Mechanical Performance of Sustainable Bio-Based Compounds Edited by Domenico Acierno and Antonella Patti Printed Edition of the Special Issue Published in Polymers www.mdpi.com/journal/polymers Mechanical Performance of Sustainable Bio-Based Compounds Mechanical Performance of Sustainable Bio-Based Compounds Editors Domenico Acierno Antonella Patti MDPI‚Basel‚Beijing‚Wuhan‚Barcelona‚Belgrade‚Manchester‚Tokyo‚Cluj‚Tianjin Editors DomenicoAcierno AntonellaPatti CRdCTecnologieScarl DepartmentofCivil RegionalCenterof EngineeringandArchitecture CompetenceNew (DICAr) TechnologiesforProductive UniversityofCatania ActivitiesScarl Catania Naples Italy Italy EditorialOffice MDPI St. Alban-Anlage66 4052Basel,Switzerland ThisisareprintofarticlesfromtheSpecialIssuepublishedonlineintheopenaccessjournalPolymers (ISSN 2073-4360) (available at: www.mdpi.com/journal/polymers/special issues/mech perform bio compd). For citation purposes, cite each article independently as indicated on the article page online and as indicatedbelow: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, PageRange. ISBN978-3-0365-6685-6(Hbk) ISBN978-3-0365-6684-9(PDF) © 2023 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AntonellaPattiandDomenicoAcierno SpecialIssue“MechanicalPerformanceofSustainableBio-BasedCompounds” Reprintedfrom: Polymers2022,14,4832,doi:10.3390/polym14224832 . . . . . . . . . . . . . . . . 1 AntonellaPattiandDomenicoAcierno Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and PotentialApplicationstotheTextilesWorld Reprintedfrom: Polymers2022,14,692,doi:10.3390/polym14040692 . . . . . . . . . . . . . . . . . 5 Jiraporn Phojaroen, Thitirat Jiradechakorn, Suchata Kirdponpattara, Malinee Sriariyanun, JatupolJunthipandSantiChuetor Performance Evaluation of Combined Hydrothermal-Mechanical Pretreatment of Lignocellulosic Biomass for EnzymaticEnhancement Reprintedfrom: Polymers2022,14,2313,doi:10.3390/polym14122313 . . . . . . . . . . . . . . . . 33 MohdSalahuddinMohdBasri,NorNadiahAbdulKarimShah,AlifdalinoSulaiman,Intan SyafinazMohamedAminTawakkal,MohdZuhairMohdNorandSitiHajarAriffinetal. Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products,andInnovativeTechnologiesUsedforBioactiveCompoundExtraction Reprintedfrom: Polymers2021,13,3503,doi:10.3390/polym13203503 . . . . . . . . . . . . . . . . 43 AnastasiyaO.Makarova,SvetlanaR.Derkach,AidarI.Kadyirov,SufiaA.Ziganshina,Mariia A.KazantsevaandOlgaS.Zuevaetal. SupramolecularStructureandMechanicalPerformanceof-Carrageenan–GelatinGel Reprintedfrom: Polymers2022,14,4347,doi:10.3390/polym14204347 . . . . . . . . . . . . . . . . 81 Mar´ıa A. Rodr´ıguez-Soto, Camilo A. Polan´ıa-Sandoval, Andre´s M. Arago´n-Rivera, Daniel Buitrago,Mar´ıaAyala-Vela´squezandAlejandroVelandia-Sa´nchezetal. Small Diameter Cell-Free Tissue-Engineered Vascular Grafts: Biomaterials and Manufacture TechniquestoReachSuitableMechanicalProperties Reprintedfrom: Polymers2022,14,3440,doi:10.3390/polym14173440 . . . . . . . . . . . . . . . . 