ebook img

Mechanics of Solid Deformable Body PDF

317 Pages·2023·6.856 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechanics of Solid Deformable Body

Michael Zhuravkov Yongtao Lyu Eduard Starovoitov Mechanics of Solid Deformable Body Mechanics of Solid Deformable Body · · Michael Zhuravkov Yongtao Lyu Eduard Starovoitov Mechanics of Solid Deformable Body Michael Zhuravkov Yongtao Lyu Theoretical and Applied Mechanics Department of Engineering Mechanics Belarusian State University DUT-BSU Joint Institute Minsk, Belarus Dalian University of Technology Dalian, Liaoning, China Eduard Starovoitov Construction Mechanics Belarusian State University of Transport Gomel, Belarus ISBN 978-981-19-8409-9 ISBN 978-981-19-8410-5 (eBook) https://doi.org/10.1007/978-981-19-8410-5 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface In this textbook, we consider the problems connecting with selecting and constructing mechanics-mathematical models that adequately describe the stress–strain state of deformed solids. We do not describe detailed approaches and methods for solving specific classes of boundary problems of deformable solids. These issues are set out in the relevant special publications. This publication is compiled on the basis of lecture courses for students of the joint institutes “DTU-BSU” and “BSU-DTU” as well as textbooks and lecture courses compiled by the authors for students of Belarussian State University, among them: Zhuravkov M. A. Mathematical modeling of deformation processes in solid deformable media (on the example of problems of rock mechanics). Minsk. Pub. by Belarusian State University, 2002. 456 p. (in Russian). Zhuravkov M. A. Fundamental solutions of the theory of elasticity and some of their applications in geomechanics, soil and base mechanics. Course of lectures. Minsk. Pub. by Belarusian State University, 2008. 247 p. (in Russian). Zhuravkov M. A., Starovoitov E. I. Continuum Mechanics. Theory of Elasticity and Plasticity. Coursebook. Minsk. Pub. by Belarusian State University, 2011. 543 p. (Classical University Edition). (in Russian). Zhuravkov M. A., Starovoitov E. I. Mathematical models of solid mechanics. Coursebook. Minsk. Pub. by Belarusian State University, 2021. 535 p. (Classical University Edition). (in Russian). Minsk, Belarus Michael Zhuravkov Dalian, China Yongtao Lyu Gomel, Belarus Eduard Starovoitov v Introduction Deformed Solid Body Mechanics or Solid Mechanics (SM) is a collection of disciplines that study the stress–strain state (SST) of deformed solids under the various physical laws of material behavior. The main “classical” sections of SM are the theories of elasticity, plasticity, and viscoelasticity. This can also include material strength and structural mechanics. The difference among these sections of mechanics lies in the objects under consid- eration, assumptions and physical equations defining material behavior, and so on. In the theories of elasticity, plasticity, and viscoelasticity, various physical laws that establish the connection between stresses and strains are used. Often these sections of SM are divided into mathematical and applied theories. Therefore, for example, the mathematical theory of elasticity does not use any deformation hypotheses, and the resulting equations are solved either by exact methods or by such approximate methods that allow us to limitlessly increase the degree of approximation to an exact solution. Therefore, one can consider the results obtained when solving problems by the mathematical theory of elasticity can be used as a standard for evaluating the accu- racy of various approximate theories and methods for solving similar problems. The applied theory of elasticity differs from the mathematical one in that when solving problems, in addition to the Hooke’s1 law, some additional hypotheses are used (the hypothesis of flat sections for rods, straight normal for plates, and shells, etc.). In solving problems of the applied theory of elasticity, along with accurate methods for solving the corresponding equations, approximate methods are also used. Note that there is no “clear boundary” between the applied theory of elasticity and the resistance of materials. The first mathematician who was engaged in systematic studies of the resistance of solid bodies to destruction was Galileo.2 Although he considered solids to be inelastic and did not know the law linking displacements and forces, his work indicated the path that other researchers followed. 1 Robert Hooke (1635–1703), English scientist, architect, and polymath. 2 Galileo di Vincenzo Bonaiuti de’ Galilei (1564–1642), Italian astronomer, physicist, and engineer, polymath. vii viii Introduction The discovery of Hooke’s law in 1660 and the establishment of Navier’s3 general equations in 1821 represent two important milestones in the further development of the theory that began with Galileo. Hooke’s law provided the necessary experimental justification for the theory. Finding common equations made it possible to reduce all problems related tosmalldeformations of elastic bodies to mathematical calculations. In the period between the discovery of the Hooke’s law and the establishment of general differential equations of the theory of elasticity, the interest of researchers was focused on the problems of oscillations of rods and plates, as well as on the stability of columns. These were, first of all, the fundamental work of J. Bernoulli,4 devoted to the definition of the elastic curve shape, and the work of Euler,5 which laid the foundation for the research in the field of stability of elastic systems. Lagrange6 applied Euler’s theory to determine the most reliable shape of columns. The mathematical theory of elasticity as a science has been developed in the first half of the nineteenth century, mainly thanks to the work of French engineers and scientists. Therefore, for the first time, equilibrium and oscillation equations of elastic solids, assuming the body discrete molecular structure, were obtained by Navier. He deduced not only differential equations, but also boundary conditions that must be satisfied on the surface of the body. Lamé7 and Clapeyron8 developed Navier’s theory in relation to engineering. They wrote a special and scientific work on the internal equilibrium of solids, which solved the problem of stresses and strains of a thick-walled pipe under axisymmetric loading (Lamé’s problem). By the fall of 1822, Cauchy9 discovered most of the main elements of the pure theory of elasticity. He introduced the concept of stress and strain at a point. He showed that they (stress and strain) can be defined by six relevant components. Based on the hypothesis of a continuous and homogeneous solid structure, Cauchy obtained equations of motion (or equilibrium). He first introduced two elastic constants into the 3 Claude-Louis Navier (1785–1836), French mechanical engineer, a physicist whose work was specialized in continuum mechanics. First introduced the concept of stress. 4 Jacob Bernoulli (1655–1705), one of the many prominent mathematicians in the Bernoulli family. He was an early proponent of Leibnizian calculus and sided with Gottfried Wilhelm Leibniz during the Leibniz–Newton calculus controversy. 5 Leonhard Euler (1707–1783), Swiss mathematician, physicist, astronomer, geographer, logician, and engineer who made important and influential discoveries in many branches of mathematics. He is also known for his work in mechanics, fluid dynamics, optics, and astronomy. 6 Joseph-Louis Lagrange (1736–1813), Italian mathematician and astronomer, later naturalized French. He made significant contributions to the fields of analysis, number theory, and both classical and celestial mechanics. 7 Gabriel Lamé (1795–1870), French mathematician who contributed to the theory of partial differ- ential equations by the use of curvilinear coordinates and the mathematical theory of elasticity (for which linear elasticity and finite strain theory elaborate the mathematical abstractions). 8 Benoît Paul Émile Clapeyron (1799–1864), French engineer and physicist, one of the founders of thermodynamics. 9 Baron Augustin-Louis Cauchy (1789–1857), French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. Introduction ix equations of elastic theory, while Navier’s equations contained only one. Relations that link small strains and displacements are named after him. A significant contribution to the development of the theory of elasticity belongs to Saint-Venan.10 He proposed a new approach for solving a number of applications (the semi-reverse method of Saint-Venan). Using this method, important problems were solved regarding the bending and torsion of a bar with a non-circular cross section. He also owns research on oscillation, shock, and plasticity theory. In the second half of the nineteenth century, Kirchhof11 formulated the main equa- tions of thin rod theory, which laid the foundation for the development of methods for calculating elastic springs. In addition, he developed a consecutive theory of thin plates. The first attempt in this direction was made by Lagrange and Sophie Germain12 in 1814, but they were not able to correctly formulate the boundary conditions. At the end of the nineteenth century, Aron and Love13 gave the first version of the equations of shell theory of the model, based on the application of the hypothesis of a non-deformability of the normal rectilinear element. Bussinesk14 investigated the problem of determining stresses in an elastic body under the influence of a concentrated force. These studies allowed Hertz15 to formulate the problem about the interaction of two elastic bodies in contact. An important role in the development of the theory of elasticity was played by the work of Russian scientists. The fundamental results of the development of the principle of possible displacements, the theory of impact, as well as the integration of dynamics equations belong to Ostrogradsky.16 Gadolin17 studied the stresses in multilayer cylinders, thereby building the basis for the design of artillery barrels. Zhuravsky18 formulated the modern theory of bending beams. Significant progress in the construction of methods for solving 2D problems of the theory of elasticity is 10 Adhémar Jean Claude Barré de Saint-Venant (1797–1886), a mechanician and mathematician who contributed to early stress analysis and also developed the unsteady open channel flow shallow water equations, also known as the Saint-Venant equations. 11 Gustav Robert Kirchhoff (1824–1887), German physicist who contributed to the mechanics, mathematical physics, electricity, and spectral analysis. 12 Marie-Sophie Germain (1776–1831), French mathematician, physicist, and philosopher. One of the pioneers of elasticity theory. 13 Augustus Edward Hough Love (1863–1940), a mathematician famous for his work on the mathematical theory of elasticity. He also worked on wave propagation. 14 Joseph Valentin Boussinesq (1842–1929), French mathematician and physicist who made significant contributions to the theory of hydrodynamics, vibration, light, heat, and theory of elasticity. 15 Heinrich Rudolf Hertz (1857–1894), a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell’s equations of electromagnetism. 16 Ostrogradsky Mikhail Vasilyevich (1801–1862), Russian mathematician, mechanician, and physicist. Performed important studies on integral calculus. 17 Gadolin Aksel Vilgelmovich (1828–1892), Russian scientist, developed the theory of fastening the barrels of artillery guns; works on physics, metal processing. 18 Zhuravsky Dmitriy Ivanovich (1821–1891), Russian scientist and engineer, founder of a school in the field of construction mechanics and bridge construction. x Introduction associated with the names of Kolosov19 and Muskhelishvili,20 who first applied the method based on the use of complex variable functions. Bubnov21 solved a number of problems about a plate bending. Fundamental studies on the theory of plates and shells, vibrations of rods taking into account the influence of shear deformations were carried out by Tymoshenko.22 Subsequently, many problems were solved by the energy method proposed by him. Galerkin23 completed a series of studies on the theory of bending thin plates, thick plates, and the theory of shells. To derive the equations of shell theory, he apparently first applied the equations of the three- dimensional theory of elasticity. Papkovich first proposed to build a solution to the problems of the theory of elasticity of displacements in the form of harmonic functions. He also performed studies of general stability theorems of elastic systems. In addition, he solved a large number of problems about bending plates under various boundary conditions. Vlasov,24 Novozhilov25 and Rabotnov26 made a great contribution to the devel- opment of the general theory of shells and other sections of the theory of elasticity. Therefore, Vlasov is the founder of a new scientific discipline—the construction mechanics of shells. The theory of plasticity, which studies irreversible deformations of solid bodies, as an independent section of mechanics, began “its history” about a hundred and fifty years ago. The foundations of the theory of plastic flow whose creation was aimed at describing metal forming processes were formulated in the first publication of Saint-Venan (1868–1871). 19 Kolosov Guriy Vasikyevich (1867–1936), Russian, Soviet mechanic; works on mathematics, theory of elasticity, machine theory, and mechanisms. 20 Muskhelishvili Nikolai Ivanovich (1891–1976), a renowned Soviet Georgian mathematician, physicist, and engineer. Muskhelisvili conducted fundamental research on the theories of phys- ical elasticity, integral equations, boundary value problems, and others. 21 Bubnov Ivan Grigorievich (1872–1919), Russian engineer, developed the basics of the ship’s construction mechanics, the designer of two submarines. 