Mechanical BehaviourofEngineeringMaterials · · J. Rösler H. Harders M. Bäker Mechanical Behaviour of Engineering Materials Metals, Ceramics, Polymers, and Composites With320 Figuresand 32 Tables Prof.Dr.JoachimRösler Dr.-Ing.HaraldHarders TUBraunschweig Gartenstraße28 InstitutfürWerkstoffe 45468Mülheim LangerKamp8 Germany 38106Braunschweig,Germany [email protected] [email protected] Priv.-Doz.Dr.MartinBäker TUBraunschweig InstitutfürWerkstoffe LangerKamp8 38106Braunschweig,Germany [email protected] GermaneditionpublishedbytheTeubnerVerlagWiesbaden,2006,ISBN978-3-8351-0008-4 LibraryofCongressControlNumber:2007933503 ISBN978-3-540-73446-8 SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright. Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:2)c Springer-VerlagBerlinHeidelberg2007 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthors Production:IntegraSoftwaresServicesPvt.Ltd.,India Coverdesign:wmxDesignGmbH,Heidelberg Printedonacid-freepaper SPIN:11560166 42/3100/Integra 543210 By the authors Prof. Dr. rer.nat. Joachim Rösler, born in 1959, studied materials sci- enceattheUniversityStuttgart,Germany,from1979to1985.Afterearninga Ph.D. at the Max-Planck Institute for Metals Research, Stuttgart, Germany, and a post-doctoral fellowship at the University of California, Santa Barbara, usa, he worked at Asea Brown Boveri ag, Switzerland, from 1991 to 1996, being finally responsible for the material laboratory of abb Power Genera- tionLtd.,Switzerland.Since1996,hehasbeenprofessorformaterialsscience and director of the Institute for Materials Science at the Technical University Braunschweig, Germany. His main research interest lies in high-temperature materials, the mechanical behaviour of materials, and in materials develop- ment. Dr.-Ing.HaraldHarders,bornin1972,studiedmechanicalengineering, with a focus one mechanics and materials, at the Technical University Braun- schweig, Germany. In 1999, he worked as research scientist at the German AerospaceCenter(dlr).From1999to2004,heworkedasresearchscientistat the Institute for Materials Science at the Technical University Braunschweig, finishingwithaPh.D.thesis(2005)onfatigueofmetalfoams.Since2004, he has been working in the field of life time prediction and modelling of superalloys and coating systems at Siemens Power Generation in Mülheim an der Ruhr, Germany. Priv.-Doz. Dr. rer.nat. Martin Bäker, born in 1966, studied physics at the University Hamburg, Germany, from 1987 to 1993 and finished his Ph.D. at the II. Institute for Theoretical Physics of the University Hamburg in 1995, where he also worked as Post-Doc for a year. Since 1996, he has been working as research scientist at the Institute for Materials Science at the Technical University Braunschweig, Germany, focusing on continuum me- chanicssimulationofmaterials.In2004,hefinishedhis‘habilitation’(lecturer qualification) in the field of materials science. Preface Components used in mechanical engineering usually have to bear high me- chanicalloads.Itis, thus,ofconsiderableimportance for students ofmechan- ical engineering and materials science to thoroughly study the mechanical behaviourofmaterials.Therearedifferentapproachestothissubject:Theen- gineer is mainly interested in design rules to dimension components, whereas materials science usually focuses on the physical processes in the material occurring during mechanical loading. Ultimately, however, both aspects are important in practice. Without a clear understanding of the mechanisms of deformationinthematerial,theengineermightuncriticallyapplydesignrules andthuscause‘unexpected’failureofcomponents.Ontheotherhand,allthe- oretical knowledge is practically useless if the gap to practical application is not closed. Our objective in writing this book is to help in solving this problem. For this reason, the topics covered range from the treatment of the mechanisms of deformation under mechanical loads to the engineering practice in dimen- sioningcomponents.To meet the needs ofmodernengineering,whichis more thanevercharacterisedbytheuseofallclassesofmaterials,wealsoneededto discussthepeculiaritiesofmetals,ceramics,polymers,andcomposites.Thisis reflected in the structure of the book.On the one hand, there are some chap- ters dealingwiththe differenttypes ofmechanicalloadingcommontoseveral classes of materials (Chapter 2, elastic behaviour; Chapter 3, plasticity and failure; Chapter 4, notches; Chapter 5, fracture mechanics; Chapter 10, fa- tigue; Chapter 11, creep). The specifics of the mechanical behaviour of the differentmaterialclassesthatare due to their structure andthe resulting mi- crostructural processes are treated in separate chapters (Chapter 6, metals; Chapter 7, ceramics; Chapter 8, polymers; Chapter 9, composites). In this book, we thus aim to comprehensively cover the mechanical be- haviourofmaterials.Itaddressesstudentsofmechanicalengineeringandma- terialsscienceaswellaspractisingengineersworkingonthedesignofcompo- nents. Although