97 Mohamad Khalid Khairunnisa-Atiqah, Kushairi Mohd Salleh, A. H. Ainul Hafiza, Nyak SyazwaniNyakMazlan,MarhainiMostaphaandSaraniZakaria Impact of Drying Regimes and Different Coating Layers on Carboxymethyl Cellulose Cross-LinkedwithCitricAcidonCottonThreadFibersforWoundDressingModification Reprintedfrom: Polymers2022,14,1217,doi:10.3390/polym14061217 . . . . . . . . . . . . . . . . 129 MuhammadZulhelmiMuktar,MuhammadAmeerulAminBakar,KhairulAnuarMatAmin, LailiCheRose,WanIryaniWanIsmailandMohdHasmizamRazalietal. Gellan Gum Hydrogels Filled Edible Oil Microemulsion for Biomedical Materials: Phase Diagram,MechanicalBehavior,andInVivoStudies Reprintedfrom: Polymers2021,13,3281,doi:10.3390/polym13193281 . . . . . . . . . . . . . . . . 151 Kawkb M. El-Tamimi, Dalia A. Bayoumi, Mohamed M. Z. Ahmed, Ibrahim Albaijan and MohammedE.El-Sayed The Effect of Salinized Nano ZrO Particles on the Microstructure, Hardness, and Wear 2 BehaviorofAcrylicDentureToothNanocomposite Reprintedfrom: Polymers2022,14,302,doi:10.3390/polym14020302 . . . . . . . . . . . . . . . . . 171 v VincenzoTitone,AntonioCorrentiandFrancescoPaoloLaMantia Effect of Moisture Content on the Processing and Mechanical Properties of a Biodegradable Polyester Reprintedfrom: Polymers2021,13,1616,doi:10.3390/polym13101616 . . . . . . . . . . . . . . . . 189 Pei-YiWong,AkiyoshiTakeno,ShinyaTakahashi,Sook-WaiPhangandAzizahBaharum CrazingEffectontheBio-BasedConductingPolymerFilm Reprintedfrom: Polymers2021,13,3425,doi:10.3390/polym13193425 . . . . . . . . . . . . . . . . 199 AmandaMattsson,ToveJoelsson,ArttuMiettinen,JukkaA.Ketoja,GunillaPetterssonand PerEngstrand Lignin Inter-Diffusion Underlying Improved Mechanical Performance of Hot-Pressed Paper Webs Reprintedfrom: Polymers2021,13,2485,doi:10.3390/polym13152485 . . . . . . . . . . . . . . . . 213 Simona-Nicoleta Mazurchevici, Alina Marguta, Bogdan Istrate, Marcelin Benchea, Mihai BocaandDumitruNedelcu Improvements of Arboblend V2 Nature Characteristics through Depositing Thin Ceramic Layers Reprintedfrom: Polymers2021,13,3765,doi:10.3390/polym13213765 . . . . . . . . . . . . . . . . 229 S.F.K.Sherwani,E.S.Zainudin,S.M.Sapuan,Z.LemanandA.Khalina Physical, Mechanical, and Morphological Properties of Treated Sugar Palm/Glass Reinforced Poly(Lactic Acid) HybridComposites Reprintedfrom: Polymers2021,13,3620,doi:10.3390/polym13213620 . . . . . . . . . . . . . . . . 251 Alexander Stadlmann, Andreas Mautner, Maximilian Pramreiter, Alexander Bismarck and UlrichMu¨ller InterfacialAdhesionandMechanicalPropertiesofWood-PolymerHybridCompositesPrepared byInjectionMolding Reprintedfrom: Polymers2021,13,2849,doi:10.3390/polym13172849 . . . . . . . . . . . . . . . . 277 Aranzazu Alejandra Ferrandez-Garc´ıa, Teresa Garcia Ortun˜o, Manuel Ferrandez-Villena, AntonioFerrandez-GarciaandMariaTeresaFerrandez-Garc´ıa EvaluationofParticleboardsMadefromGiantReed(ArundodonaxL.)BondedwithCementand PotatoStarch Reprintedfrom: Polymers2021,14,111,doi:10.3390/polym14010111 . . . . . . . . . . . . . . . . . 293 Siti Hajar Zuber, Nurul Ab. Aziz Hashikin, Mohd Fahmi Mohd Yusof, Mohd Zahri Abdul AzizandRokiahHashim Influence of Different Percentages of Binders on the Physico-Mechanical Properties of Rhizophora spp. Particleboard as Natural-Based Tissue-Equivalent Phantom forRadiationDosimetryApplications Reprintedfrom: Polymers2021,13,1868,doi:10.3390/polym13111868 . . . . . . . . . . . . . . . . 313 EdgarAdria´nFranco-Urquiza,YaelRamı´rezEscamillaandPerlaItzelAlca´ntaraLlanas Characterizationof3DPrintingonJuteFabrics Reprintedfrom: Polymers2021,13,3202,doi:10.3390/polym13193202 . . . . . . . . . . . . . . . . 329 AntonellaPatti,GianlucaCicalaandStefanoAcierno RotationalRheologyofWoodFlourCompositesBasedonRecycledPolyethylene Reprintedfrom: Polymers2021,13,2226,doi:10.3390/polym13142226 . . . . . . . . . . . . . . . . 341 vi DimakatsoMakwakwa,VincentOjijo,JayitaBandyopadhyayandSuprakasSinhaRay Flow Characteristics, Mechanical, Thermal, and Thermomechanical Properties, and 3D PrintabilityofBiodegradablePolylactideContainingBoehmiteatDifferentLoadings Reprintedfrom: Polymers2021,13,2019,doi:10.3390/polym13122019 . . . . . . . . . . . . . . . . 355 Ruta Vaitkeviciene, Joana Bendoraitiene, Rimgaile Degutyte, Mantas Svazas and Daiva Zadeike OptimizationoftheSustainableProductionofResistantStarchinRiceBranandEvaluationof ItsPhysicochemicalandTechnologicalProperties Reprintedfrom: Polymers2022,14,3662,doi:10.3390/polym14173662 . . . . . . . . . . . . . . . . 371 Marcos M. Hernandez, Nevin S. Gupta, Kwan-Soo Lee, Aaron C. Pital, Babetta L. Marrone andCarlN.Iversonetal. CharacterizationofPolyhydroxybutyrate-BasedCompositesPreparedbyInjectionMolding Reprintedfrom: Polymers2021,13,4444,doi:10.3390/polym13244444 . . . . . . . . . . . . . . . . 387 Tatjana Glaskova-Kuzmina, Olesja Starkova, Sergejs Gaidukovs, Oskars Platnieks and GerdaGaidukova DurabilityofBiodegradablePolymerNanocomposites Reprintedfrom: Polymers2021,13,3375,doi:10.3390/polym13193375 . . . . . . . . . . . . . . . . 401 OlesjaStarkova,AlisaSabalina,VandaVoikivaandAgneseOsite EnvironmentalEffectsonStrengthandFailureStrainDistributionsofSheepWoolFibers Reprintedfrom: Polymers2022,14,2651,doi:10.3390/polym14132651 . . . . . . . . . . . . . . . . 429 JetYinBoey,CheeKeongLeeandGuanSengTay FactorsAffectingMechanicalPropertiesofReinforcedBioplastics: AReview Reprintedfrom: Polymers2022,14,3737,doi:10.3390/polym14183737 . . . . . . . . . . . . . . . . 447 GeetaPokhrel,DouglasJ.GardnerandYousooHan Properties of Wood–Plastic Composites Manufactured from Two Different Wood Feedstocks: WoodFlourandWoodPellets Reprintedfrom: Polymers2021,13,2769,doi:10.3390/polym13162769 . . . . . . . . . . . . . . . . 475 Z.N.Diyana,R.Jumaidin,M.Z.Selamat,R.H.AlamjuriandFahmiAsyadiMdYusof ExtractionandCharacterizationofNaturalCellulosicFiberfromPandanusamaryllifoliusLeaves Reprintedfrom: Polymers2021,13,4171,doi:10.3390/polym13234171 . . . . . . . . . . . . . . . . 495 FaisalAmriTanjung,YalunArifinandRetnaAstutiKuswardani Influence of Newly Organosolv Lignin-Based Interface Modifier on Mechanical and Thermal Properties,andEnzymaticDegradationofPolylacticAcid/ChitosanBiocomposites Reprintedfrom: Polymers2021,13,3355,doi:10.3390/polym13193355 . . . . . . . . . . . . . . . . 