ebook img

Mechanics of solids and materials PDF

881 Pages·2006·4.81 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechanics of solids and materials

P1:FBQ 0521859794pre.tex CB988/Asaro.cls 0521859794 November18,2005 4:25 MECHANICS OF SOLIDS AND MATERIALS MechanicsofSolidsandMaterialsintendstoprovideamodernandintegratedtreat- mentofthefoundationsofsolidmechanicsasappliedtothemathematicaldescription ofmaterialbehavior.Thebookblendsbothinnovativetopics(e.g.,largestrain,strain rate, temperature, time-dependent deformation and localized plastic deformation in crystallinesolids,anddeformationofbiologicalnetworks)andtraditionaltopics(e.g., elastictheoryoftorsion,elasticbeamandplatetheories,andcontactmechanics)ina coherenttheoreticalframework.This,andtheextensiveuseoftransformmethodsto generatesolutions,makesthebookofinteresttostructural,mechanical,materials,and aerospace engineers. Plasticity theories, micromechanics, crystal plasticity, thin films, energeticsofelasticsystems,andanoverallreviewofcontinuummechanicsandther- modynamicsarealsocoveredinthebook. RobertJ.AsarowasawardedhisPhDinmaterialssciencewithdistinctionfromStanford Universityin1972.HewasaprofessorofengineeringatBrownUniversityfrom1975 to1989,andhasbeenaprofessorofengineeringattheUniversityofCalifornia,San Diegosince1989.Dr.Asarohasledprogramsinvolvedwiththedesign,fabrication,and full-scalestructuraltestingoflargecompositestructures,includinghigh-performance shipsandmarinecivilstructures.Hislistofpublicationsincludesmorethan170research papersintheleadingprofessionaljournalsandconferenceproceedings.Hereceivedthe NSFSpecialCreativityAwardforhisresearchin1983and1987.Dr.Asaroalsoreceived the TMS Champion H. Mathewson Gold Medal in 1991. He has made fundamental contributionstothetheoryofcrystalplasticity,theanalysisofsurfaceinstabilities,and dislocation theory. He served as a founding member of the Advisory Committee for NSF’sOfficeofAdvancedComputingthatfoundedtheSupercomputerPrograminthe UnitedStates.HehasalsoservedontheNSFMaterialsAdvisoryCommittee.Hehas beenanaffiliatewithLosAlamosNationalLaboratoryformorethan20yearsandhas servedasconsultanttoSandiaNationalLaboratory.Dr.Asarohasbeenrecognizedby ISIasahighlycitedauthorinmaterialsscience. VladoA.LubardareceivedhisPhDinmechanicalengineeringfromStanfordUniver- sityin1980.HewasaprofessorattheUniversityofMontenegrofrom1980to1989, Fulbright fellow and a visiting associate professor at Brown University from 1989 to 1991,andavisitingprofessoratArizonaStateUniversityfrom1992to1997.Since1998 hehasbeenanadjunctprofessorofappliedmechanicsattheUniversityofCalifornia, SanDiego.Dr.Lubardahasmadesignificantcontributionstophenomenologicalthe- oriesoflargedeformationelastoplasticity,dislocationtheory,damagemechanics,and micromechanics.Heistheauthorofmorethan100journalandconferencepublications andtwobooks:StrengthofMaterials(1985)andElastoplasticityTheory(2002).Hehas served as a research panelist for NSF and as a reviewer to numerous international journalsofmechanics,materialsscience,andappliedmathematics.In2000Dr.Lubarda waselectedtotheMontenegrinAcademyofSciencesandArts.Heisalsorecipientof the2004DistinguishedTeachingAwardfromtheUniversityofCalifornia. i P1:FBQ 0521859794pre.tex CB988/Asaro.cls 0521859794 November18,2005 4:25 ii P1:FBQ 0521859794pre.tex CB988/Asaro.cls 0521859794 November18,2005 4:25 Mechanics of Solids and Materials ROBERT J. ASARO UniversityofCalifornia,SanDiego VLADO A. LUBARDA UniversityofCalifornia,SanDiego iii cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Informationo nthi stitle :www.cambri dge.org/9780521859790 © Robert Asaro and Vlado Lubarda 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format isbn-13 978-0-511-14707-4 eBook (NetLibrary) isbn-10 0-511-14707-4 eBook (NetLibrary) isbn-13 978-0-521-85979-0 hardback isbn-10 0-521-85979-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. P1:FBQ 