de iv l’abrogation de la synthèse d’ADN ultérieure (ASAU). L’ASAU protège l’entecavir incorporé de l’excision. Le projet de recherche décrit dans cette thèse apporte de nouveaux outils et révèle de nouvelles approches pour la conception et le développement de médicaments. v PREFACE This thesis was written in accordance with McGill University’s “Guideline for Thesis Preparation”. The format of this thesis conforms to the “Manuscript-based thesis” option which states: “Candidates have the option of including, as part of the thesis, the text of one or more papers submitted, or to be submitted, for publication, or the clearly- duplicated text (not the reprints) of one or more published papers. These texts must conform to the "Guidelines for Thesis Preparation" with respect to font size, line spacing and margin sizes and must be bound together as an integral part of the thesis.” Manuscripts included in this thesis: Tchesnokov EP, Gilbert C, Boivin G, Götte M. Role of helix P of the human cytomegalovirus DNA polymerase in resistance and hypersusceptibility to the antiviral drug foscarnet. J Virol. 2006 Feb;80(3):1440-50. Tchesnokov E.P., Obikhod A., Schinazi I. R. F. and Götte M. Engineering of a chimeric RB69 DNA polymerase sensitive to drugs targeting the cytomegalovirus enzyme. Journal of Biological Chemistry. Submitted Tchesnokov E.P., Obikhod A., Massud I., Lisco A., Vanpouille C., Brichacek B., Balzarini J., McGuigan C., Derudas M., Margolis L., Schinazi R. F. and Götte M. Mechanisms associated with HIV-1 resistance to acyclovir by the V75I mutation in reverse transcriptase. Journal of Biological Chemistry. Submitted Tchesnokov EP, Obikhod A, Schinazi RF, and Götte M. Delayed chain-termination protects the anti-HBV drug entecavir from excision by HIV-1 reverse transcriptase. J Biol Chem. 2008 Dec 5;283(49):34218-28 vi The contribution of co-authors to published or submitted articles appears in the section “CONTRIBUTIONS OF AUTHORS”. The journal of submission and information from published articles can be found on the title page of the concerned chapters. Other manuscripts not included in this thesis, but to which a significant contribution was made by the candidate, are listed as follows: Marchand B, Tchesnokov EP, Götte M. The pyrophosphate analogue foscarnet traps the pre-translocational state of HIV-1 reverse transcriptase in a Brownian ratchet model of polymerase translocation. J Biol Chem. 2007 Feb 2;282(5):3337-46. Lisco A, Vanpouille C, Tchesnokov EP, Grivel JC, Biancotto A, Brichacek B, Elliott J, Fromentin E, Shattock R, Anton P, Gorelick R, Balzarini J, McGuigan C, Derudas M, Götte M, Schinazi RF, Margolis L. Acyclovir is activated into a HIV-1 reverse transcriptase inhibitor in herpesvirus- infected human tissues. Cell Host Microbe. 2008 Sep 11;4(3):260-70. Ehteshami M, Scarth BJ, Tchesnokov EP, Dash C, Le Grice SF, Hallenberger S, Jochmans D, Götte M. Mutations M184V and Y115F in HIV-1 reverse transcriptase discriminate against nucleotide-competing reverse transcriptase inhibitors. J Biol Chem. 2008 Oct 31;283(44):29904-11. Ehteshami M, Beilhartz GL, Scarth BJ, Tchesnokov EP, McCormick S, Wynhoven B, Harrigan PR, Götte M. Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3'-azido-3'-deoxythymidine through both RNase H- dependent and -independent mechanisms. J Biol Chem. 2008 Aug 8;283(32):22222-32. vii ACKNOWLEDGEMENTS I would first like to thank my supervisor, Matthias Götte, for his unconditional support throughout my studies, especially when good data was scarce. I am grateful to my parents, Petr Petrovitch Chesnokov and Maria Lvovna Chesnokova. I would like to thank my wife, Yesim Sökmen, without whom this thesis would have never happened. I would like to thank Paula Lavery for teaching me the discipline of a lab life. I would like to thank Dr. Jérome Deval for teaching me the pre-steady state kinetics as well as his involvement in my other projects. I would also especially like to thank Dr. Bruno Marchand and Dr. Claudia D’Abramo for the assistance that they have given me in my earlier days in Matthias’ lab. I would like to thank Suzanne McCormick for her kind assistance throughout the years. I would like to thank the current and former members of Matthias’ lab for their friendship and their support: Stephen Barry, Aneeta Mistry, Rose Chen, , Meoin Hagege, Maryam Ehteshami, Dimitry Coutsinos, Brian Scarth, Greg Beilhartz, Dr. Konstantin Ivanov, Megan Powdrill, Jordan Gagnon, Colin Vasquez, Mia Biondi and Jean Bernatchez. viii I would also like to thank Colin Vasquez, Greg Beilhartz, Brian Scarth for proofreading this manuscript and Jean Bernatchez for translating the abstract in French. I would like to thank Dr. Jan Ryder for final proofreading and editing the manuscript. ix CONTRIBUTIONS OF AUTHORS The manuscript entitled “Role of helix P of the human cytomegalovirus DNA polymerase in resistance and hypersusceptibility to the antiviral drug foscarnet” was written in collaboration with Dr. C. Gilbert and Dr. G. Boivin, who provided the nucleic acid sequences of the HCMV DNA polymerase. The manuscripts entitled “Engineering of a chimeric RB69 DNA polymerase sensitive to drugs targeting the cytomegalovirus enzyme” and “Delayed chain- termination protects the anti-HBV drug entecavir from excision by HIV-1 reverse transcriptase” were written in collaboration with Dr. A. Obikhod and Dr. R.F. Schinazi who synthesized acyclovir. The manuscript entitled “Mechanisms associated with HIV-1 resistance to acyclovir by the V75I mutation in reverse transcriptase” was written in collaboration with Dr. A.Obikhod, Dr. I. Massud, Dr. A. Lisco, Dr. C. Vanpouille, Dr. B. Brichacek, Dr. J. Balzarini, Dr. C. McGuigan, Dr. M. Derudas, Dr. L. Margolis and Dr. R.F. Schinazi. Dr. A. Obikhod and Dr. R.F. Schinazi synthesized acyclovir. Dr. C. McGuigan and Dr. M. Derudas synthesized CF2648. Dr. I. Massud, Dr. A. Lisco, Dr. C. Vanpouille, Dr. B. Brichacek, Dr. J. Balzarini and Dr. L. Margolis were responsible for the selection of resistance with CF2648 and genotyping of the drug-exposed HIV -1 strains (Table 1). Tchesnokov E.P. conducted the rest of the experimental work (Tables 2 and 3, Figures 2, 3, 4, 5, 6, 7 and S1). x
Description: