Mechanics of motility initiation and motility arrest in crawling cells P.Rechoa,b,T.Putelatc,L.Truskinovskya aLMS,CNRS-UMR7649,EcolePolytechnique,RoutedeSaclay,91128Palaiseau,France bPhysicochimieCurie,CNRS-UMR168,InstitutCurie,CentredeRecherche,26rued’UlmF-75248ParisCedex05,France cDEM,Queen’sSchoolofEngineering,UniversityofBristol,Bristol,BS81TR,UK 5 1 0 Abstract 2 Motility initiation in crawling cells requires transformation of a symmetric state into a polarized state. In contrast, l u motility arrest is associated with re-symmetrization of the internal configuration of a cell. Experiments on kera- J tocytes suggest that polarization is triggered by the increased contractility of motor proteins but the conditions of 2 re-symmetrizationremainunknown. Inthispaperweshowthatifadhesionwiththeextra-cellularsubstrateissuffi- 2 cientlylow,theprogressiveintensificationofmotor-inducedcontractionmayberesponsibleforbothtransitions:from static (symmetric) to motile (polarized) at a lower contractility threshold and from motile (polarized) back to static ] h (symmetric)atahighercontractilitythreshold. Ourmodeloflamellipodialcellmotilityisbasedona1Dprojectionof p thecomplexintra-cellulardynamicsonthedirectionoflocomotion. Intheinterestofanalyticaltransparencywealso - o neglectactiveprotrusionandviewadhesionaspassive. Despitetheunavoidableoversimplificationsassociatedwith i theseassumptions,themodelreproducesquantitativelythemotilityinitiationpatterninfishkeratocytesandrevealsa b crucialroleplayedincellmotilitybythenonlocalfeedbackbetweenthemechanicsandthetransportofactiveagents. . s Apredictionofthemodelthatacrawlingcellcanstopandre-symmetrizewhencontractilityincreasessufficientlyfar c i beyondthemotilityinitiationthresholdstillawaitsexperimentalverification. s y h p [ 1. Introduction 3 v Theabilityofcellstoself-propelisessentialformanybiologicalprocesses. Intheearlylifeofanembryo,stem 5 cellsmovetoformtissuesandorgans. Duringtheimmuneresponse,leukocytesmigratethroughcapillariestoattack 8 infections. Wound healing requires the motion of epithelial cells. While the biochemistry of such motility is rather 1 wellunderstood,theunderlyingmechanicsofactivecontinuummediaisstillinthestageofdevelopment(Bray,2000; 7 Mogilner,2009;CarlssonandSept,2008;JoannyandProst,2011;AdlerandGivli,2013;ZiebertandAranson,2013; 0 . GiomiandDeSimone,2014;Rechoetal.,2014;CoxandSmith,2014). 1 Ataverygenerallevel,acellcanbeviewedasanelastic‘bag’whoseinteriorisseparatedfromtheexteriorbya 0 5 bi-layerlipidmembrane. Themembraneisattachedfrominsidetoathincortex-anactivemuscle-typelayermain- 1 tainingthecell’sshape. Theinteriorisfilledwithapassivemedium, thecytosol, whereallessentialcellorganelles : are immersed. The active machinery inside the cytosol ensuring self-propulsion is contained in the cytoskeleton: a v i perpetuallyrenewednetworkofactinfilamentscross-linkedbymyosinmotorsthatcaninflictcontractilestresses.The X cytoskeletoncanbemechanicallylinkedtothecellexteriorthroughadhesionproteins(Albertsetal.,2002). r The elementary mechanisms responsible for the steady crawling of keratocytes (flattened cells with fibroblastic a functions) have been identified (Abercrombie, 1980; Bell, 1984; Stossel, 1993; Bellairs, 2000). The advance starts withprotrusiondrivenbyactivepolymerizationoftheactinnetworkinthefrontalareaofthecell(thelamellipodium) withasimultaneousformationofadhesionclustersattheadvancingedge. Aftertheadhesionoftheprotrudingpart ofthecellissecured,thecytoskeletoncontractsthankstotheactivityofmyosinmotors. Thiscontractionleadstothe Emailaddress:[email protected](L.Truskinovsky) PreprintsubmittedtoJournaloftheMechanicsandPhysicsofSolids July23,2015 detachmentattherearandlesseningoftheactinnetworkthroughde-polymerization. Alltheseactivephenomenaare drivenbyATPhydrolysisandarehighlysynchronizedwhichallowsthecelltomovewithastableshapeandrelatively constantvelocity(Barnhartetal.,2011). Theinitiationofsuchmotilityrequiresapolarizationofthecellwhichisaprocessthatdiscriminatestheleading edge from the trailing edge. The implied symmetry breaking turns a symmetric stationary configuration of a cell into a polar motile configuration. While both contraction and protrusion contribute to steady state cell migration, contractionappearstobethedominatingmechanismofpolarization: ithasbeenshownexperimentallythatmotility initiationinkeratocytesmaybetriggeredbyraisingthecontractilityofmyosin(Verkhovskyetal.,1999;Csucsetal., 2007; Lombardi et al., 2007; Yam et al., 2007; Vicente-Manzanares et al., 2009; Poincloux et al., 2011). It is also knownthatcellsmayselfpropelbycontractiononly(Kelleretal.,2002). Inphysicalterms,thecontraction-drivenpolarization/motilityisperformedby‘pullers’(contractileagents)while ‘pushers’(protrusiveagents)remainlargelydisabled. Somenumericalmodelssuggestthattherelativeroleof‘push- ers’and‘pullers’incellularmotilitymaybetightlylinkedtothetasktobeperformed(SimhaandRamaswamy,2002; SaintillanandShelley,2012)andeventothenatureofthecargo(RechoandTruskinovsky,2013). However,itisstill notfullyunderstoodwhyincaseofkeratocytesthemotilityinitiationisprimarilycontraction-driven. Incontrastto motilityinitiation,thereciprocalprocessofmotilityarrest isassociatedwithre-symmetrizationandsuchsymmetry recoveryisatypicalprecursorofcelldivision(Stewartetal.,2011;Lancasteretal.,2013;LancasterandBaum,2014). Itisnotyetclearwhetherre-symmetrizationisalsopredominantlycontraction-drivenandifyes,whetheritrequires contractility reduction or contractility increase beyond the motility initiation threshold. It is, however, known that somecellscanswitchfromstatictomotilestateasaresultofadecreaseinthelevelofcontractility(Liuetal.,2010; Huretal.,2011). A large variety of modeling approaches targeting cell motility mechanisms can be found in the literature, see thereviewsbyRafelskiandTheriot(2004);CarlssonandSept(2008);Mogilner(2009);Wangetal.(2012). Insome models,theactinnetworkisviewedasahighlyviscousactivefluidmovingthroughacytoplasmbygeneratinginternal contractile stresses (Alt and Dembo, 1999; Oliver et al., 2005; Herant and Dembo, 2010; Kimpton et al., 2014). In other models, the cytoskeleton is represented by an active gel whose polar nature is modeled in the framework of the theory of liquid crystals (Kruse et al., 2005; Joanny et al., 2007; Julicher et al., 2007; Joanny and Prost, 2011; Callan-Jones and Julicher, 2011). The active gel theory approach, which we basically follow in this study without anexplicitreferencetolocalorientationalorder,wasparticularlysuccessfulinreproducingrings,asters,vorticesand someothersubcellularstructuresobservedinvivo(DoubrovinskiandKruse,2007;SankararamanandRamaswamy, 2009;DoubrovinskiandKruse,2010;Duetal.,2012). Atsufficientlyfasttimescales, thecytoskeletoncanbealso modeledasanactivesolid withahighlynonlinearscale-freerheology(BroederszandMacKintosh,2014;Pritchard etal.,2014). Variousspecificsub-elementsofthemotilitymechanismhavebeensubjectedtocarefulmechanicalstudy.Thus,it wasshownthatinsomecasestheplasmicmembranewithanattachedcortexcanbeviewedasapassiveelasticsurface andmodeledbyphasefieldmethodsallowingonetogosmoothlythroughtopologicaltransitions(Wangetal.,2012; GiomiandDeSimone,2014). Inothercases,themembranemayalsoplayanactiverole,forinstance,anasymmetric distributionofchannelsonthesurfaceofthemembranecanberesponsibleforaparticularmechanismofcellmotility relying on variation of osmotic pressure (Stroka et al., 2014). While most models assume that the cell membrane interacts with the exterior of the cell through passive viscous forces, active dynamics of adhesion complexes has recently become an area of intense research driven in part by the finding of a complex dependence of the crawling velocity on the adhesive properties of the environment (DiMilla et al., 1991; Novak et al., 2004; Deshpande et al., 2008; Gao et al., 2011; Lin et al., 2008; Ronan et al., 2014; Lin, 2010; Ziebert and Aranson, 2013). The account of other relevant factors, including realistic geometry, G-actin transport, Rac/Rho-regulation, etc., have led to the development of rather comprehensive models that can already serve as powerful predictive tools (Rubinstein et al., 2009;Wolgemuthetal.,2011;Tjhungetal.,2012;GiomiandDeSimone,2014;Barnhartetal.,2015). The more focused problem of finding the detailed mechanism of motility initiation, is most commonly ad- dressedintheframeworkoftheoriesemphasizingpolymerization-drivenprotrusion(MogilnerandEdelstein-Keshet, 2002; Dawes et al., 2006; Bernheim-Groswasser et al., 2005; Schreiber et al., 2010; Campas et al., 2012; Hodge and Papadopoulos, 2012). With such emphasis on ‘pushers’, spontaneous polarization was studied by Kozlov and Mogilner(2007);Callan-Jonesetal.(2008);Johnetal.(2008);Hawkinsetal.(2009);HawkinsandVoituriez(2010); DoubrovinskiandKruse(2011);Blanch-MercaderandCasademunt(2013).InBanerjeeandMarchetti(2011);Ziebert 2 etal.