0521859794pre.tex CB988/Asaro.cls 0521859794 November18,2005 4:25 Contents Prefacepage xix PART1: MATHEMATICALPRELIMINARIES 1 VectorsandTensors 1 1.1. VectorAlgebra 1 1.2. CoordinateTransformation:Rotation ofAxes 4 1.3. Second-RankTensors 5 1.4. SymmetricandAntisymmetricTensors 5 1.5. PreludetoInvariantsofTensors 6 1.6. InverseofaTensor 7 1.7. AdditionalProofs 7 1.8. AdditionalLemmasforVectors 8 1.9. CoordinateTransformationofTensors 9 1.10. SomeIdentitieswithIndices 10 1.11. TensorProduct 10 1.12. OrthonormalBasis 11 1.13. EigenvectorsandEigenvalues 12 1.14. SymmetricTensors 14 1.15. PositiveDefinitenessofaTensor 14 1.16. AntisymmetricTensors 15 1.16.1. EigenvectorsofW 15 1.17. OrthogonalTensors 17 1.18. PolarDecompositionTheorem 19 1.19. PolarDecomposition:PhysicalApproach 20 1.19.1. LeftandRightStretchTensors 21 1.19.2. PrincipalStretches 21 1.20. TheCayley–HamiltonTheorem 22 1.21. AdditionalLemmasforTensors 23 1.22. IdentitiesandRelationsInvolving ∇ Operator 23 1.23. SuggestedReading 25 v P1:FBQ 0521859794pre.tex CB988/Asaro.cls 0521859794 November18,2005 4:25 vi Contents 2 BasicIntegralTheorems 26 2.1. GaussandStokes’sTheorems 26 2.1.1. ApplicationsofDivergenceTheorem 27 2.2. VectorandTensorFields:PhysicalApproach 27 2.3. SurfaceIntegrals:GaussLaw 28 2.4. EvaluatingSurfaceIntegrals 29 2.4.1. ApplicationoftheConceptofFlux 31 2.5. TheDivergence 31 2.6. DivergenceTheorem:RelationofSurfacetoVolume Integrals 33 2.7. MoreonDivergenceTheorem 34 2.8. SuggestedReading 35 3 FourierSeriesandFourierIntegrals 36 3.1. FourierSeries 36 3.2. DoubleFourierSeries 37 3.2.1. DoubleTrigonometricSeries 38 3.3. IntegralTransforms 39 3.4. Dirichlet’sConditions 42 3.5. IntegralTheorems 46 3.6. ConvolutionIntegrals 48 3.6.1. EvaluationofIntegralsbyUseofConvolution Theorems 49 3.7. FourierTransformsofDerivativesof f(x)49 3.8. FourierIntegralsasLimitingCasesofFourierSeries 50 3.9. DiracDeltaFunction 51 3.10. SuggestedReading52 PART2: CONTINUUMMECHANICS 4 KinematicsofContinuum 55 4.1. Preliminaries 55 4.2. UniaxialStrain 56 4.3. DeformationGradient 57 4.4. StrainTensor 58 4.5. StretchandNormalStrains 60 4.6. AngleChangeandShearStrains 60 4.7. InfinitesimalStrains 61 4.8. PrincipalStretches 62 4.9. EigenvectorsandEigenvaluesofDeformationTensors 63 4.10. VolumeChanges 63 4.11. AreaChanges 64 4.12. AreaChanges:AlternativeApproach 65 4.13. SimpleShearofaThickPlatewithaCentralHole 66 4.14. Finitevs.SmallDeformations 68 4.15. Referencevs.CurrentConfiguration 69 4.16. MaterialDerivativesandVelocity 71 4.17. VelocityGradient 71 P1:FBQ 0521859794pre.tex CB988/Asaro.cls 0521859794 November18,2005 4:25 Contents vii 4.18. DeformationRateandSpin 74 4.19. RateofStretchingandShearing 75 4.20. MaterialDerivativesofStrainTensors: E˙ vs.D76 4.21. RateofFinTermsofPrincipalStretches 78 4.21.1. SpinsofLagrangianandEulerianTriads 81 4.22. AdditionalConnectionsBetweenCurrentandReference StateRepresentations 82 4.23. TransportFormulae 83 4.24. MaterialDerivativesofVolume,Area,andSurfaceIntegrals: TransportFormulaeRevisited 84 4.25. AnalysisofSimpleShearing 85 4.26. ExamplesofParticleandPlaneMotion 87 4.27. RigidBodyMotions 88 4.28. BehaviorunderSuperposedRotation 89 4.29. SuggestedReading 90 5 KineticsofContinuum 92 5.1. TractionVectorandStressTensor 92 5.2. EquationsofEquilibrium 94 5.3. BalanceofAngularMomentum:Symmetryofσ 95 5.4. PrincipalValuesofCauchyStress 96 5.5. MaximumShearStresses 97 5.6. NominalStress 98 5.7. EquilibriumintheReferenceState 99 5.8. WorkConjugateConnections 100 5.9. StressDeviator 102 5.10. FrameIndifference 102 5.11. ContinuityEquationandEquationsofMotion 107 5.12. StressPower 108 5.13. ThePrincipleofVirtualWork 109 5.14. GeneralizedClapeyron’sFormula 111 5.15. SuggestedReading 111 6 ThermodynamicsofContinuum 113 6.1. FirstLawofThermodynamics:EnergyEquation 113 6.2. SecondLawofThermodynamics:Clausius–Duhem Inequality 114 6.3. ReversibleThermodynamics 116 