the book contains an in-depth treatment of the mechanical behaviour and is thus not to be considered as an introduction, all topics can VIII Preface be understoodwithout muchpreviousknowledgeofmaterialphysics andme- chanics. To make it more accessible, the book starts with an introductory chapter on the structure of materials and contains appendices on tensors, crystal orientation, and thermodynamics. Inmanycases,wethoughtitdesirabletocoversometopicsingreaterdepth forthosereaderswithaspecialinterestinthesubjectmatter.Thesesections canbeskippedwithoutcompromisingtheunderstandingofothersubjects. These advanced sections are indented, as here, or, in the case of longer sections, marked with a ∗ on thesection number. Attheendofthemainpart,thereadercanfindsomeexerciseswithcomplete solutions.Theyserveasnumericalexamplesforthe topicscoveredinthe text and enable the reader to check their understanding of the subject. This book has evolved from lectures at the Technical University of Braunschweig on the mechanical behaviour of materials, aimed at graduate students, and was first published in German by the Teubner Verlag, Wies- baden. Due to its success and many encouraging remarks from readers, it seemed worthwhile to prepare an English edition of the book. In doing so, the nomenclature and some of the references were adapted to improve the usability of the book for English readers. We wish to thank Gu¨nter Lange who provided valuable help in prepar- ing this book.Furthermore,we want to thank Ju¨rgenHuber (CeramTec ag), Dr. Peter Neumann (Max-Planck-Institut fu¨r Eisenforschung GmbH), Volker Saß (ThyssenKrupp Nirosta GmbH), Johannes Stoiber (Allianz-Zentrum fu¨r Technik GmbH), the Lufthansa Technik ag, the Institut fu¨r Werkstofftech- nik of the Universita¨t Gh Kassel, the Institut fu¨r Fu¨ge- und Schweißtechnik of the Technische Universita¨t Braunschweig, the Institut fu¨r Baustoffe, Mas- sivbau und Brandschutz of the Technische Universita¨t Braunschweig,and all members of the Institut fu¨r Werkstoffe. Steffen Mu¨ller has made a signifi- cantcontributionto the lecture notes that werethe starting pointfor writing this book. Furthermore, we want to thank Allister James and Gary Merrill who proofread parts of the manuscript. We are also indebted to many read- ers who sent book evaluations to the Teubner Verlag that have been helpful in preparing the second German edition [123]. The Teubner Verlag kindly gave the permission to publish an English translation. We finally want to thank the Springer publishing company for the cooperation in preparing this edition. Braunschweig, Joachim R¨osler Mu¨lheim an der Ruhr, Harald Harders May 2007 Martin Ba¨ker Contents 1 The structure of materials ................................. 1 1.1 Atomic structure and the chemical bond.................... 1 1.2 Metals ................................................. 5 1.2.1 Metallic bond..................................... 5 1.2.2 Crystal structures ................................. 7 1.2.3 Polycrystalline metals.............................. 14 1.3 Ceramics ............................................... 15 1.3.1 Covalent bond .................................... 16 1.3.2 Ionic bond........................................ 18 1.3.3 Dipole bond ...................................... 19 1.3.4 Van der Waals bond ............................... 19 1.3.5 Hydrogen bond ................................... 20 1.3.6 The crystal structure of ceramics .................... 21 1.3.7 Amorphous ceramics............................... 22 1.4 Polymers ............................................... 23 1.4.1 The chemical structure of polymers.................. 24 1.4.2 The structure of polymers .......................... 25 2 Elasticity .................................................. 31 2.1 Deformation modes ...................................... 31 2.2 Stress and strain ........................................ 32 2.2.1 Stress............................................ 32 2.2.2 Strain............................................ 34 2.3 Atomic interactions...................................... 37 2.4 Hooke’s law............................................. 39 2.4.1 Elastic strain energy ............................... 42 ∗2.4.2 Elastic deformation under multiaxial loads1........... 43 ∗2.4.3 Isotropic material ................................. 46 1 Sections with a title marked by a ∗ contain advanced information which can be skipped without impairing the understanding of subsequent topics. X Contents ∗2.4.4 Cubic lattice...................................... 50 ∗2.4.5 Orthorhombic crystals and orthotropic elasticity....... 53 ∗2.4.6 Transversally isotropic elasticity..................... 54 ∗2.4.7 Other crystal lattices .............................. 55 ∗2.4.8 Examples ........................................ 55 ∗2.5 Isotropy and anisotropy of macroscopic components.......... 57 2.6 Temperature dependence of Young’s modulus ............... 