511 Indra Surya, Kamaruddin Waesateh, Sitisaiyidah Saiwari, Hanafi Ismail, Nadras Othman andNabilHayeemasae Potency of Urea-Treated Halloysite Nanotubes for the Simultaneous Boosting of Mechanical PropertiesandCrystallizationofEpoxidizedNaturalRubberComposites Reprintedfrom: Polymers2021,13,3068,doi:10.3390/polym13183068 . . . . . . . . . . . . . . . . 527 BiankaNagy,NorbertMiskolcziandZolta´nEller Improving Mechanical Properties of PLA/Starch Blends Using Masterbatch Containing VegetableOilBasedActiveIngredients Reprintedfrom: Polymers2021,13,2981,doi:10.3390/polym13172981 . . . . . . . . . . . . . . . . 547 vii polymers Editorial Special Issue “Mechanical Performance of Sustainable Bio-Based Compounds” AntonellaPatti1,* andDomenicoAcierno2,* 1 DepartmentofCivilEngineeringandArchitecture(DICAr),UniversityofCatania,VialeAndreaDoria6, 95125Catania,Italy 2 RegionalCenterofCompetenceNewTechnologiesforProductiveActivitiesScarl,ViaNuovaAgnano11, 80125Naples,Italy * Correspondence:[email protected](A.P.);[email protected](D.A.) Theglobalproductionofplasticisincreasing,andplasticrepresentsoneofthemost popular materials, widespread in countless applications in commercial and industrial fields and everyday life. However, the main drawback to consider in this widespread employment is the difficulty of properly disposing of plastic at the end of its life cycle, anditsconsequentaccumulationinnature. Plasticwastes,includingmicroplastics(1to 5000µmparticles),accumulateintheoceans,seriouslyalteringthemarineenvironment andthelivesofitsinhabitants. Furthermore,millionsoftonsofCO areemittedintothe 2 atmosphere,generatedfromboththeproductionprocessesandthefinalincinerationatthe endoftheproducts’lifecycles. ThehugeemissionofgreenhousegasessuchasCO further 2 contributestoglobalwarmingbyinducingdramaticandirreversibleweatherchanges[1]. Inthiscontext,scientificresearchshouldfocusonalternativesolutionsforthesus- tainabledevelopmentofproductionprocesses,includingbiomasswastevalorization[2] andtheuseofgreentechnologies,avoidingrisksforhumanhealth,andlimitingtheen- vironmentalimpact. Forexample,fruitandvegetablewasteshavehighwatercontents andhighconcentrationsofbiodegradableorganicsubstances(e.g.,carbohydrates,lipids, Citation:Patti,A.;Acierno,D. andorganicacids). Thesecanbeefficientlyrecoveredandvalorizedassourcesofpolymer SpecialIssue“Mechanical materialsforactivepackaging[3]. Innovativetechnologies,involvingboththermaland PerformanceofSustainable non-thermalmethods,havebeenappliedfortheextractionandfortificationofsensitive Bio-BasedCompounds”.Polymers bioactivecompounds,asreportedinarecentreviewbyBasrietal.[3]. 2022,14,4832. https://doi.org/ ThepurposeofthisSpecialIssuewastocollectoriginalcontributions,bothresearch 10.3390/polym14224832 papersandreviews,showingrecentresultsand/orpositiveadvancesinthebehaviorofnew Received:8November2022 sustainablebiomaterialsunderappliedmechanicalstress,inbothstaticanddynamicmodes, Accepted:9November2022 andevaluatingthecharacteristicsofresistance,moduliand/orviscoelasticityinviewof Published:10November2022 potentialapplicationsinbiotechnologyandbiomedicine[4],tissueengineering[5],medical