(2012)andZiebertandAranson(2013),polarizationwasinterpretedasaresultofaninhomogeneityofadhesive interactions. YetanothergroupofauthorshavesuccessfullyarguedthatcellpolaritymaybeinducedbyaTuring-type instability(Morietal.,2008;Altschuleretal.,2008;Vanderleietal.,2011;JilkineandEdelstein-Keshet,2011). Such a variety of modeling approaches is a manifestation of the fact that very different mechanisms of motility initiation areengagedincellsofdifferenttypes. Theobservationthatcontractionmaybetheleadingfactorbehindthepolarizationofkeratocyteshasbeenbroadly discussedintheliterature. Itwasrealizedthatactivecontractioncreatesanasymmetry-amplifyingpositivefeedback becauseitcausesactinflowwhichinturncarriestheregulatorsofcontraction(Kruseetal.,2003;Ahmadietal.,2006; Salbreuxetal.,2009;Rechoetal.,2013;Barnhartetal.,2015). Inconstrainedconditionssuchpositivefeedbackgen- eratespeaksintheconcentrationofstressactivators(myosinmotors)(Boisetal.,2011;Howardetal.,2011)andthis patterningmechanismwasusedtomodelpolarizationinducedbyangularcortexflow(Hawkinsetal.,2009,2011). CloselyrelatedheuristicmodelsoftheKeller-Segeltype(Perthame,2008)describingsymmetrybreakingandlocal- izationwereindependentlyproposedbyKruseandJu¨licher(2003);Calvezetal.(2010).Inallthesemodels,however, the effect of contraction (pullers) was obscured by the account of other mechanisms, in particular, polymerization induced protrusion (pushers), and the focus was on generation of internal flow and the resulting pattern formation, ratherthanontheproblemofensuringsteadytranslocationofacell. Thisshortcomingwasovercomeinmorerecentmodelsofcontraction-inducedpolarizationrelyingonsplayinsta- bilityinanactivegel(Tjhungetal.,2012;GiomiandDeSimone,2014;Tjhungetal.,2015).Inthesemodel,however, ‘pushers’werenottheonlyplayers,inparticular,polarizationwasinducedbyalocalphasetransitionfromnon-polar topolargel. InCallan-JonesandVoituriez(2013),themotilityinitiationwasattributedtoacontraction-inducedin- stability in a poro-elastic active gel permeated by a solvent. Here again the non-contractile active mechanism was involvedaswellandthereforethedomineeringroleofcontractioncouldnotbemadeexplicit. Thegoalofthepresentpaperistofocusonthespecialroleofbarecontractioninsymmetrybreakingprocesses by studying a minimalistic, analytically transparent model of motility initiation in a segment of an active gel. Fol- lowingpreviouswork,weexploittheKeller-Segelmechanism,butnowinafreeboundarysetting,andshowthatthe underlyingsymmetrybreakinginstabilityisfundamentallysimilartoanuphilldiffusionoftheCahn-Hilliardtype. In contrasttomostpreviousstudies,ourcontractiondriventranslocationofacelliscausedexclusivelybytheinternal flowgeneratedbymolecularmotors(pullers)andnootheractiveagentsareinvolved. Each‘puller’contributestothe stressfieldandsimultaneouslyundergoesbiasedrandommotionresultinginanuphilldiffusionalongthecorrespond- ingstressgradient. Inotherwordsour‘pullers’(activecross-linkers)usethecontinuumenvironment(passiveactin network)asamediumthroughwhichtheyinteractandself-organize. Weemphasizethatthecontractionmechanismofpolarizationandmotility(Rechoetal.,2013,2014)isconcep- tually very close to chemotaxis, however, instead of chemical gradients, the localization and motility is ultimately drivenbytheself-inducedmechanicalgradients. Morespecifically,thepullerspropelthepassivemediumbyinflict- ingcontractionwhichcreatesanautocatalyticeffectsincethepullersarethemselvesadvectedbythismedium(Mayer etal.,2010). Theinevitablebuildupofmechanicalgradientsintheseconditionsislimitedbydiffusionwhichresists therunawayandprovidesthenegativefeedback. Afterthesymmetryofthestaticconfigurationisbrokeninthecon- ditionswheremattercancirculate,theresultantcontraction-drivenflowensurestheperpetualrenewalofthenetwork andthenfrictionalinteractionwiththeenvironmentallowsforthesteadytranslocationofthecellbody. The next natural question is how such steady translocations can be halted. For instance, if motility initiation is contraction-driven, canmotilityarrestbealsocontractiondrivenandwhatasteadilymovingcellcandoinorderto stopandsymmetrize? Severalcomputationalmodelsprovidedanindicationthatmotilityinitiationandmotilityarrest mayberelatedtoare-entrantbehaviorofthesamebranchofmotileregimes(KruseandJu¨licher,2003;Tjhungetal., 2012; Recho et al., 2013; Giomi and DeSimone, 2014). To make the link between motility initiation and motility arrestmoretransparentwestudyinthispaperananalyticallytractableproblemwhichcapturesthecomplexityofthe underlyingphysicalphenomena. Whilemostoftheelementsoftheproposedmodel(Rechoetal.,2013,2014)have been anticipated by some comprehensive computational approaches (e.g. Rubinstein et al., 2009), it was previously notapparentthattheinitiationofmotility,steadytranslocationandthearrestofmotilitycanbeallcapturedinsucha minimalsetting. Our model of lamellipodial cell motility is based on a 1D projection of the complex intra-cellular dynamics on the direction of locomotion. In the interest of analytical transparency, we decouple the dynamics of actin and myosinbyassuminginfinitecompressibilityofthecross-linkedactinnetwork(Julicheretal.,2007;Rubinsteinetal., 3 2009). To ensure that the crawling cell maintains its size, we introduce a simplified cortex/osmolarity mediated quasi-elastic interaction between the front and the back of the self-propelling fragment (Banerjee and Marchetti, 2012; Barnhart et al., 2010; Du et al., 2012; Loosley and Tang, 2012); a comparison of such mean field elasticity withmoreconventionalbulkelasticitymodelscanbefoundinRechoandTruskinovsky(2013). Weremarkthatthe couplingbetweenthefrontandtherearofthefragmentmayalsohaveanactiveoriginresultingfromdifferentratesof polymerizationanddepolymerizationattheextremitiesofthelamellipodium(RechoandTruskinovsky,2013;E´tienne etal.,2014). Inotherrespectsweneglectactiveprotrusion(pushers). Wealsoviewadhesionasfullypassive. Despite the unavoidable oversimplifications associated with these assumptions, we show that our model repro- ducesquantitativelythemotilityinitiationpatterninfishkeratocytesandrevealsacrucialroleplayedincellmotility bythenonlocalfeedbackbetweenthemechanicsandthetransportofactiveagents. Italsoprovidescompellingevi- dencethatboth,theinitiationofmotilityanditsarrest,maybefullycontrolledbytheaveragecontractilityofmotor proteins. Moreprecisely, weshowthattheincreaseofcontractilitybeyondawelldefinedthresholdleadstoabifurcation fromastaticsymmetricsolutionofthegoverningsystemofequations(ofKeller-Segeltype)toanasymmetrictrav- eling wave (TW) solution corresponding to steadily moving cells. While several TW regimes may be available at the same value of parameters, we show that stable TW solutions localize motors at the trailing edge of the cell in agreement with observations (Verkhovsky et al., 1999; Csucs et al., 2007; Lombardi et al., 2007; Yam et al., 2007; Vicente-Manzanaresetal.,2009;Poinclouxetal.,2011). Moreover,weshowthatifadhesionwiththeextra-cellular substrate is sufficiently low, the increase of motor-induced contraction may induce transition from the steady state TWsolutionbacktoastaticsolution. Thisre-symmetrizationtransition,leadingtothemotilityarrest,canbedirectly associatedwiththebehaviorofkeratocytespriortocelldivisionandourmodelshowsthatsuchre-entrantbehavior canbeensuredby‘pullers’withoutanyengagementofeitheractiveprotrusionorliquidcrystalelasticity. Thepaperisorganizedasfollows. InSection2,wepresentadiscrete“modelofamodel”whichconveysthemain ideas of our approach in the simplest form. In Section 3, we develop a continuum analogue of the discrete model, study its mathematical structure and pose the problem of finding the whole set of TW solutions incorporating both staticandmotileregimes. InSection4,allstaticsolutionsoftheTWproblemarefoundanalytically. InSection5,we studythefinestructureofmultiplebifurcationsproducingmotilesolutionsfromthestaticonesandidentifyparametric regimeswhenthesebifurcationsbecomere-entrant. InSection6,weinvestigatenumericallytheinitialvalueproblem whichallowsustoqualifysomeofthemotileTWsolutionsasattractors. Thereconstructionthebackgroundturnover of actin, which takes place in our model without active protrusion at the leading edge, is discussed in Section 7. In Section 8, we demonstrate that our model can quantitatively match the experiments carried on keratocytes. The lastSectionhighlightsourmainconclusionsandmentionssomeoftheunsolvedproblems;threeappendicescontain materialoftechnicalnature. Some of the results of this paper have been previously announced in two pre-publications (Recho et al., 2013, 2014) but without any details. In addition to providing a necessary background for Recho et al. (2013, 2014), here we develop a new discrete model, investigate the nonlocal nature of the coupling between mechanics and diffusion ofactiveagents, giveathoroughanalysisofthestaticregimes, studythebifurcationpointsbyusingtheLyapunov- Schmidt reduction technique, investigate the non-steady problem numerically, generalize the model to account for nonlineardependenceofcontractilestressonmotorconcentrationandprovideadetailedquantitativecomparisonof themodelwithexperiment. 