ebook img

Mechanisms and Games for Dynamic Spectrum Allocation PDF

604 Pages·2014·4.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechanisms and Games for Dynamic Spectrum Allocation

MechanismsandGamesforDynamicSpectrumAllocation Presentingstate-of-the-artresearchintomethodsofwirelessspectrumallocationbased on game theory and mechanism design, this innovative and comprehensive book pro- vides a strong foundation for the design of future wireless mechanisms and spectrum markets. Prominent researchers showcase a diverse range of novel insights and approaches to the increasing demand for limited spectrum resources, with a consistent emphasis ontheoreticalmethods,analyticalresults,andpracticalexamples.Coveringfundamen- tal underlying principles, licensed spectrum sharing, opportunistic spectrum sharing, andwidertechnicalandeconomicconsiderations,thissingularbookwillbeofinterest to academic and industrial researchers, wireless industry practitioners, and regulators interestedinthefoundationsofcutting-edgespectrummanagement TANSUALPCANisaSeniorLecturerintheDepartmentofElectricalandElectronicEngi- neeringattheUniversityofMelbourne,andco-authorofNetworkSecurity:ADecision andGame-TheoreticApproach(2011). HOLGER BOCHE is a Professor in the Institute of Theoretical Information Technology, TechnischeUniversitätMünchen,andaFellowoftheIEEE. MICHAELL.HONIGisaProfessorintheDepartmentofElectricalEngineeringandCom- puterScienceatNorthwesternUniversity.HeisaFellowoftheIEEE. H.VINCENTPOORistheDeanofEngineeringandAppliedScienceandMichaelHenry Strater University Professor of Electrical Engineering at Princeton University. He is a co-author of Principles of Cognitive Radio (2012), and a Fellow of the IET and the IEEE. Mechanisms and Games for Dynamic Spectrum Allocation TANSU ALPCAN UniversityofMelbourne HOLGER BOCHE TechnischeUniversitätMünchen MICHAEL L.HONIG NorthwesternUniversity H.VINCENT POOR PrincetonUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork. CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107034129 (cid:13)c CambridgeUniversityPress2014 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2014 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Mechanismsandgamesfordynamicspectrumallocation/[compiledby]TansuAlpcan, UniversityofMelbourne,HolgerBoche,TechnischeUniversitätMünchen, MichaelL.Honig,NorthwesternUniversity,H.VincentPoor,PrincetonUniversity pagescm Includesbibliographicalreferencesandindex. ISBN978-1-107-03412-9(hardback) 1. Wirelesscommunicationsystems–Management.2.Radiofrequency allocation.3.Signaltheory(Telecommunication)4.Gametheory.I. Alpcan,Tansu,1975-editorofcompilation. TK5103.2.M437 2013 (cid:48) 384.54 524015193–dc23 2013044140 CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Contributors pagexvii Preface xxi PartITheoreticalFundamentals 1 1 Gamesandmechanismsfornetworkedsystems:incentivesandalgorithms 3 AnilKumarChorppath,TansuAlpcan,andHolgerBoche 1.1 Introduction 3 1.2 Systemmodel 6 1.3 Interferenceandutilityfunctionmodels 8 1.4 Pricingmechanismsformulti-carrierwirelesssystems 10 1.4.1 Netutilitymaximization 12 1.4.2 Alternativedesignerobjectives 15 1.5 Learninginpricingmechanisms 17 1.6 Auction-basedmechanisms 19 1.7 Discussionandopenproblems 28 References 28 2 CompetitioninwirelesssystemsviaBayesianinterferencegames 32 SachinAdlakha,RameshJohari,andAndreaGoldsmith 2.1 Introduction 32 2.2 StaticGaussianinterferencegames 35 2.2.1 Preliminaries 35 2.2.2 TheGaussianinterferencegamewithunknownchannelgains 36 2.2.3 BayesianGaussianinterferencegame 38 2.3 Sequentialinterferencegameswithincompleteinformation 41 2.3.1 Atwo-stagesequentialgame 41 2.3.2 Asequentialgamewithentry 44 2.4 Repeatedgameswithentry:thereputationeffect 45 2.4.1 