devices[6,7],surgicalordentalimplants[8],agriculture[9],packaging[3,10,11],textiles[1], Publisher’sNote:MDPIstaysneutral withregardtojurisdictionalclaimsin automotives[12–14],greenbuildingsandconstruction[15],radiationdosimetry[16],and publishedmapsandinstitutionalaffil- 3Dprinting[17–19]. iations. Wound-careproductshavebeenpreparedbyusinggellangumandvirgincoconutoil (VCO)anddevelopingmicroemulsion-basedhydrogels[7]. Theeffectsofdryingmethods on carboxymethyl cellulose and citric acid coating layers on cotton threads have been examinedin[6],withregardtowound-dressingapplications. Copyright: © 2022 by the authors. ArboblendV2Naturebiopolymer(whichfeaturesligninasabasicmatrix;asignificant Licensee MDPI, Basel, Switzerland. amountofpolylacticacid;andsmallamountsofnaturaladditivessuchasresins,waxes, This article is an open access article andshellac)wascoveredwiththreeceramicpowders: Amdry6420(Cr O ),Metco143 2 3 distributed under the terms and (ZrO 18TiO 10Y O ),andMetco136F(Cr O -xSiO -yTiO ). Thesesystemshavebeen 2 2 2 3 2 3 2 2 conditionsoftheCreativeCommons consideredsuitableforoperatinginharshconditions,suchasintheautomotiveindustry, Attribution(CCBY)license(https:// toreplaceplasticmaterials,inlightoftheiradhesionstrength;microindentationhardness; creativecommons.org/licenses/by/ andthermal,structural,andmorphologicalproperties[12]. 4.0/). 1 Polymers2022,14,4832 Bio-basedfiberscanbeefficientlyappliedinpackagingwhenthemechanicalproper- tiesofthecorrespondingfibermaterialsexceedthoseofconventionalpaperboard. Hot- pressing has been considered an efficient method for improving both the wet and dry strengthoflignin-containingpaperwebs. Differentpressingconditionsforwebsformed withthermomechanicalpulphavebeenstudiedbyMattssonetal.[11]. LigninandsoyflourhavebeenproposedasbindersinthefabricationofRhizophora spp. particleboard,foruseasaphantommaterialinradiationdosimetryapplications[16]. Anincreasedinternalbondstrengthwasconfirmedinsampleswithbinders,whichmay indicatebetterstructuralintegrityandphysicomechanicalstrength. Anewsustainablefoodsystembasedonricebranbiopolymers,inlightofthepotential applicationofultrasoundtechnologyforenhancingtheproductionofresistantstarch,was proposedin[20]. Anoverviewofrecentpotentialapplicationsofbiopolymersintextileswasprovided byPattiandAcierno[1]. Here,theuseofbiopolymersinvarioustextileprocesses,from spinningprocessestodyeingandfinishingtreatment,isproposedasapossiblesolutionfor reducingtheenvironmentalimpactofthetextileindustry. Bio-basedmaterialshavebeenconsideredabroadclassoforganiccomponentsranging fromagro-foodrenewableresources[3](e.g.,polysaccharidesandproteins),bacterialactivi- ties(e.g.,polyhydroxyalkanoates[21]),theconventionalsynthesisofbio-derivedmonomers (e.g.,polylactides[19]andpolyglycolides),orsyntheticmonomers(e.g.,polycaprolactones, polyesteramides,bio-polyester,etc.). These systems allow current needs to be met without dangerously burdening the futurefromecological,economic,andhumanpointsofview(sustainability). Biomaterialscanbeconvertedintochemicalelementsthroughtheactionofbiological