ebook img

Mechanisms Governing the Growth, Reactivity and Stability of Iron Sulfides Francis William Herbert PDF

140 Pages·2014·10.43 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechanisms Governing the Growth, Reactivity and Stability of Iron Sulfides Francis William Herbert

Mechanisms Governing the Growth, Reactivity and Stability of Iron Sulfides by Francis William Herbert M.Eng, Materials Science, University of Oxford, UK Submitted to the Department of Materials Science and Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2015 (cid:13)c Massachusetts Institute of Technology 2015. All rights reserved. Author................................................................ Department of Materials Science and Engineering November 20, 2014 Certified by........................................................... Bilge Yildiz Associate Professor of Nuclear Science and Engineering Thesis Supervisor Certified by........................................................... Krystyn J. Van Vliet Associate Professor of Materials Science and Engineering Thesis Supervisor Accepted by........................................................... Donald Sadoway John F. Elliott Professor of Materials Chemistry Chair, Departmental Committee on Graduate Students 2 Mechanisms Governing the Growth, Reactivity and Stability of Iron Sulfides by Francis William Herbert SubmittedtotheDepartmentofMaterialsScienceandEngineering onNovember20,2014,inpartialfulfillmentofthe requirementsforthedegreeof DoctorofPhilosophyinMaterialsScienceandEngineering Abstract Thekineticsofelectrochemicalprocessesinionicmaterialsarefundamentallygoverned bydynamiceventsattheatomicscale,includingpointdefectformationandmigration, andmolecularinteractionsatthesurface.Acorrosionsystemcomprisinganironsulfide film(passivelayer)formedonironorsteelincontactwithanhydrogensulfide(H S)- 2 richfluidcanthus,inprinciple,bemodeledbyaseriesofunitreactionstepsthatcontrol therateofdegradationundergiventhermodynamicconditions.Thisoverarchingthesis goal necessitates a concerted experimental and computational approach to determine the relevant kinetic parameters such as activation barriers E and rate constants ν a o forthehomogeneousandheterogeneousreactionsofinterest.Thesefundamentalval- uescanbeobtainedexperimentallyviatemperature-dependentmeasurementsonpure, model iron sulfide samples. This thesis therefore consists of three case studies on the stableFe-Sphasespyrrhotite(Fe S)andpyrite(FeS )toidentifytheelementarycor- 1-x 2 rosion mechanisms and their kinetic parameters. Pyrrhotite is of interest because the off-stoichiometryofthisphaseleadstorelativelyrapidbulkprocessessuchasdiffusion; pyritehasacomparitivelyinertbulkbutthisworkshowedthatithasachemicallylabile surface. Thefirststudyfocusesontwobasic,rate-controllingstepsinthegrowthofpyrrhotite: cationdiffusionandsulfurexchangeatthesurface.First,ironself-diffusivity*D isde- Fe terminedacrossthetemperaturerange170-400oCthroughmagnetokineticstudiesof thediffusion-driven"λ"magnetictransformation,aswellasdirecttracerdiffusionmea- surementsinFe Scrystalsusingsecondaryionmassspectrometry(SIMS).Thisrange 1-x encompasses the sponteneousmagnetic and structural order-disordertemperature T N =315oCinpyrrhotite.TheeffectofspontaneousmagnetizationbelowT istoincrease N the Fe vacancy migration energy by a combined 40% increasing E for diffusion from a 0.83eVinparamagneticFe Sto∼1.20eVinthefullymagnetizedstate.Anextrapola- 1-x tionoftheArrheniuslawfromtheparamagneticregimewouldthereforeoverestimate actualdiffusivitiesbyupto102timesat150oC.Second,thesurfaceexchangeofsulfur from H S into the solid state in Fe S is measured using electrical conductivity relax- 2 1-x ation, yielding E = 1.1 eV for sulfur incorporation into pyrrhotite. With their similar a thermaldependence,thereisnocleartemperaturecrossoverfromcationdiffusion-to surfaceexchange-limitingregimes,orviceversa.Instead,surfaceexchangeisexpected toconstrainpyrrhotitegrowthforfilmsunder∼100µmthickness,beyondwhichdif- fusion becomes the rate limiting mechanism, independent of external driving factors