ebook img

Mechanics of Non-Homogeneous and Anisotropic Foundations PDF

376 Pages·2001·14.262 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechanics of Non-Homogeneous and Anisotropic Foundations

Foundations of Engineering Mechanics B. Grigori Muravskii, Meehanies of Non-Homogeneous and Anisotropie Foundations Springer Berlin Heidelberg New York Barcelona Hong Kong London Milan ONLINE L1BRARY Engineering Paris Singapore http://www.springer.de/engine/ Tokyo B. Grigori Muravskii Meehanies ofNon Homogeneous and Anisotropie Foundations Translated by Boris Krasovitski With 149 Figures , Springer Series Editors: Vladimir I. Babitsky, DSc J. Wittenburg Louborough University Universität Karlsruhe (TH) Department of Mechanical Engineering Institut für Technische Mechanik LEII 3 TU Loughborough Leicestershire Kaiserstr. 12 United Kingdom 76128 Karlsruhe Germany Author: Grigori B. Muravskii Geotechnical Department Faculty of Civil Engineering Technicon 32000 Haifa Israel Translator: Boris Krasovitski POB7843 36811 Nesher Israel ISBN 978-3-642-53602-1 Library of Congress Cataloging-in-Publieation Data Muravskii, Grigori B: Meehanics of non-homogeneous and anisotropie foundations I B. Grigori Muravskii. Translated by Boris Krasovitski. - Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris; Singapore; Tokyo: Springer, 2001 (Foundations of engineering meehanics) ISBN 978-3-642-53602-1 ISBN 978-3-540-44573-9 (eBook) DOI 10.1007/978-3-540-44573-9 This work is subject to copyright. All rights are reserved, whether the whole or part ofthe material is eoncerned, speeifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication ofthis publication or parts thereofis permitted only under the provisions ofthe German Copyright Law ofSeptember 9,1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. Springer-Verlag is a eompany in the BertelsmannSpringer publishing group http://www.springer.de © Springer-Verlag Berlin Heidelberg New York 2001 Softcover reprint of the hardcover 1st edition 2001 The use of general descriptive names, registered names, trademarks, ete. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Camera ready by author Cover-Design: de'blik, Berlin Printed on acid free paper SPIN: 10791920 62/3020/kk -5 43210 Preface Although realistic soil and rock foundations reveal noticeable deviations in their properties from homogeneity and isotropy, the model of the homogeneous isotropie elastic half-space is widely used when studying static and dynamie interactions between a defonnable foundation and structures. This is explained by significant mathematieal difficulties inherent in problems conceming mechanies of anisotropie and heterogeneous elastic bodies. Solving the basic static and dynamie problems for heterogeneous and anisotropic half-spaces, such as different contact problems and problems of constructing Green's functions, has become possible in the last few decades due to the development of computer engineering techniques and numerical methods. This book contains the results of investigations in the area of statics and dynamies of heterogeneous and anisotropic foundations, carried out by the author in the last five years while working in the Faculty of Civil Engineering at Technion - Israel Institute of Technology. The book is directed at engineers and scientists in the areas of soil mechanics, soil-structures interaction, seismology and geophysics. Some characteristic features of the book are: i) Constructing (Chap.l) solutions in a general fonn for the heterogeneous (in the depth direction) transversely isotropic elastic half-space subjected to different loadings, hannonic in time. Characteristics of the given half-space have an influence on functions (of depth z and parameter k of Hankel's transfonns), which are detennined from a system of ordinary differential equations. ii) New dynamic solutions relating to the homogeneous transversely isotropic elastic half-space subjected to the action of vertical and horizontal forces applied to the half-space surface or below the surface. Solutions are presented relating to basic contact problems for this kind ofhalf-space. iii) Dynamic and static solutions for the linearly heterogeneous half-space, which, as applied to static problems, was intensively studied in works by R. E. Gibson and his coworkers. Solutions are presented for a half-space with exponentially varying stiffuess. In these cases it is possible to find analytical solutions for the above-mentioned ordinary differential equations; thus the required amplitudes of vibrations are expressed in the fonn of integrals containing the detennined functions. iv) Development ofnumerical-analytical methods for the considered problems, which consist of a combinations of integral representations of the sought functions and numerical treatment of ordinary differential equations for the VI Preface corresponding Fourier-Bessel transfonnations. The piecewise constant approximation for varying coefficients of these differential equations results in the well-known method of thin layers. Employing the general representations developed in Chap.l and using simple solutions in the intervals (elements) with constant properties allows the construction of effective solutions. Another appropriate treatment is the use of Runge-Kutta method with additional application of Gogunov's method to eliminate computational difficulties connected with large values of the transfonnation parameter k. The book presents, graphically, a large number of results of computations, which give a clear pieture of the behavior of the mechanical systems considered. These results can serve for estimating accuracy of different simplified methods, e.g. combining the division of a half-space into thin layers with setting a fonn of displacements distribution within the layers. I express my gratitude to my colleagues - Professors ofTechnion R. Baker and s. Frydman for useful discussions of geotechnical problems connected with the material of the book. Haifa, April 2001. G. B. Muravskii Contents Introduction ................................................................................. 