ArepeatedSBGI-Egame 46 2.4.2 Sequentialequilibriumoftherepeatedgame 47 2.5 Conclusion 49 vi Contents 2.6 Appendix 50 References 55 3 Reactingtotheinterferencefield 57 MérouaneDebbahandHamidouTembine 3.1 Introduction 57 3.1.1 Spectrumaccessasagame 57 3.1.2 Cognitiveaccessgame 57 3.1.3 Mean-fieldgameapproach 58 3.1.4 Interferencemanagementinlarge-scalenetworks 58 3.1.5 Objectives 59 3.1.6 Structureofthechapter 59 3.1.7 Notations 60 3.2 Wirelessmodel 60 3.2.1 Channelmodel 61 3.2.2 Mobilitymodel 62 3.2.3 Path-lossmodel 62 3.2.4 Remainingenergydynamics 63 3.2.5 Queuedynamics 63 3.2.6 SINRmodel 63 3.3 Game-theoreticformulations 64 3.4 Reactiontotheinterferencefield 64 3.4.1 Introductiontomean-fieldgames 64 3.4.2 Theinterferencefield 67 3.5 Mean-fieldstochasticgame 67 3.5.1 Onagamewithone-and-halfplayer 68 3.5.2 Strategiesandpayoffs 68 3.5.3 Mean-fieldequilibrium 69 3.5.4 Structureoftheoptimalstrategy 69 3.5.5 Performance 70 3.5.6 Mean-fielddeterministicgame 70 3.5.7 Hierarchicalmean-fieldgame 71 3.6 Discussions 71 3.7 Conclusions 72 3.8 Openissues 72 Acknowledgements 73 References 73 4 Walrasianmodelforresourceallocationandtransceiverdesignin 75 interferencenetworks EduardA.JorswieckandRamiMochaourab 4.1 Consumertheory 76 Contents vii 4.1.1 Standardconsumertheory 77 4.1.2 Consumertheoryforutilityα−βx +γx x 79 1 1 2 4.1.3 Example1:Protectedandsharedbands 80 4.1.4 Example2:Two-userMISOinterferencechannel 85 4.1.5 Example3:Multi-carrierinterferencechannel 89 4.1.6 Discussionandcomparisonofconsumermodels 91 4.2 Walrasianmarketmodel 92 4.2.1 ExistenceofaWalrasianequilibrium 92 4.2.2 UniquenessoftheWalrasianequilibrium 94 4.2.3 Convergenceofatâtonnementprocess 95 4.2.4 EfficiencyofaWalrasianequilibrium 95 4.2.5 Example1:Two-userprotectedandsharedbands 96 4.2.6 Example2:Two-userMISOinterferencechannel 99 4.2.7 Example3:MCinterferencechannel 103 References 106 5 Powerallocationandspectrumsharinginwirelessnetworks:an 108 implementationtheoryapproach AliKakhbod,AshutoshNayyar,ShrutivandanaSharma,andDemosthenisTeneketzis 5.1 Introduction 108 5.1.1 Chapterorganization 109 5.2 Whatisimplementationtheory? 109 5.2.1 Gameforms/mechanisms 110 5.2.2 Implementationindifferenttypesofequilibria 111 5.2.3 Desirablepropertiesofgameforms 114 5.2.4 Keyresultsonimplementationtheory 115 5.3 NashimplementationforsocialwelfaremaximizationandweakPareto 118 optimality 5.3.1 Themodel(M ) 118 PSA 5.3.2 Thepowerallocationandspectrumsharingproblem 121 5.3.3 Constructingagameformforthedecentralizedpowerand 122 spectrumallocationproblem 5.3.4 Socialwelfaremaximizingpowerallocationinasingle 125 frequencyband 5.3.5 WeaklyParetooptimalpowerandspectrumallocation 127 5.3.6 InterpretingNashequilibrium 129 5.3.7 Otherapproachestopowerallocationandspectrumsharing 130 5.4 Revenuemaximization 131 5.4.1 Themodel 132 5.4.2 Impossibilityresultfromimplementationtheory 133 5.4.3 Purelyspectrumallocationproblem 133 5.4.4 Purelypowerallocationproblem 140 5.4.5 Othermodelsandapproachesonrevenuemaximization 140 viii Contents 5.5 Conclusionandreflections 141 References 142 6 Performanceandconvergenceofmulti-useronlinelearning 145 CemTekinandMingyanLiu 6.1 Introduction 145 6.2 Relatedwork 146 6.3 Problemformulationandpreliminaries 149 6.3.1 Factorsdeterminingthechannelquality/reward 149 6.3.2 Channelmodels 150 6.3.3 Thesetofoptimalallocations 151 6.3.4 Performancemeasure 153 6.3.5 Degreeofdecentralization 153 6.4 Mainresults 154 6.5 Achievableperformancewithnofeedbackandiidchannels 155 6.6 Achievableperformancewithpartialfeedbackandiidchannels 160 6.7 Achievableperformancewithpartialfeedbackandsynchronizationfor 167 iidandMarkovianchannels 6.7.1 AnalysisoftheregretofDLOE 170 6.7.2 Regretanalysisforiidchannels 172 6.7.3 RegretanalysisforMarkovianchannels 