suchastemperature. Thesecondstudyexplorestheroleofsurfaceelectronicstatesontheelectrochemi- calreactivityofpyrite.Chargetransferbetweenasolidsurfaceandanadsorbatesuch asH Srequiresthemutualavailabilityoffilled/emptyelectronicstatesatthesameen- 2 ergylevel.ThesemiconductingFeS (100)surfaceispredictedtohaveintrinsicsurface 2 states (SS’s) from Fe and S dangling bonds, as well as extrinsic SS’s related to delo- calized defects at the surface, both of which would affect charge transfer character- istics. A novel, broadly-applicable methodology is developed in this thesis to quantify 3 the energy and density of these SS’s, based on experimental scanning tunneling mi- croscopy/spectroscopy (STM/STS) in conjunction with first principles tunneling cur- rentmodeling.Asaresult,adecreasedsurfacebandgapE of0.4eV,comparedto0.95 g eVinbulkpyrite,ismeasured.Thefindingshighlighttheneedtodifferentiatebetween bulkandsurfaceelectronicstructurewhenassessingheterogeneousreactivity,andhave implicationsfortheuseofFeS inpotentialtechnologicalapplications,forexampleas 2 aphotovoltaicadsorber. Finally,thedynamicsofpointdefectformationandclusteringonFeS (100)under 2 high-temperature, reducing conditions are investigated to understand the stability of the surface under extreme conditions. Synchrotron x-ray photoelectron spectroscopy (XPS)isusedtomeasureaformationenergy∆H forsulfurvacanciesinthetopmost f atomic layerof 0.1 eVup to approximately 240oC. Abovethis temperature, however, pointdefectsareshowntocondenseintosurfacepitsasmeasuredbyscnaningtunneling microscopy (STM). The combined, experimental XPS and STM results are replicated withhighprecisionbyakineticMonteCarlo(kMC)simulation,developedbyAravind Krishnamoorthytowardshisdoctoralthesis,ofsurfacedegradationonrealisticlength- and timescales of 10−10−10−7 m and up to several hours, respectively. The findings have implications for the initiation of surface breakdown via pitting in ionic passive films, as well as providing a broader understanding of the non-stoichiometry of the pyritesurface. Thecommonthreadisafocusoneventsattheatomicandelectronicscale,withan emphasisonpointdefects.Theresultstherebyfacilitateabottom-upapproachtomod- elingelectrochemicalprocessessuchascorrosioninFe-Sphases,inwhichtheunitsteps arecastintoprobabilisticsimulationtools.Whilethethreestudiesherecompriseonly apartialexaminationoftheatomic-scaleeventsregulatingthebehaviorofFe-Spassive layers, this approach makes inroads towards more accurate component lifetime pre- dictionandthedesignofrobustmaterialsforaggressiveenvironments.Moreover,the fundamentalsurfaceandbulkphysicalchemistryofironsulfidesexploredinthiswork hasimplicationsbeyondcorrosiontootherusesofthesematerials,includingpotential magnetic devices (Fe S) and earth-abundant photovoltaic and photoelectrochemical 1-x adsorbers(FeS ). 2 ThesisSupervisor:BilgeYildiz Title:AssociateProfessorofNuclearScienceandEngineering ThesisSupervisor:KrystynJ.VanVliet Title:AssociateProfessorofMaterialsScienceandEngineering 4 Acknowledgments Iamdeeplygratefultomyco-advisors,ProfessorBilgeYildizandProfessorKrystynvan Vliet,fortheirencouragement,guidanceandsupport.Ithasbeenanimmensepleasure to witness both Bilge and Krystyn establish themselves with tenure at MIT during my time here and be part of two flourishing laboratories. Meanwhile, Bilge’s passion for solid state chemistry and keen eye for important details, and Krystyn’s diligent and organized approach to high-quality scientific inquiry have greatly inspired me. I also thankKrystynforteachingmehowtospell"properly":thewordsulphideseemsasalien tomenowassulfidedidfiveyearsago. Thisworkwouldnothavebeenpossiblewithoutmyever-dependablecollaboratorand friendAravindKrishnamoorthy.Heisgiftednotonlywithabrilliantscientificintellect, butanimmenselyhumbleandgenerouspersonalitythathasmadeworkingtogetheron thisprojectaricherexperience.Hiseffortstrulyallowedourcombinedcomputational andexperimentalapproachtobecomemorethanthesumofitsparts. I am also thankful to my collaborators on this project and others, including: Wen Ma, YanChenandQiyangLufromtheLaboratoryforElectrochemicalInterfacesatMIT;Pe- ter Albrecht at Brookhaven National