22 Tymoshenko Stepan Prokofyevich (1878–1972), Ukrainian, Russian, and later, an American engineer and academician. He is considered to be the father of modern engineering mechanics. 23 Galerkin Boris Grigoryevich (1871–1945), Soviet mathematician and an engineer. One of the creators of the theory of bending of plates, his works contributed to the introduction of mathematical methods in engineering research. 24 Vlasov Vasiliy Zaharovich (1906–1958), Russian, Soviet scientist in the field of mechanics, works on the resistance of materials, construction mechanics, the theory of elasticity. 25 Novozhilov Valentin Valentinovich (1910–1987), Russian, Soviet mechanic; works on the theory of elasticity, plasticity, and calculation of shells and ship structures. 26 Rabotnov Uriy Nikolaevich (1914–1985), Russian and Soviet mechanical scientist; works on the theory of shells, the theory of plasticity, creep, and destruction of materials. Introduction xi At the beginning of the twentieth century, Karman,27 Huber,28 Mises,29 Nadai,30 Henki,31 and others put forward new concepts and theories that, although they did not solve problems, expanded the range of ideas. In the 1920s and 1930s, in addition to propose different versions of plasticity theory, important fundamental experimental studies were carried out. It was an important stage in the development of plasticity theory. However, by the end of the 1930s–first years of the 1940s, a situation devel- oped when experiments could confirm one theory and at the same time refute other theories. And the opposite, results from other experiments indicated otherwise. Clarity was introduced by Ilyushin32 (1943–1945), which pointed out the need for a clear distinction between the nature of deformation processes (simple and complex deformation). As a result of these researches, Ilyushin developed the theory of small elastoplastic deformations. In the early 1950s, various theories of plasticity were proposed under arbitrary complex loading. These approaches took the form of three theories: modern flow theory, sliding theory, and the general theory of elastoplastic deformations. The construction of the general mathematical deformation theory of plasticity was based on the isotropy postulate formulated by Ilyushin. The basis for the further development of the theory of the flow of elastoplastic bodies was the Drucker33 hardening postulate on the non-negativity of the external forces work in a closed cycle of plastic loading. Models of viscoelastic behavior of materials began to actively develop in the second half of the last century. In many materials under operating conditions, the law of connection between force and displacement depends significantly on time. This dependence is exerted in the fact that, for example, under constant loading, the deformations do not remain constant, but increase. On the other hand, if the body is subject to deformation and some bonds keep the deformation unchanged, the reaction of the bonds decreases with time, “relaxed”. 27 Theodore von Kármán (1881–1963), Hungarian-American mathematician, aerospace engineer, and physicist who was active primarily in the fields of aeronautics and astronautics. 28 Hyber Maximilian Tytus (1872–1950), scientist in the field of mechanics; works in the field of material resistance, the theory of elasticity, the theory of plasticity, proposed a criterion for the plasticity of the potential energy of shape change. 29 Richard Edler von Mises (1883–1953), an Austrian scientist and mathematician who worked on solid mechanics, fluid mechanics, aerodynamics, aeronautics, statistics, and probability theory. 30 Nadai Arpad Ludwig (1883–1963), scientist mechanic, engineer; works in the field of the theory of elasticity, plasticity, together with Lode introduced the Nadai-Lode parameter. 31 Henki Heinrich (1885–1951), scientist mechanic, engineer; the most famous works in the field of sliding theory, plasticity, and rheology. 32 Ilyushin Alexey Antonovich (1911–1998), Russian and Soviet scientist mechanic, one of the founders of the theories of plasticity, viscoelasticity, and other sections of mechanics. 33 Daniel Charles Drucker (1918–2001) was an American civil and mechanical engineer. Drucker was known as an authority on the theory of plasticity in the field of applied mechanics. His key contributions to the field of plasticity include the concept of material stability described by the Drucker stability postulates and the Drucker–Prager yield criterion.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.