175 6.8 Discussion 179 6.8.1 Strategicconsiderations 179 6.8.2 Multipleoptimalallocations 180 6.8.3 Unknownsuboptimalitygap 182 Acknowledgements 183 References 183 7 Game-theoreticsolutionconceptsandlearningalgorithms 185 SamirM.PerlazaandSamsonLasaulce 7.1 Introduction 185 7.2 Ageneraldynamicspectrumaccessgame 186 7.3 Solutionsconceptsanddynamicspectrumaccess 187 7.3.1 Nashequilibrium 187 7.3.2 Epsilon–Nashequilibrium 193 7.3.3 Satisfactionequilibriumandefficientsatisfactionequilibrium 195 7.3.4 GeneralizedNashequilibrium 197 7.3.5 Coarsecorrelatedequilibriumandcorrelatedequilibrium 200 7.3.6 Robustequilibrium 202 7.3.7 Bayesianequilibriumandaugmentedequilibrium 204 7.3.8 Evolutionarystablesolutions 206 Contents ix 7.3.9 Paretooptimalactionprofilesandsocialoptimalactionprofiles 210 7.3.10 Otherequilibriumconcepts 210 7.4 Learningequilibria 211 7.4.1 LearningNashequilibria 211 7.4.2 Learningepsilon-equilibrium 215 7.4.3 Learningcoarsecorrelatedequilibrium 217 7.4.4 Learningsatisfactionequilibrium 218 7.4.5 Discussion 220 7.5 Conclusion 222 References 223 PartIICognitiveradioandsharingofunlicensedspectrum 228 8 Cooperationincognitiveradionetworks:fromaccesstomonitoring 230 WalidSaadandH.VincentPoor 8.1 Introduction 230 8.1.1 Cooperationincognitiveradio:mutualbenefitsandcosts 230 8.2 Anoverviewofcoalitionalgametheory 232 8.3 Cooperativespectrumexplorationandexploitation 234 8.3.1 Motivation 234 8.3.2 Basicproblem 235 8.3.3 Jointsensingandaccessasacooperativegame 239 8.3.4 Coalitionformationalgorithmforjointsensingandaccess 241 8.3.5 Numericalresults 243 8.4 Cooperativeprimaryuseractivitymonitoring 245 8.4.1 Motivation 245 8.4.2 Primaryuseractivitymonitoring:basicmodel 246 8.4.3 Cooperativeprimaryusermonitoring 248 8.4.4 Numericalresults 255 8.5 Summary 258 Acknowledgements 259 Copyrightnotice 260 References 260 9 Cooperativecognitiveradioswithdiffusionnetworks 263 RenatoLuisGarridoCavalcante,SlawomirStan´czak,andIsaoYamada 9.1 Introduction 263 9.2 Preliminaries 264 9.2.1 Basictoolsinconvexandmatrixanalysis 265 9.2.2 Graphs 266 9.3 Distributedspectrumsensing 266 x Contents 9.4 Iterativeconsensus-basedapproaches 269 9.4.1 Averageconsensusalgorithms 269 9.4.2 Accelerationtechniquesforiterativeconsensusalgorithms 272 9.4.3 Empiricalevaluation 277 9.5 ConsensustechniquesbasedonCoMAC 280 9.6 Adaptivedistributedspectrumsensingbasedonadaptivesubgradient 284 techniques 9.6.1 Distributeddetectionwithadaptivefilters 285 9.6.2 Set-theoreticadaptivefiltersfordistributeddetection 286 9.6.3 Empiricalevaluation 293 9.7 Channelprobing 295 9.7.1 Introduction 295 9.7.2 Admissibilityproblem 296 9.7.3 Powerandadmissioncontrolalgorithms 297 9.7.4 Channelprobingforadmissioncontrol 297 9.7.5 Conclusions 299 Acknowledgements 299 References 300 10 Capacityscalinglimitsofcognitivemultipleaccessnetworks 305 EhsanNekouei,HazerInaltekin,andSubhrakantiDey 10.1 Introduction 305 10.2 Organizationandnotation 306 10.3 Threemaincognitiveradioparadigms 307 10.4 Powerallocationincognitiveradionetworks 308 10.4.1 Point-to-pointtime-invariantcognitiveradiochannels 309 10.4.2 Point-to-pointtime-varyingcognitiveradiochannels 310 10.4.3 Fadingmultipleaccesscognitiveradiochannels 311 10.5 CapacityscalingwithfullCSI:homogeneousCoEs 313 10.6 CapacityscalingwithfullCSI:heterogeneousCoEs 317 10.7 Capacityscalingwithgeneralizedfadingdistributions 318 10.8 CapacityscalingwithreducedCSI 321 10.9 Capacityscalingindistributedcognitivemultipleaccessnetworks 324 10.10Summaryandconclusions 329 Acknowledgements 331 References 332 11 Dynamicresourceallocationincognitiveradiorelaynetworksusing 334 sequentialauctions TianyuWang,LingyangSong,andZhuHan 11.1 Introduction 334

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.