orphysicalagents(biodegradability)andcanalsobetransformedintonaturalfertilizers foragriculture,oncedegraded(compostability). Aschematizationoffourtypesofplastics(fossil-basedandnon-biodegradableplastics, fossil-basedandbiodegradable,natural-basedandnon-biodegradable,andnatural-based andbiodegradable)isprovidedin[1]. However,applicationsofbiodegradablepolymerstoreplaceconventionalfossil-based plasticsremainlimitedbytheformer’spoorwaterresistance,high-dimensionalstability, andprocessability[22]. Mostbiodegradablesystemshavebeenmadefrompolyester. The maindrawbackofthesebiopolymersistheirabsorptionofmoisture,whichgivesriseto dangerousdegradationphenomena. Inthisperspective,Titoneetal.[9]investigatedthe effectofmoistureontheprocessingandmechanicalpropertiesofabiodegradablepolyester used for injection molding. The mechanical properties of sheep wool fibers under the impactofhumidairandUVirradiationhavebeenanalyzedin[23]. Theadditionofdifferentfillerscaneffectivelyimprovetheperformanceofbiopolymers byallowingthefunctionalpropertiesanddegradationratetobecontrolled[22]. Therehave beenvariousattemptstoimprovethetensile,flexural,hardness,andimpactstrengthof bioplasticsbyincorporatingreinforcementmaterials,suchasinorganicandlignocellulosic fibers [24]. PLA/boehmite composites were prepared using a twin-screw extruder by investigating the effects of the modification of polylactide using dicumyl peroxide as acrosslinkerandJoncryl(apatented,multifunctional,reactivepolymerwithimproved thermalstability/chainextendersforspecificfood-contactapplications)asachainextender onaboehmitedistribution[19]. Hernandezetal. investigatedtheeffectsofmicrospheres, carbonfibers,orpolyethyleneglycoladdedtopolyhydroxybutyrate(PHB)resinonthe thermalandmechanicalpropertiesofthefinalcompounds[21]. Apolymerfilmbasedon poly(lacticacid)(PLA)asamatrixandpolyaniline(PAni)asaconductivefillerwasprepared byWongetal.[10], toobtainantistaticproperties. Polyanilinewaschosenduetotoits goodbiocompatibilityandconductivityandexcellentperformanceincombinationwith aPLAmatrix. Thecrazingtechniquehasbeenappliedtoenhancethepolymer-degrading activityofenzymes. 2 Polymers2022,14,4832 For specific applications, it is important to prevent alterations upon contact with biologicalfluids,reactionswiththehumanbody,andthereleaseofharmfulspecies(bio- compatibility). Zirconiumoxidenanoparticles(ZrO NPs)havebeenrecognizedfortheir 2 highbiocompatibilityandresistancetowearandcorrosion.El-Tamimietal.[8]investigated theeffectsofaddingsalinizednanoZrO particlesonthemicrostructure,hardness,and 2 wearresistanceofacrylicdentureteeth. Sustainablecompoundscanalsobeobtainedfromnaturallignocellulosicfibers[14,17,18,25] orplantresidues[15,26].Birch(BetulapendulaRoth.)andbeech(FagussylvaticaL.)solidwood andplywoodwereovermoldedwithpolyamide6andpolypropylene(PP)toinvestigate themechanicalpropertiesandinterfacialadhesionin[14]. Woodflourandwoodpellets manufacturedfromsecondaryprocessingmillresidues,originatingfromwhitecedar,white pine,spruce-firandredmaple,wereaddedtopolypropylene,inthepresenceandabsence of the coupling agent maleic, to