Laboratory; Predrag Lasic and Rickard Armiento (Cedergroup,MIT);RupakChakrabortyandKatyHartman(Buonassissigroup,MIT). Thank you to Prof. Randall Feenstra at Carnegie Mellon University for his help deci- pheringtheSEMITIPcodefortunnelingspectroscopysimulations. I would like to thank all members, past and present, from my two fantastic reasearch groups:theLaboratoryforElectrochemicalInterfaces(LEI)andtheLaboratoryforMa- terial Chemomechanics who have taught me so much, from defect chemistry in ionic solids to the mechanics of living cells. In particular, I am very grateful to Roza Mah- moodianforhersupportandforputtingupwithmyincessantcomplainingoverfailed experiments.AlsotoBalMukundDharforhisinfectiousenthusiasmandhelpwithCVD, andtoLucyRandsforherhelpandeagernessasasummerintern. Iamindebtedtomythesiscommittee-Prof.CarlThompsonandProf.HarryTuller-for theirusefulcommentsandconstructivecriticism.Inaddition,IgreatlythankProf.Chris Schuhforprovidinginvaluablefeedback,despitenotsittingonmyfinalcommittee. BPPlc.hadalreadysupportedmyeducationforover20yearswhentheyarrivedatMIT toproposethisproject,soIamdelightedtheyextendedtheircommitmenttomygrad- uatestudies.Inparticular,IwouldliketothankSaiVenkatesweran,RichardWoolam, SteveShademanandtheircolleaguesfortheirhelpandadvice. Myparents,RichardandKate,haveinspiredandguidedmemywholelife;Iwouldnot be here without the opportunities and unwavering support they have provided. And I cannotomittheotherfourfifthsofmybandofbrotherswhoaremyframeofreference foreverythingandneverstopinjectinghumourandhappinessintomylife. Finally,thankyoutoallthosewhohavemademytimeatMITsospecialoutsideofthe lab.Myfamilyawayfromhome;theeclecticanddynamiccommunityat"Martha"(216 Norfolk St): Sam, Katy, Georgie, Jake, Benji, Ines, Chris, Nina, Alex, Federico, Elison, Andre,James,Andre,Stephanie,Rob,Balthazar,Simon,Sebastian,Nico,Melissa,Ser- jumbi,Aron,allofourotherguests,andlastbutnotleastTeresafornotlosingfaithin meafteralltheseyears. 5 6 Contents 1 Introduction 13 1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 Passivity:abriefintroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Ironsulfidephasesandcorrosionproducts . . . . . . . . . . . . . . . . . . 14 1.3.1 Sourcorrosionmechanism:labandfieldexperience . . . . . . . . 17 1.3.2 Modelphases:Pyrrhotite(Fe S)andPyrite(FeS ) . . . . . . . . 19 1-x 2 1.4 Towardsapredictive,multiscalecorrosionmodel . . . . . . . . . . . . . . 20 1.4.1 Existingpassivefilmmodels . . . . . . . . . . . . . . . . . . . . . . . 20 1.4.2 UnitprocessescontrollingFe-Spassivelayerbehavior . . . . . . . 23 1.4.3 Theneedforexperimentally-derivedparameters . . . . . . . . . . 24 1.5 Thesisgoalsandorganization . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Growth:cationdiffusionandsurfaceexchangeasrate-limitingmechanisms inpyrrhotite,Fe S 27 1-x 2.1 BackgroundandMotivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Pyrrhotite:polytypesandtransitions . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Structuralandmagneticproperties. . . . . . . . . . . . . . . . . . . 30 2.2.2 Theλ-transitioninNCpyrrhotites . . . . . . . . . . . . . . . . . . . 34 2.3 Diffusion-limitedλtransition . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.2 Resultsanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.3 Continuousre-orderingofferrimagneticsuperlattice . . . . . . . 40 2.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4 Isotopetracerdiffusionmeasurements . . . . . . . . . . . . . . . . . . . . . 45 2.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.2 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 SulfurexchangekineticsattheFe Ssurface . . . . . . . . . . . . . . . . . 54 1-x 2.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.5.2 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.6 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.6.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7 3 Reactivity:quantificationofelectronicbandgapandsurfacestatesonFeS (100) 69 2 3.1 Backgroundandmotivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.1 Electrochemicalchargetransferinsemiconductor-absorbatesys- tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.2 Surfacestates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1.3 ScanningtunnelingspectroscopyandTIBB . . . . . . . . . . . . . . 