60 3 Plasticity and failure ...................................... 63 3.1 Nominal and true strain.................................. 64 3.2 Stress-strain diagrams.................................... 68 3.2.1 Types of stress-strain diagrams...................... 68 3.2.2 Analysis of a stress-strain diagram................... 73 3.2.3 Approximation of the stress-strain curve.............. 81 3.3 Plasticity theory ........................................ 83 3.3.1 Yield criteria ..................................... 84 3.3.2 Yield criteria of metals............................. 86 3.3.3 Yield criteria of polymers........................... 92 3.3.4 Flow rules........................................ 93 3.3.5 Hardening........................................ 97 ∗3.3.6 Application of a yield criterion, flow rule, and hardening rule ....................................103 ∗3.4 Hardness ...............................................107 ∗3.4.1 Scratch tests......................................108 ∗3.4.2 Indentation tests ..................................108 ∗3.4.3 Rebound tests ....................................110 3.5 Material failure .........................................110 3.5.1 Shear fracture ....................................111 3.5.2 Cleavage fracture..................................114 3.5.3 Fracture criteria...................................116 4 Notches ...................................................119 4.1 Stress concentration factor................................119 4.2 Neuber’s rule ...........................................122 ∗4.3 Tensile testing of notched specimens .......................125 5 Fracture mechanics ........................................129 5.1 Introduction to fracture mechanics.........................129 5.1.1 Definitions .......................................129 5.2 Linear-elastic fracture mechanics ..........................131 5.2.1 The stress field near a crack tip .....................131 5.2.2 The energy balance of crack propagation .............134 5.2.3 Dimensioning pre-cracked components under static loads..................................142 5.2.4 Fracture parameters of different materials ............144 5.2.5 Material behaviour during crack propagation..........146 Contents XI ∗5.2.6 Subcritical crack propagation .......................150 ∗5.2.7 Measuring fracture parameters ......................152 ∗5.3 Elastic-plastic fracture mechanics..........................158 ∗5.3.1 Crack tip opening displacement (ctod) ..............158 ∗5.3.2 J integral ........................................159 ∗5.3.3 Material behaviour during crack propagation..........161 ∗5.3.4 Measuring elastic-plastic fracture mechanics parameters 163 6 Mechanical behaviour of metals............................165 6.1 Theoretical strength .....................................165 6.2 Dislocations ............................................166 6.2.1 Types of dislocations ..............................166 6.2.2 The stress field of a dislocation......................168 6.2.3 Dislocation movement..............................170 6.2.4 Slip systems ......................................173 6.2.5 The critical resolved shear stress ....................178 6.2.6 Taylor factor......................................182 6.2.7 Dislocation interaction .............................184 6.2.8 Generation, multiplication and annihilation of dislocations.......................................185 6.2.9 Forces acting on dislocations........................187 6.3 Overcoming obstacles ....................................189 6.3.1 Athermal processes ................................190 6.3.2 Thermally activated processes.......................193 6.3.3 Ductile-brittle transition ...........................196 6.3.4 Climb............................................196 6.3.5 Intersection of dislocations..........................197 6.4 Strengthening mechanisms................................198 6.4.1 Work hardening...................................198 6.4.2 Grain boundary strengthening ......................200 6.4.3 Solid solution hardening............................203 6.4.4 Particle strengthening..............................209 6.4.5 Hardening of steels ................................218 ∗6.5 Mechanical twinning .....................................223 7 Mechanical behaviour of ceramics .........................227 7.1 Manufacturing ceramics ..................................228 7.2 Mechanisms of crack propagation..........................229 7.2.1 Crack deflection...................................230 7.2.2 Crack bridging ....................................230 7.2.3 Microcrack formation and crack branching............231 7.2.4 Stress-induced phase transformations ................232 7.2.5 Stable crack growth ...............................234 ∗7.2.6 Subcritical crack growth in ceramics .................234 7.3 Statistical fracture mechanics .............................236