2. Thediscretemodel Ourpointofdepartureisaconceptualdiscretemodelelucidatingthemechanismofcontraction-drivencrawling and emphasizing the role of symmetry breaking in achieving the state of steady self propulsion. This ”model of a model”allowsustoclarifytheroleofdifferentcomponentsofthecontraction-dominatedmotilitymachineryandlink theproposedmechanismwiththepreviousworkonoptimizationofthecrawlingstrokeirrespectiveoftheunderlying microscopicprocesses(e.g.DeSimoneandTatone,2012;Nosellietal.,2013). Itdoesnot,however,addressdirectly themainissuesofmotilityinitiationandmotilityarrestthatrequiremoreelaborateconstructions. Recallthatincrawlingcells,the‘motorpart’containingcontractingcytoskeleton(lamellipodium),isathinactive layer located close to the leading edge of the cell, see Fig. 1. We assume that all mechanical action originates in 4 lamellipodiumandthatfromthemechanicalviewpointtherestofthecell,includingthenucleus,canbeinterpretedas cargo.Themaintaskwillbetodevelopamodeloffreelymovinglamellipodiumwhichweschematizeasasegmentof activegelinviscouscontactwitharigidbackground.Theactinnetworkinsidethegeliscontractedbymyosinmotors whichleadstoaninternalflowopposedbytheviscousinteractionwiththebackground. Theunidirectionalmotionin alayeradjacenttothebackgroundthatultimatelypropelsthecellisaresultoftheasymmetryofcontraction. Figure1: Conceptualdiscretemodelofthemotilitymechanisminacrawlingkeratocytecell. Atoymodelelucidatingthispointinvolvesthreerigidblocksofsizel placedinafrictionalcontactwitharigid b support, characterized by the viscous drag coefficient ξ. The neighboring blocks are connected by active pullers (forcedipoles)exertingcontractileforces. Theessentiallongrangeinteractionsrepresentingglobalvolumeconstraint (due to passive elastic structures and osmotic effects, see Section 3) are modeled by a linear spring with stiffness k connecting the first and the last block. To regularize the problem we place in parallel with contractile elements additionaldashpotscharacterizedbytheviscositycoefficientη. Intheabsenceofinertia,wecanthenwritetheforce balanceequationsintheform −l ξx˙ +kx3−x1−L0 +χ −ηx˙1−x˙2 =0 −l ξbx˙ 1−χ +χL0 −ηx˙2−1x˙1 −ηx˙l2b−x˙3 =0 (1) −bl ξx˙2 −k1x3−x12−L0 −χlb −ηx˙3−x˙lb2 =0, b 3 L0 2 lb where x (t),x (t),x (t)arethecurrentpositionsoftheblocksand L isthereferencelengthofalinearspring. This 1 2 3 0 springdescribesthemembrane-cortex‘bag’aroundthelamellipodiumallowingtheinhomogeneouscontractiontobe transformedintoaprotrudingforce. Weassumethatpolarizationhasalreadytakenplaceandthereforethecontractile forcedipolesχ ≥ 0andχ ≥ 0actingbetweenthetwopairsofblocksarenotthesameχ (cid:44) χ . Thepolarization 1 2 1 2 itselfrequiresadditionalconstructsandwillbeaddressedlater. System(1)canberewrittenasthreedecoupledequationsforthelengthofouractivesegmentL(t)= x (t)−x (t), 3 1 itsgeometriccenterG(t)=(x (t)+x (t))/2andthepositionofacentralblockx (t)representingtheinternalflow: 3 1 2 −l ξ(1+l2/l2)L˙ =χ +χ +2k(L/L −1) b 0 b 1 2 0 2l ξ(1+3l2/l2)G˙ =χ −χ (2) b 0 b 1 2 −l ξ(1+3l2/l2)x˙ =χ −χ b 0 b 2 1 2 (cid:112) where l = η/ξ is the hydrodynamic length scale which will ultimately play the role of a regularizing parameter. 0 Thefirstequationshowsthatthelengthisconvergingtoasteadystatevalue: L = L (cid:2)1−(χ +χ )/(2k)(cid:3). ∞ 0 1 2 Noticethatinordertoavoidthecollapseofthelayerduetocontraction,itisnecessarytoensurethatthespringhas sufficientlylargestiffnessk>(χ +χ )/2.WealsoobservethatindependentlyofthevalueoftheevolvinglengthL(t), 1 2 thevelocityofthegeometricalcenterofourtrainofblocksV isalwaysthesame χ −χ V =G˙ = 1 2 . (3) 2l ξ(1+3l2/l2) b 0 b Onecanseethatthesystemcanmoveasawholeonlyifχ (cid:44) χ ,whichemphasizesthecrucialroleformotilityof 1 2 thepolarizationandtheensuinginhomogeneityofcontraction. 5 Weobservethatthemiddleblockmovesinthedirectionoppositetothemotionofthecenterofthesystemwith a constant velocity x˙ = −2V. Therefore, it takes a finite time ∼ L /(3V) for the central block to collide with the 2 ∞ Figure2: (a)Schematicrepresentationofthemotionofindividualparticles(blocks)formingthemotorpartofacrawlerinasteadystateregime (threeparticlecase). Trajectoriesinspacetimecoordinatesoftheparticlesx1 (magenta,OBCEF), x2 (green,ABDEG)andx3 (red,ACDFG); dashedlinesshowthejumppartsofthecrawlingcycle. Continuousflowshavetoovercomefrictionwhilethejumpsareassumedtobefriction free.(b)Aclosedloopconstitutingonefullstrokeintheparameterspace(x2−x1,x3−x2).Thetimeofonefullstroke(AtoG)isTs=L∞/Vand thedistancetraveledbythecrawlerperstrokeisVTs=L∞. block at the rear. Beyond this time, system (1) formally collapses and additional assumptions are needed to extend the dynamics beyond the collision point. The origin of the problem is our focus on the layer adjacent to the rigid backgroundandtheneglectoftheglobalflowofactin. To make the model more adequate we have to take into consideration that while the flow of F-actin (polymer- izedorfilamentousactin)iscontinuousalongthecontactsurface,thecytoskeletalnetworkdisintegratesintoG-actin (unpolymerizedmonomers)atthetrailingedgeandreintegratesfromtheavailableG-actinattheleadingedge. The polymerizationinduceddepletionofG-actinattheleadingedgeiscompensatedbythediffusivecounter-flowofactin monomersfromthebackofthecelltoitsfront. Thiscounter-flowcannotbedescribeddirectlyinthe1Dsetting. Itcanbemodeled,however,inanindirectwaybymassandmomentumpreservingperiodicboundaryconditions