ebook img

Mechanical Properties of Polycarbonate: Experiment and Modeling for Aeronautical and Aerospace Applications PDF

186 Pages·2019·44.991 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechanical Properties of Polycarbonate: Experiment and Modeling for Aeronautical and Aerospace Applications

Mechanical Properties of Polycarbonate This page intentionally left blank Series Editor Piotr Breitkopf Mechanical Properties of Polycarbonate Experiment and Modeling for Aeronautical and Aerospace Applications Weihong Zhang Yingjie Xu First published 2019 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Press Ltd Elsevier Ltd 27-37 St George’s Road The Boulevard, Langford Lane London SW19 4EU Kidlington, Oxford, OX5 1GB UK UK www.iste.co.uk www.elsevier.com Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. For information on all our publications visit our website at http://store.elsevier.com/ © ISTE Press Ltd 2019 The rights of Weihong Zhang and Yingjie Xu to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress ISBN 978-1-78548-313-4 Printed and bound in the UK and US Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1. Experimental Studies of Mechanical Properties of Polycarbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Uniaxial compression tests at various strain rates . . . . . . . . . . . . . 2 1.1.1. Experimental setup of quasi-static uniaxial compression tests . . . 2 1.1.2. Experimental setup of dynamic uniaxial compression tests . . . . . 4 1.1.3. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2. Uniaxial tension tests at various strain rates . . . . . . . . . . . . . . . . . 13 1.2.1. Experimental setup of quasi-static uniaxial tension tests . . . . . . . 13 1.2.2. Experimental setup of dynamic uniaxial tension tests . . . . . . . . 14 1.2.3. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3. Quasi-static uniaxial compression tests at various temperatures . . . . . 24 1.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 2. Constitutive Models of Polycarbonate . . . . . . . . . . . . . 29 2.1. Introduction to constitutive models for polycarbonate . . . . . . . . . . 30 2.1.1. Linear viscoelastic model . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.2. Viscoplastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2. Damage-based elastic–viscoplastic model for polycarbonate . . . . . . 42 2.2.1. Damage mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.2. Helmholtz free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.3. Fundamental laws of thermodynamics . . . . . . . . . . . . . . . . . 45 2.2.4. Constitutive equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3. Calibration of model parameters . . . . . . . . . . . . . . . . . . . . . . . 51 vi Mechanical Properties of Polycarbonate 2.4. Numerical integration algorithm . . . . . . . . . . . . . . . . . . . . . . . 55 2.4.1. Time-discrete framework . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.4.2. A simplified integration algorithm of the time-discrete model . . . 56 2.5. Implementation of the constitutive model in LS-DYNA . . . . . . . . . 59 2.6. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.6.1. Single-element tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.6.2. Cylinder compression simulation . . . . . . . . . . . . . . . . . . . . 72 2.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.8. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Chapter 3. Impact Simulation of Polycarbonates in Aeronautical and Aerospace Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.1. Simulation methodology and experimental verification . . . . . . . . . . 80 3.1.1. Impact simulation methodology . . . . . . . . . . . . . . . . . . . . . 80 3.1.2. Gas gun impact tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.1.3. Gas gun impact simulations . . . . . . . . . . . . . . . . . . . . . . . . 89 3.2. Impact simulation in aeronautical and aerospace applications . . . . . . 92 3.2.1. Polycarbonate windshield under bird impact . . . . . . . . . . . . . . 92 3.2.2. Polycarbonate visor under debris impact . . . . . . . . . . . . . . . . 104 3.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.4. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Chapter 4. Integrated Simulation of Injection Molding Process and Mechanical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.1. Yield stress modeling from thermal history . . . . . . . . . . . . . . . . . 114 4.1.1. Govaert’s yield stress model . . . . . . . . . . . . . . . . . . . . . . . 114 4.1.2. Experimental validations of the yield stress model . . . . . . . . . . 118 4.2. Setup of the Izod impact test . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3. Integrated simulation framework . . . . . . . . . . . . . . . . . . . . . . . 121 4.4. Integrated simulation of the injection molding process and Izod impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.4.1. Prediction of yield stress based on the injection molding simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.4.2. Constitutive model with the processing-induced inhomogeneity of yield stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.4.3. Impact simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.4.4. Simulation results and comparisons with experiments . . . . . . . . 127 4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.6. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Contents vii Chapter 5. Process Optimization of the Injection Molding for High Mechanical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.1. Integrated simulation framework of an astronaut’s helmet visor . . . . 135 5.1.1. Simulation of the injection molding process . . . . . . . . . . . . . . 136 5.1.2. Residual stress analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1.3. Yield stresses and constitutive model . . . . . . . . . . . . . . . . . . 139 5.1.4. Impact simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.2. BP neural network model . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.1. Generation of training data . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2.2. Training of the neural network . . . . . . . . . . . . . . . . . . . . . . 145 5.2.3. Neural network testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3. Process optimization by the particle swarm optimization algorithm . . 147 5.3.1. Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3.2. Basis of the PSO algorithm . . . . . . . . . . . . . . . . . . . . . . . . 148 5.3.3. Variable limits handling strategy . . . . . . . . . . . . . . . . . . . . . 149 5.3.4. Optimization result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 This page intentionally left blank Preface Polycarbonate is a kind of thermoplastic polymer with high transparency, high ductility, impact resistance and lightweightness. It has been widely used in transparent products of aeronautical and aerospace systems, including aircraft windshields, canopies and astronaut helmet visors. In order to design these products to satisfy complex service conditions, we should have a good understanding of the mechanical properties of polycarbonate that depend on a variety of factors such as strain rate, temperature and even the processing conditions. From the viewpoint of experiments, it is almost impossible to have a comprehensive understanding of the mechanical behavior of polycarbonate products and their evolution rules under various loading conditions. A promising way is to develop numerical modeling techniques. With the support of the National Key Research Program and the National Natural Science Foundation of China, our research group has been devoted to the development of numerical modeling techniques for studying the mechanical properties of polycarbonate with emphasis on aeronautical and aerospace applications. The main content of this book covers experimental characterization, material modeling, finite element simulation as well as the integrated analysis and design method for polycarbonate. This book contains six chapters: – the Introduction briefly presents the properties, processing and applications of polycarbonate. The purpose and layout of this book is also presented; – Chapter 1 presents the experiment facilities and methods used to characterize the mechanical properties of polycarbonate;

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.