1 Chapter 1. General Solutions of Harmonie Vibrations in Heterogeneous Transversely Isotropie Half-Spaee .................•....................................5 1.1 Basic Relationships of Theory of Elasticity for Transversely Isotropic Body ......................................................................................... 5 1.2 Particular Solutions for Transversely Isotropie Heterogeneous Elastic Medium .....................................................................................8 1.3 Statement of Boundary Conditions for Planes z = const ....................... 13 1.4 General Solution for Harmonie Vibration ofHalf-Space Subjected to Surface Loads ......................................................................... 18 1.5 General Solution for Harmonie Vibrations of Half-Space Subjected to Loads Applied below its Surface .................................................. 31 1.5.1 Action ofVertieal Force ................................................... .31 1.5.2 Action ofHorizontal Force ................................................ .34 1.6 Application ofFunctions Related to Dilatation and Rotation ofDisplacement Field .................................................................. .37 1.6.1 Vertieal Force Applied within Half-Space ............................... .40 1.6.2 Horizontal Force Applied within Half-Space ............................ .42 1.7 Application ofSuperposition Principle to Loadings ofRectangular and Circular Domains .................................................................. .44 1.7.1 Vertical Load Distributed Uniformly over Rectangular Domain ...... .44 1.7.2 Horizontal Load Distributed Uniformly over Rectangular Domain ... 50 1.7.3 Vertical Load Distributed Uniformly over Circular Domain ........... 53 1.7.4 Horizontal Load Distributed Uniformly over Circular Domain ....... 54 1.7.5 Axisymmetric Radial Load Applied to Circular Domain ............... 57 1.7.6 Antisymmetric Vertical Load Applied to Circular Domain ............. 58 1.7.7 Horizontal Load Acting in Tangential Direction ......................... 61 1.7.8 Self-Balanced Horizontal Load ............................................ 62 1.7.9 Loading ofInfmite Strip ................................................... 65 Chapter 2. Statie and Dynamic Problems for Homogeneous Transversely Isotropie Half-Space ..•......•.•........••..•.......•.•.....................••.••....•.....6 8 2.1 Vibrations ofHalf-Space Subjected to Vertical Force Applied to Half-Space Surface .................................................................. 68 2.1.1 Static Action ofVertical Force ............................................. 72 VIII Contents 2.1.2 Free Vibrations ofHalf-Space .............................................. 76 2.1.3 Forced Vibrations ofHalf-Space ...........................................7 7 2.2 Model ofDefonnable Foundation as Limiting Case ofTransversely Isotropic Half-Space .................................................................... 88 2.3 Vibrations ofHalf-Space Subjected to Action ofHorizontal Force Applied to Half-Space Surface ..................................................................9 0 2.3.1 Static Action ofHorizontal Force .......................................... 92 2.3.2 Analysis of Amplitudes ofVibrations ..................................... 94 2.4 Torsional Vibrations ofHalf-Space ..............................................9 6 2.5 Action ofForce Applied in Infinite Space .......................................9 9 2.5.1 Action ofVertical Force .................................................... 99 2.5.2 Action ofHorizontal Force ................................................ 102 2.6 Vibrations ofTransversely Isotropic Half-Space under Action ofForce Applied within Half-Space ................................................. 106 2.6.1 Action ofVertical Force ................................................... 106 2.6.2 Action ofHorizontal Force ................................................ 111 2.7 Contact Problems for Transversely Isotropic Half-Space .................... 116 2.7.1 Static Stiffnesses for Circular Disk on Transversely Isotropic Half-Space .......................................................................... 116 2.7.2 Dynamic Stiffnesses for Circular Disk on Transversely Isotropic Half-Space .......................................................................... 135 2.8 Plane Problems for Transversely Isotropie Half-Space ....................... 147 2.8.1 Action of Vertical Load Distributed Unifonnly along Infinite Line on Half-Space Surface ...................................................... 148 2.8.2 Action ofHorizontal Load Distributed Unifonnly along Infmite Line on Half-Space Surface ...................................................... 151 2.8.3. Contact Problems for Strip Stamp ....................................... 154 Chapter 3. Mechanics ofIsotropic Half-Space with Sbear Modulus Varying Linearly with Depth .•.•....•.•.•••••...••••...••••.•••••.•.•.•.•••••.••••.•.•..•..••••..• 168 3.1 Fundamental Solutions ofSystem ofEquations (1.l30}--(1.133) ........... 168 3.2 Vibrations ofIsotropic Linearly Heterogeneous Half-Space under Action ofVertical Force Applied to Half-Space Surface .......................... 174 3.3 Vibrations ofIsotropic Linearly Heterogeneous Half-Space under Action ofHorizontal Force Applied to Half-Space Surface ...................... 179 3.4 Determining Properties ofLinearly Heterogeneous Half-Space Using Characteristics ofSurface Waves ..................................................... 