allowing F-actin to disappear at the rear and reappear in the front. This situation is rather typical for continuum mechanicswhereunresolvedspatialscalesareoftenreplacedbybalance-law-preservingjump/singularityconditions asinthecaseofshockwaves,cracktipsandboundarylayers. Morespecifically,toaccountforglobalcirculation(turnover)ofthecytoskeletoninaonedimensionalsetting,we assumethatthereisasingularsourceofactinatthefrontofthecellthatiscompensatedbytheequivalentsingular masssinkofactinattherearofthecell. Thisassumptionallowsustoclosethetreadmillingcycle,eventhoughthe details of the discontinuous part of the cycle, involving both the polymerization reaction and the diffusive transport ofmonomers,arenotexplicitlyresolvedinthemodel. WeessentiallypostulatethatthereisapoolofG-actinwhich is replenished as fast as it is depleted and that the resulting reverse flow of actin is synchronous with the direct flow. Under these assumptions the reverse flow is viewed as passive and and is assumed to be driven exclusively by inhomogeneous contraction. In particular, we neglect active propulsion on free boundaries due to growth and lesseningofthenetwork. Wedescribetheseprocessesinourtoymodelbyassumingthepossibilityofcreationanddestructionoftheblocks. Ourgoalistoaccountforthefactthatactinpolymerizesattheleadingofthecell(whereblocksareassembled)and depolymerizes at the trailing edge of the cell (where blocks are disassembled). We offer two interpretations of the underlyingcontinuousprocessintermsofdiscreteblocksemphasizingdifferentsidesofsuchpassivetreadmilling. Inafirstinterpretation,weassumethatasaresultofeachcollisionablockattherearisinstantaneouslyremoved fromthechainandatthesametimeanidenticalblockisaddedatthefront. Inotherwords, each(equilibrium)de- polymerizationeventattherearismatchedbyan(equilibrium)polymerizationeventatthefront. Hereweimplicitly refertotheexistenceofastationarygradientofchemicalpotentialofactinmonomersandofalargepoolofmonomers ready to be added to the network at the front as soon as one of them is released at the rear. The ’instantaneous’ reappearanceofthedisappearingblocksshouldbeunderstoodasameantomodeltheoverallcontinuityoftheflow. 6 The structure of the resulting stroke in the t,x plane and in the x − x ,x − x plane is shown in Fig. 2. One 2 1 3 2 can see that each block maintains its identity through the whole cycle and that its trajectory involves a succession ofcontinuoussegmentsdescribedby(1)thatareinterruptedbyinstantaneousfrictionlessjumpsfromthereartothe front. Notice that in this interpretation the blocks can change order and the condition x < x < x is not always 1 2 3 satisfied. Forinstance,whentheblocksx andx collideatpointB,theblockx disappearsattheback(pointB)and 1 2 1 reappearsatthefront(pointC)aheadoftheblockx . Thisjumpmimicsthefrictionlesspartofthetreadmillingcycle. 3 Similarly, when when the block x collides with the block x at point D, the latter reappears at the point E ahead 3 2 of the block x . This interpretation is attractive because it allows one to trace the trajectories of the blocks through 1 subsequenttreadmillingcycles. Itis,however,abitmisleadingbecauseinrealitytheblockthatdisappearsattheback andtheblockwhichinstantaneouslyreappearsatthefrontaredefinitelynotthesameeventhoughtheyareidentical. According to a second interpretation, illustrated in Fig. 3, the middle block is the only one to undergo cycling motion. As a result, the ordering x < x < x is always preserved and the distances between the first two blocks 1 2 3 l = x −x andthelasttwoblocksl = x −x canbeonlypositive. Wecanalternativelysaythatnowthenotations 1 2 1 2 3 2 x ,x ,x indicate positions only and can refer to different blocks in different times. In this interpretation, when the 1 2 3 middleblockshitstherearone,itisthemiddleblockthatgetsrecycledtothefrontwhiletherearonekeepsmoving continuously. Figure3: Schematicrepresentationofthecontinuous(α,β)andthejump(β,α)partofthecrawlingstroke. Thezeroarealoopinl1,l2 plane illustratingthestrokeisshownin(a).Theloopisnotsymmetricbecausecontinuousflowhavetoovercomefrictionwhilethejumpsareassumed tobefrictionfree. The‘tankthread’analogyin(b)isnotfullyadequatebecausethe‘departing’blocksatpointβ,thatenterthepoolofactin monomers,andthearrivingblocksatpointα,thataresimultaneouslytakenfromthesamepool,arenotthesame. In coordinates (l ,l ) the cycle collapses on a single line, which is traveled continuously in one direction and 1 2 discontinuously in the other direction, see Fig. 3(a). Notice that the internal parameters l (t) and l (t) undergo a 1 2 periodic sequence of extensions and contractions which resemble the mechanism propelling the swimming sheet (Taylor,1951)anditscrawlinganalogue(DeSimoneandTatone,2012). Themaindifferenceisthatinourcasethe propulsionisachievedbecauseoftheasymmetryoffrictionforcesactinginthedifferentphasesofthestroke. More specifically, we assume that during the continuous phase of the cycle the blocks move with friction (polymerized filamentsexperienceeffectivedragtransmittedbyfocalcontacts),whileduringthediscontinuousphasethedissipation (associated with reaction and diffusion) can be neglected. The situation is remotely analogous to that of a rotating ‘tank tread’, see Fig. 3(b), even though in reality the disappearing block and the appearing block are not the same. This interpretation is closer to the physical picture where the points of the membrane (cortex) represented by two side blocks move with a constant speed ensuring that the cell maintains its length. We reiterate that both discrete interpretationsareschematicandwillbebackedlaterinthepaperbyanappropriatecontinuummodeling. Sincetheobtainedexpressionforvelocity(3)remainsfiniteinthelimitl /l →0itappearsthatthedashpotsplay 0 b aredundantroleinthismodelandcanbedropped. Toillustratetheroleofthedashpotswenowconsiderthecaseof N coupledblocks. Then,theforcebalanceforthecentralblocks j∈[2,N−1]reads −l ξx˙ −χ +χ −ηx˙j−x˙j−1 −ηx˙j−x˙j+1 =0. b j j−1 j l l b b 7 Thissystemofequationscanbewritteninthematrixform, Tx˙ =b, (4) wherewedenotedbyx˙ theunknownvectorx˙ ,...,x˙ . Thetri-diagonalmatrix 1 N T= −(20001+ ll0b22) −(2.100.+. llb022) .0101.. −(2.001.+. llb022) −(20010+ lb2) l2 0 describestheviscouscouplingandfrictionalinteractionwiththebackgroundwhilethevector b= ξllb02 χ−Nχ−χ11N+−χ−12σσ−−...00χχ−−2Nξ−ξlllblb10202xx˙˙1N with σ = −k(x − x −L )/L carries the information about the active forcing, the mean field type elasticity and 0 N 1 0 0 the boundary layer effects. To find the solution x˙, we need to invert the matrix T and then solve a system of two coupledlinearequationsx˙ =(Rb) andx˙ =(Rb) whereR=T−1. ThecomponentsofthematrixRcanbefound 1 1 N N explicitly(Meurant,1992) cosh((N+1− j−i)λ)−cosh((N+1−|j−i|)λ) R = , i,j 2sinh(λ)sinh((N+1)λ) whereλ=arccosh(1+l2/(2l2)).Knowingthe‘velocityfield’,wecannowcomputethesteadystatevalueofthelength b 0 L∞ = L01− (cid:80)(cid:80)NjN=−1−11ccoosshh((λλ((jj−−NN//22))))χkj. j=1 From this formula we see again that a finite stiffness is necessary to prevent the collapse of the system under the actionofcontractilestresses: assumingforinstancethatχ =χweobtainthelowboundfortheadmissibleelasticity i modulusk>χ. ThesteadyvelocityV =(x˙ +x˙ )/2ofthegeometricalcenterofthesystemcanbealsocomputedexplicitly N 1 l (cid:80)N−1sinh(λ(j−N/2))χ V =− b j=1 j. 2ηsinh(λN/2) WhenN iseven,bydenotingM = N/2,wecanrewritethisexpressionintheform V =−lb(cid:80)Mj=−11sinh(jλ)(χM+j−χM−j). 2ηsinh(λM) 8 fromwhereitisclearthat(asinthecaseofthreeblocks)thesymmetryofthevectorχwithrespecttothecentermust bebrokenforthesystemtobeabletoself-propel. Ifwenowformallydropthedashpotsbyassumingthatl = 0weobtainsimilarexpressionsforthevelocityand 0 forthesteadystatelengthasinthethreeblock(N =3)case χ −χ (cid:18) χ +χ (cid:19) V = N−1 1,L = L 1− 1 N−1 . (5) 2ξl ∞ 0 2k b Thereasonbehindthissimilarityisthat,inthislimit,the‘flow’fullylocalizesinthetwoboundaryelements,theonly onespresentinthecase N = 3. Moreprecisely,thesolutionofthediscreteproblemdependssingularlyontheratio l2/l2 and becomes progressively more concentrated around the boundary elements as l2/l2 → ∞. Such localization b 0 b 0 presentsacertainanalyticalproblemifweconsiderthecontinuumlimitwhen N → ∞andl → 0while Nl → L, b b whereListhecontinuumlengthoftheself-propellingsegment. Indeed,inthislimitthesizeofboundarylayerstends tozeroandthediscretesolutionconvergestoadistribution.Theviscosity,introducingalengthscalel ,isthusneeded 0 topreservetheregularityofsolutionsinthecontinuumlimit. Observealsothatthelimitsl →0(droppingdashpots)andl →0(continuumapproximation)donotcommute. 0 b Forinstance,ifwechoosein(5)themotordistributionwithallχ =0exceptforoneχ =χ∗ >0weobtainV =0for i 2 anyvalueofl ,inparticular,whenl →0westillhaveV →0. Ifinsteadwefirstperformthecontinuumlimitwhile b b keepingl finiteweobtain 0 L∞ = L01− (cid:82)0L∞co2skhl[(sxin−hL[L∞/2/()2/ll0])]χ(x)dx (6) 0 ∞ 0 and (cid:82)L∞sinh[(x−L /2)/l ]χ(x)dx V =− 0 ∞ 0 . (7) 2ηsinh[L /(2l )] ∞ 0 Ifwenowtakeadistributionofmotorsχ(x) = χ∗δ whereδ istheDiracmassat x = 0, whichcanbeviewedasa 0 0 continuumanalogofthediscretedistributionconsideredabove,weobtainthatV =χ∗/(2l2ξ).Theninthelimitl →0 0 0 weobtainthatV → ∞whichisinconflictwithourpreviousassertionthatV = 0,obtainedwhentheorderoflimits wasreversed. Assumenowthatl ∼ N−1 andhencel2/l2 ∼ 1/(ηN2). Onecanseethatthecrossoverscalingη ∼ N−2 b