74 3.1.4 TheFeS (100)surface . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2 3.2 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2.2 Computational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.1 Current-separationandcurrent-voltagetunnelingspectroscopy . 80 3.3.2 SimulatedtunnelingspectrabasedonDFT-calculatedDOS . . . . 82 3.4 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.4.2 ImplicationsforotherapplicationsofFeS ,e.g.PV . . . . . . . . . 89 2 3.4.3 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4 Stability: dynamics of point defect formation, clustering and pit initiation onthepyritesurface 91 4.1 Backgroundandmotivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.1.1 Chaptergoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.2 Passivitybreakdownbypitting . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 FeS surfacechemistryandnon-stoichiometry . . . . . . . . . . . . 94 2 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2.2 Computational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.1 Evolutionofpyritesurfacestructureandchemistry . . . . . . . . . 97 4.3.2 Mechanismofvacancyformationandcoalescence . . . . . . . . . 103 4.4 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5 Conclusions 109 5.1 Summaryofactivationbarriers. . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Outlookandperspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A PourbaixdiagramsfortheFe-H S-H Osystem 113 2 2 B ChemicalVaporDepositionofFe-S 119 B.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 B.2 Methods:CVDsetupandapparatus . . . . . . . . . . . . . . . . . . . . . . . 119 B.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 C Diffusivitymeasurementsusingthinfilmsamples 129 8 List of Figures 1-1 PotentialEvs.currenti(polarization)curveforagenericmetal. . . . . . 14 1-2 Globalsouroilandgasstatistics.. . . . . . . . . . . . . . . . . . . . . . . . . 15 1-3 Thermodynamicpredictionsofcorrosionproducts. . . . . . . . . . . . . . 17 1-4 MechanismofironsulfideformationonsteelsinH S-bearingelectrolytes. 18 2 1-5 Ironsulfidestabilityphasediagram.. . . . . . . . . . . . . . . . . . . . . . . 20 1-6 Sulfidecorrosionof4130carbonsteelat220oC.. . . . . . . . . . . . . . . 22 1-7 SchematicofunitprocessesinFe-Spassivelayers. . . . . . . . . . . . . . . 24 1-8 Overviewofstrategytoconstructanon-empiricalpassivefilmmodel.. . 25 2-1 CollectedliteraturevaluesofFeself-diffusivity. . . . . . . . . . . . . . . . . 28 2-2 Structuralunitcellsofpyrrhotite. . . . . . . . . . . . . . . . . . . . . . . . . 30 2-3 Pyrrhotitestructuralandmagneticphasediagrams. . . . . . . . . . . . . . 32 2-4 IdealizedFe Ssuperstructures. . . . . . . . . . . . . . . . . . . . . . . . . . 33 1-x 2-5 Distributionsofvacanciesin4CandNCpyrrhotites.. . . . . . . . . . . . . 33 2-6 Thepeak-likeλ-transitioninNCFe S. . . . . . . . . . . . . . . . . . . . . 34 1-x 2-7 X-raydiffractionofsyntheticpyrrhotites.. . . . . . . . . . . . . . . . . . . . 35 2-8 SetupofcubickineticMonteCarlo(kMC)grid.. . . . . . . . . . . . . . . . 36 2-9 Temperature-dependentmagnetizationσ(T).. . . . . . . . . . . . . . . . . 38 2-10Magnetizationvs.appliedfield(σ-H). . . . . . . . . . . . . . . . . . . . . . 38 2-11Reversiblemagnetictransformationatshorttimescales. . . . . . . . . . . 40 2-12Bestfitstoexponentialequation. . . . . . . . . . . . . . . . . . . . . . . . . 41 2-13Long-timescaleisothermalmagnetization. . . . . . . . . . . . . . . . . . . . 42 2-14Differentialscanningcalorimetry(DSC)results. . . . . . . . . . . . . . . . 43 2-15Continuousre-orderingtowardsferrimagneticstate. . . . . . . . . . . . . 44 2-16Crosssectionofsulfidescale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2-17Cu-kαpowderXRDpattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2-18Energy-dispersiveX-rayspectroscopy(EDS) . . . . . . . . . . . . . . . . . . 47 2-19Sourcesoferrorconsideredinstatisticalanalysisofdiffusiondata. . . . 