6.3.1. ThermodynamicPotentials 116 6.3.2. SpecificandLatentHeats 118 6.3.3. CoupledHeatEquation 119 6.4. ThermodynamicRelationshipswithp,V,T,ands 120 6.4.1. SpecificandLatentHeats 121 6.4.2. CoefficientsofThermalExpansionand Compressibility 122 6.5. TheoreticalCalculationsofHeatCapacity 123 6.6. ThirdLawofThermodynamics 125 6.7. IrreversibleThermodynamics 127 6.7.1. EvolutionofInternalVariables 129 P1:FBQ 0521859794pre.tex CB988/Asaro.cls 0521859794 November18,2005 4:25 viii Contents 6.8. GibbsConditionsofThermodynamicEquilibrium 129 6.9. LinearThermoelasticity 130 6.10. ThermodynamicPotentialsinLinearThermoelasticity 132 6.10.1. InternalEnergy 132 6.10.2. HelmholtzFreeEnergy 133 6.10.3. GibbsEnergy 134 6.10.4. EnthalpyFunction 135 6.11. UniaxialLoadingandThermoelasticEffect 136 6.12. ThermodynamicsofOpenSystems:Chemical Potentials 139 6.13. Gibbs–DuhemEquation 141 6.14. ChemicalPotentialsforBinarySystems 142 6.15. ConfigurationalEntropy 143 6.16. IdealSolutions 144 6.17. RegularSolutionsforBinaryAlloys 145 6.18. SuggestedReading 147 7 NonlinearElasticity 148 7.1. GreenElasticity 148 7.2. IsotropicGreenElasticity 150 7.3. ConstitutiveEquationsinTermsofB 151 7.4. ConstitutiveEquationsinTermsofPrincipalStretches 152 7.5. IncompressibleIsotropicElasticMaterials 153 7.6. ElasticModuliTensors 153 7.7. InstantaneousElasticModuli 155 7.8. ElasticPseudomoduli 155 7.9. ElasticModuliofIsotropicElasticity 156 7.10. ElasticModuliinTermsofPrincipalStretches 157 7.11. SuggestedReading 158 PART3: LINEARELASTICITY 8 GoverningEquationsofLinearElasticity 161 8.1. ElementaryTheoryofIsotropicLinearElasticity 161 8.2. ElasticEnergyinLinearElasticity 163 8.3. RestrictionsontheElasticConstants 164 8.3.1. MaterialSymmetry 164 8.3.2. RestrictionsontheElasticConstants 168 8.4. CompatibilityRelations 169 8.5. CompatibilityConditions:Cesa`roIntegrals 170 8.6. Beltrami–MichellCompatibilityEquations 172 8.7. NavierEquationsofMotion 172 8.8. UniquenessofSolutiontoLinearElasticBoundaryValue Problem 174 8.8.1. StatementoftheBoundaryValueProblem 174 8.8.2. UniquenessoftheSolution 174 8.9. PotentialEnergyandVariationalPrinciple 175 8.9.1. UniquenessoftheStrainField 177 P1:FBQ 0521859794pre.tex CB988/Asaro.cls 0521859794 November18,2005 4:25 Contents ix 8.10. Betti’sTheoremofLinearElasticity 177 8.11. PlaneStrain 178 8.11.1. PlaneStress 179 8.12. GoverningEquationsofPlaneElasticity 180 8.13. ThermalDistortionofaSimpleBeam 180 8.14. SuggestedReading 182 9 ElasticBeamProblems 184 9.1. ASimple2DBeamProblem 184 9.2. PolynomialSolutionsto∇4φ =0 185 9.3. ASimpleBeamProblemContinued 186 9.3.1. StrainsandDisplacementsfor2DBeams 187 9.4. BeamProblemswithBodyForcePotentials 188 9.5. BeamunderFourierLoading 190 9.6. CompleteBoundaryValueProblemsforBeams 193 9.6.1. DisplacementCalculations 196 9.7. SuggestedReading 198 10 SolutionsinPolarCoordinates 199 10.1. PolarComponentsofStressandStrain 199 10.2. PlatewithCircularHole 201 10.2.1. FarFieldShear 201 10.2.2. FarFieldTension 203 10.3. DegenerateCasesofSolutioninPolarCoordinates 204 10.4. CurvedBeams:PlaneStress 206 10.4.1. PressurizedCylinder 209 10.4.2. BendingofaCurvedBeam 210 10.5. AxisymmetricDeformations 211 10.6. SuggestedReading 213 11 TorsionandBendingofPrismaticRods 214 11.1. TorsionofPrismaticRods 214 11.2. ElasticEnergyofTorsion 216 11.3. TorsionofaRodwithRectangularCrossSection 217 11.4. TorsionofaRodwithEllipticalCrossSection 221 11.5. TorsionofaRodwithMultiplyConnectedCrossSections 222 11.5.1. HollowEllipticalCrossSection 224 11.6. BendingofaCantilever 225 11.7. EllipticalCrossSection 227 11.8. SuggestedReading 228 12 Semi-InfiniteMedia 229 12.1. FourierTransformofBiharmonicEquation 229 12.2. LoadingonaHalf-Plane 230 12.3. Half-PlaneLoading:SpecialCase 232 12.4. SymmetricHalf-PlaneLoading 234 12.5. Half-PlaneLoading:AlternativeApproach 235 12.6. AdditionalHalf-PlaneSolutions 237

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.