b 0 separatesthetwonon-commutinglimitingregimes. Forl2/l2 →∞(whichisadimensionlessversionofη(cid:28) N−2)the b 0 internalflowlocalizesintheboundarylayerswhosethicknessdisappearswhenη→0;whenwedroppedthedashpots inthethreeelementmodelwecouldnotdetectthislocalizationbecausethetwoboundarylinksweretheonlyones presentinthesystem. Intheotherlimitl2/l2 → 0(dimensionlessversionofη (cid:29) N−2)theviscositydominatesthe b 0 dynamicsandtheinternalflowbecomesuniform. In the next sections the formulas (6) and (7) will be obtained directly from the continuum model. We will also see more clearly how the introduction of the viscosity-related internal length scale and the associated nonlocality regularizesthecontinuummodelwhichotherwisehasonlysingularsolutions. 3. Thecontinuummodel Wemodelthelamellipodiumasaonedimensionalcontinuumlayerinfrictionalcontactwitharigidbackground, seeFig.4. Assumingthatthedragisviscousandneglectinginertiawecanwritetheforcebalanceintheform ∂ σ=ξv, (8) x whereσ(x,t)istheaxialstressandv(x,t)isthevelocityofthecytoskeleton(actinnetwork). Eq. (8)isthecontinuous analogofthesystem(4)inthediscreteproblem. Asinthediscretemodel,wedenotedbyξthecoefficientofviscousdrag. Suchrepresentationofactiveadhesion is usual in the context of cell motility (Rubinstein et al., 2009; Larripa and Mogilner, 2006; Julicher et al., 2007; Shaoetal.,2010;DoubrovinskiandKruse,2011;Hawkinsetal.,2011). Itimpliesthatthetime-averagedshearstress generated by constantly engaging and disengaging focal adhesions is proportional to the velocity of the retrograde flow,seeTawadaandSekimoto(1991)foramicroscopicjustification. Thereisevidence(bothexperimental(Gardel 9 Figure4: Schematicrepresentationofacontinuummodelsimulatinglamellopodialcontraction-drivencrawling. etal.,2008,2010;Mogilner,2009;Boisetal.,2011;SchwarzandGardel,2012)andtheoretical(DiMillaetal.,1991; Mietal.,2007))thatthisassumptiondescribesthebehavioroffocaladhesionsaccuratelyonlywhentheretrograde flowissufficientlyslow. Thebehaviorofadhesionstrengthinthebroaderrangeofvelocitiesisbiphasicandsincewe neglect this effect, we potentially misrepresent sufficiently fast dynamics. Observe though that for both keratocytes andPtK1cellstherateoflamellaractinretrogradeflowvariesfrom5to30nm.s−1 inusualexperimentalconditions (Schwarz and Gardel, 2012) and in this range a direct proportionality relationship between traction stress and actin retrogradeflowhasbeenconfirmedexperimentally(Gardeletal.,2008;Fournieretal.,2010;Barnhartetal.,2011). Thecharacteristicvelocityoftheflowinourproblemis20nm.s−1 whichfallswellintotheaforementionedinterval wherethebiphasicbehaviorcanbeneglected. FollowingKruseetal.(2006);Julicheretal.(2007);Boisetal.(2011)andHowardetal.(2011),weassumethat thecytoskeletonisaviscousgelwithactivepre-stress. Weneglectthebulkelasticstressesthatrelaxoveratimescale of1−10s(Rubinsteinetal.,2009;Wottawahetal.,2005;Koleetal.,2005;Panorchanetal.,2006;Mofrad,2009; RechoandTruskinovsky,2013)whichismuchshorterthancharacteristictimescaleofmotilityexperiments(hours). Wecanthendescribetheconstitutivebehaviorofthegelintheform σ=η∂ v+χc, (9) x where η is the bulk viscosity, c(x,t) is the mass concentration of motors and χ > 0 is a contractile pre-stress (per motor) representing internal activity. The constitutive relation (9) generalizes the parallel bundling of dashpots and contractileunitsinthediscretemodel. Theimportantnewelementisthatthestrengthofthecontractileelementsmay nowvaryinbothspaceandtime. Inthediscretemodeltheconcentrationofmotorscwasagivenasafunctionofx. Toobtainamoreselfconsistent descriptionweassumethatthefunctionc(x,t)satisfiesaconvection-diffusionequation(Rubinsteinetal.,2009;Bois etal.,2011;Barnhartetal.,2011;Wolgemuthetal.,2011;Hawkinsetal.,2011) ∂c+∂ (cv)= D∂ c, (10) t x xx whereDisthediffusioncoefficient.Behind(10)istheassumptionthatmyosinmotors,activelycross-linkingtheactin network,areadvectedbythenetworkflowandcanalsodiffusewhichaccountsforthermalfluctuations. To justify this model, consider a simple mixture model with two species representing attached and detached motors. Theattachedmotorsareadvectingwiththevelocityofactinfilamentsandcandetach. Thedetachedmotors arefreelydiffusing,andcanalsoattach. Supposethattheattachment-detachmentprocesscanbedescribedbyafirst orderkineticequation. Thenthesystemofequationsgoverningtheevolutionoftheconcentrationsofattachedc and a detachedc motorscanbewrittenas: d ∂tca+∂x(cav)=koncd−koffca ∂tcd−D˜∂xxcd =koffca−koncd wherekon andkoff arethechemicalratesofattachmentanddetachmentandD˜ isthediffusioncoefficientofdetached motors in the cytosol. Now suppose that the attachment-detachment process is chemically equilibrated and hence 10