183 3.4.1 Application ofSolution Related to Vertical Vibrations of Half-Space Surface under Action of Vertical Force ....................... 184 3.4.2 Application ofSolution Related to Horizontal Vibrations ofHalf-Space Surface under Action ofHorizontal Force .................... 191 3.5 Some Static Problems for Linearly Heterogeneous Half-Space ............. 194 3.5.1 Displacements ofHalf-Space Surface under Action of Surface Concentrated F orces .................................................. 194 3.5.2 Static Stiffnesses for Circular Disk Resting on Isotropic Contents IX Linearly Heterogeneous Half-Space .............................................2 06 3.6 Dynamic Stiffness ofCircular Disk Resting on Linearly Heterogeneous Half-Space ............................................................2 14 3.7 Vibrations ofLinearly Heterogeneous Half-Space Subjected to Force Applied within Half-Space .................................................2 30 3.7.1 Action ofVertical Force ................................................... 230 3.7.2 Action ofHorizontal Force ................................................ 238 3.8 Plane Problems for Linearly Heterogeneous Half-space .....................2 44 3.8.1 Action ofVertical Load Distributed Uniformly over Infinite ........... . Straight Line on Half-Space Surface .. , .................................... '" ... 244 3.8.2 Action ofHorizontal Load Distributed Uniformly over Infmite Straight Line on Half-Space Surface ............................................2 46 3.8.3 Static Surface Green's Functions in Plane Problems for Linearly Heterogeneous Half-Space ........................................ 249 Chapter 4. Mechanies of Transversely Isotropie Half-Spaee with Stiffness Varying Exponeotially with Depth •.••••.•..•••••••••••••••••.•.•.•••.....•.••.••..••• 257 4.1 Vibrations ofTransversely Isotropie Half-Space Having Elastic Coefficients Bounded at Infinite Depth ...........................2 57 4.1.1 Variation ofElastic Parameters ofHalf-Space with Depth .......... .257 4.1.2 Construction of Fundamental Solutions ..................................2 61 4.1.3 Vibrations ofHalf-Space under Action ofVertical Force Applied to Half-Space Surface ......... '" ....................................... 265 4.1.4 Vibrations ofHalf-Space under Action ofHorizontal Force Applied to Half-Space Surface ...................................................2 68 4.2 Vibrations ofTransversely Isotropie Half-Space with Stiffness Increasing without Bounds ............... '" ...............................2 70 4.2.1 Varying ofElastic Parameters ofHalf-Space with Depth ............. 270 4.2.2 Construction ofFundamental Solutions ..................................2 72 4.2.3 Vibrations ofHalf-Space under Action ofVertical Force Applied to Half-Space Surface ................................................... 276 4.2.4 Vibrations ofHalf-Space under Action ofHorizontal Force Applied to Half-Space Surface ...................................................2 80 Chapter 5. Applieatioo of Numerieal--Analytieal Methods to Statie and Dyoamie Problems for Heterogeneous Half-Spaee. •.••••••••.•.••••.••••••••..•.• 281 5.1 Introduction ........................................................................ 281 5.2 Heterogeneous Half-Space Subjected to Vertical Force Applied to Half-Space Surface ........................................................2 84 5.2.1 Application ofThin Layer Technique for Numerical Solution of Differential Equations ........................................ '" ....2 85 5.2.2 Application ofRunge-Kutta Method for Numerical Solution ofDifferential Equations .............................................. .297 X Contents 5.2.3 Parameter Determination for Isotropie Half-Space with Shear Modulus Varying by Power Law (Action ofVertical Force) ............... 299 5.3 Heterogeneous Half-Space Subjected to Horizontal Force Applied to Half-Space Surface ............................................ , ......... 306 5.3.1 Application ofThin Layer Technique for Numerical Solution ofDifferential Equations ............................................. .307 5.3.2 Application ofRunge-Kutta Method for Numerical Solution of Differential Equations ......................................................... 31 0 5.3.3 Parameter Determination for Isotropie Half-Space with Shear Modulus Varying by Power Law (Action ofHorizontal Force) ............. 311 5.4 Vibration Problems for Heterogeneous Half-Space Subjected to Force Applied within Half-Space ................................................ 315 5.4.1 Action ofVertical Force. Application ofThin Layer Technique for Numerical Solution ofDifferential Equations ............... 315 5.4.2 Action ofVertical Force. Application ofRunge-Kutta Method for Numerical Solution of Differential Equations .................. 321 5.4.3 Action ofHorizontal Force. Application ofThin Layer Technique for Numerical Solution ofDifferential Equations ............... 324 5.4.4 Action ofHorizontal Force. Application ofRunge-Kutta Method for Numerical Solution ofDifferential Equations .................. 327 5.5 Static solutions ..................................................................... .328 5.6 Contact Problems for Circular Disk Resting on Half-Space with Stiffness Increasing with Depth by Power Law ................................... .341 5.6.1 Static Stiffnesses for Circular Disk. ..................................... .341 5.6.2 Dynamic Stiffnesses for Circular Disk ................................. .350 References ..................................................................................3 56 Index ....................................................................................... 362

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.