evaluate the tensile, impact, and flexural strength [25]. Woodflour,suppliedfromawood-processingfactory,wasaddedtorecycledpolyethylene thatwasmadebyregeneratingfilmsfromgreenhousecovers,toinvestigatetherheological responsesofthefinalmaterials[18]. Additionally,3D-printedobjectshavebeenprepared bydepositingaPLA-fusedfilamentontojutefabricsandmainlycharacterizedinterms oftheirtensileandflame-retardancyproperties[17]. Pandanusamaryllifolius(amember ofthePandanaceaefamily,abundantinsouth-eastAsiancountries)fiberswereextracted via a water-retting-extraction process and investigated as a potential fiber reinforcer in apolymercomposite[26]. However,themainchallengeinthefulldevelopmentofthesebio-basedcompounds,as replacementsfortraditional-plastic-basedformulations,isthelackofgoodmechanicalchar- acteristics,resultingfrompoorinterfacialadhesionbetweenthefillerandmatrix[13,27,28] orweakmiscibilitybetweenthetwophasesinblendpreparations[29]. Differentstrategies shouldbestudiedinordertoadaptthesesystemstoourneedsandimprovetheirefficiency. AnalkalineandbenzoylchloridetreatmentofsugarpalmfiberswasproposedbySherwani etal.[13]. Thecombinationoftreatedsugarpalmfiber/glassfiberreinforcedPLAhybrid compositesresultedingoodphysicalandmechanicalproperties,especiallyafterthefiber pretreatment. Thiscompositewasdesignedtoreplaceacrylonitrilebutadienestyrene(ABS) plastic in motorcycle batteries [13]. A new modifying agent based on polyacrylic-acid- grafted organosolv lignin was synthesized via free-radical copolymerization and used incombinationwithchitosanfiberinpolylactideacidinthestudybyTanjungetal.[27]. Urea-treatedhalloysitenanotubeshavebeenutilizedtoreinforceepoxidizednaturalrubber andtoimprovetheoverallpropertiesofcomposites[28]. Additivesbasedonvegetableoil (sunflower,rapeseed,andcastoroil)havebeensynthesizedandintroducedinPLA/starch blendstoimprovetheirmiscibility[29]. Funding:Thisresearchreceivednoexternalfunding. Acknowledgments:A.PattiandD.AciernowishtosincerelythankallparticipantstothisSpecial Issue,authors,reviewers,andmembersoftheEditorialOffice. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Patti,A.;Acierno,D.TowardstheSustainabilityofthePlasticIndustrythroughBiopolymers:PropertiesandPotentialApplications totheTextilesWorld.Polymers2022,14,692.[CrossRef][PubMed] 2. Phojaroen,J.;Jiradechakorn,T.;Kirdponpattara,S.;Sriariyanun,M.;Junthip,J.;Chuetor,S.PerformanceEvaluationofCombined Hydrothermal-Mechanical Pretreatment of Lignocellulosic Biomass for Enzymatic Enhancement. Polymers 2022, 14, 2313. [CrossRef][PubMed] 3. Basri,M.S.M.;Shah,N.N.A.K.;Sulaiman,A.;Tawakkal,I.S.M.A.;Nor,M.Z.M.;Ariffin,S.H.;Ghani,N.H.A.;Salleh,F.S.M.Progress intheValorizationofFruitandVegetableWastes:ActivePackaging,Biocomposites,By-Products,andInnovativeTechnologies UsedforBioactiveCompoundExtraction.Polymers2021,13,3503.[CrossRef][PubMed] 4. Makarova,A.O.;Derkach,S.R.;Kadyirov,A.I.;Ziganshina,S.A.;Kazantseva,M.A.;Zueva,O.S.;Gubaidullin,A.T.;Zuev,Y.F. Supramolecular Structure and Mechanical Performance of κ-Carrageenan-Gelatin Gel. Polymers 2022, 14, 4347. [CrossRef] [PubMed] 3