49 2-20Secondaryionmassspectrometry(SIMS)profiles. . . . . . . . . . . . . . . 49 2-21Errorfunctionsolutiontodiffusionprofiles. . . . . . . . . . . . . . . . . . . 50 2-22Valuesforironself-diffusioncoefficient*D . . . . . . . . . . . . . . . . . . 52 Fe 2-23SputterdepositedthinfilmsforECRexperiments. . . . . . . . . . . . . . . 55 2-24Electricalconductivityrelaxationapparatussetup. . . . . . . . . . . . . . . 56 2-25Temperature-pressureequilibriumphasediagramforFe-S.. . . . . . . . . 57 2-26X-rayphotoelectronspectroscopy(XPS)fromaFe Sthinfilmsample. . 59 1-x 2-27Electricalresistancerelaxationat565oC. . . . . . . . . . . . . . . . . . . . 62 2-28Electricalconductivityrelaxationresults.. . . . . . . . . . . . . . . . . . . . 63 2-29Drift,stabilityandrepeatabilityofECRexperiments. . . . . . . . . . . . . 65 2-30Temperature-andfilmthicknessdependenceofratelimitingsteps. . . . 66 3-1 Chargetransferinelectrochemical(corrosion)systems. . . . . . . . . . . 72 3-2 BandbendingeffectsinSTSmeasurement. . . . . . . . . . . . . . . . . . . 75 3-3 FeS singlecrystalsamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2 9 3-4 DistributionsofsurfacestatesasdefinedintheSEMITIPprogram. . . . . 80 3-5 Scanningtunnelingspectroscopy(STM)imagesoftheas-grownFeS (100) 2 surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3-6 Current-separationspectroscopy.. . . . . . . . . . . . . . . . . . . . . . . . . 82 3-7 Current-voltagespectroscopy.. . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3-8 Pyritevalenceband. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3-9 Modelingtunnelingspectroscopywithsurfacestates . . . . . . . . . . . . 85 3-10Densityfunctionaltheory(DFT)-computedbandstructures. . . . . . . . . 86 3-11FittingtoexperimentalsurfaceE .. . . . . . . . . . . . . . . . . . . . . . . . 87 g 3-12VisualizationofFeS (100)surfacechargeq . . . . . . . . . . . . . . . . . . 88 2 3-13LowsurfacebandgapimplicationsforPV. . . . . . . . . . . . . . . . . . . . 89 3-14Preliminaryinvestigationsonbulkand2-dimensionalMoS . . . . . . . . 90 2 4-1 Proposedmechanismsofpassivitybreakdownandpitting. . . . . . . . . . 93 4-2 Nanopitsformedbyvacancyagglomeration. . . . . . . . . . . . . . . . . . 94 4-3 XPSsampleclampforFeS crystals. . . . . . . . . . . . . . . . . . . . . . . . 96 2 4-4 S2pphotoelectronspectraofFeS (100). . . . . . . . . . . . . . . . . . . . 98 2 4-5 AtomicmodeloftheFeS (100)surfaceasviewedside-on. . . . . . . . . . 99 2 4-6 Sulfurmonomervacancyconcentration. . . . . . . . . . . . . . . . . . . . . 101 4-7 ProportionoftheMandScomponentsoftheS2pphotoelectronspectra. 101 4-8 Scanningtunnelingmicroscopy(STM)imagesofsinglecrystalFeS (100) 2 surfaces.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4-9 Pitsareonehalf-oronelatticeparameterdeep. . . . . . . . . . . . . . . . 104 4-10Illustrationofatomicprocessesinvolvedintheproposedmechanismof pitformationandgrowthonpyrite(100). . . . . . . . . . . . . . . . . . . . 105 4-11kineticMonteCarlosimulationresults. . . . . . . . . . . . . . . . . . . . . . 105 B-1 Home-madeChemicalVaporDeposition(CVD)system. . . . . . . . . . . . 121 B-2 DescriptionandsafetyinformationforFeandSprecursors. . . . . . . . . 122 B-3 IronsulfidefilmsdepositedfromFe(acac) andTBDS. . . . . . . . . . . . 124 3 B-4 CarboncontaminationinFe-SfilmsfromFe(acac) . . . . . . . . . . . . . . 125 3 B-5 IronsulfidefilmsdepositedfromFe(CO) andTBMS. . . . . . . . . . . . . 125 5 B-6 IronsulfidefilmsdepositedfromFe(CO) andH S. . . . . . . . . . . . . . 126 5 2 B-7 Templatestrippingforultrasmoothsulfidesurfaces. . . . . . . . . . . . . . 127 C-1 Ironself-diffusivity*D measurements. . . . . . . . . . . . . . . . . . . . . 130 Fe C-2 X-raydiffractionofthiinfilmsforECRexperiments. . . . . . . . . . . . . . 131 C-3 Representativediffusionprofiles. . . . . . . . . . . . . . . . . . . . . . . . . 132 C-4 Oxidationofsamplesannealedinquartzvials. . . . . . . . . . . . . . . . . 133 10

Description:
Donald Sadoway with high precision by a kinetic Monte Carlo (kMC) simulation, developed by Aravind are cast into probabilistic simulation tools.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.