MECHANICAL BEHAVIOR OF GAS METAL ARC WELDS AND LITHIUM- ION BATTERY MODULE SPECIMENS by Catherine M. Amodeo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in the University of Michigan 2015 Doctoral Committee: Professor Jwo Pan, Chair Professor Elijah Kannatey-Asibu Professor Wei Lu Professor Jason McCormick © Catherine M. Amodeo All Rights Reserved 2015 Dedication To my family, friends, and colleagues who have supported and encouraged me throughout this process. ii Acknowledgements I would like to express my sincere appreciation and gratitude to my advisor Professor Jwo Pan for his guidance, encouragement, support and unlimited patience throughout this research work. His intellectual support at various stages of this work has been invaluable in enabling me to carry this work to completion. I would like to thank my doctoral committee Professor Elijah Kannatey-Asibu, Professor Wei Lu, and Professor Jason McCormick for their guidance and valuable suggestions. I also thank the academic support staff at the Department of Mechanical Engineering for their invaluable assistance at various stages. I am very grateful to Professor Jwo Pan’s research group, especially Dr. Jaewon Lee, Dr. William Lai, and Dr. Md Yusuf Ali. Dr. Jaewon Lee’s research on the modeling of failure modes of laser welds in which he adopted the Gurson model to simulate the necking/shear failure of the load carrying sheets under tensile dominant loading conditions provided valuable background without which chapter 2 may not have been possible. I would like to thank Dr. William Lai for his work in examining the grain structures near the fracture surfaces of the gas metal arc weld specimens and for providing optical microscope images of the fracture surfaces for chapter 2. Also, chapter 4 would not have been possible without the experimental results provided from Dr. Lai’s research. The helpful discussions with Dr. Md Yusuf Ali regarding chapter 4 are very much appreciated. I also express my thanks and well wishes to Dr. Van-Xuan Tran, Dr. iii Kamran Asim, Dr. Kulthilda Sripichai, Dr. Teresa Franklin, Seung Hoon Hong, Katherine Avery, Nikhil Kotasthane, and Shin-Jang Sung. I would like to express my special thanks and gratitude to W. Randy Tighe, Director Product Engineering and J. David Kotre, Chief Engineer of Johnson Controls who encouraged me to persist through to the completion of my degree. Their encouragement and generous support throughout this process was above and beyond their duties and are very much appreciated. I would also like to thank Mark Harris, Principal Engineer of Johnson Controls for his help in performing the experiments for chapter 2. I am very grateful to Johnson Controls for providing financial support to complete the academic and research work. Finally, I would like to thank my family and friends for all of their support and encouragement which has made this dissertation possible. iv Table of Contents Dedication .......................................................................................................................... ii Acknowledgements .......................................................................................................... iii List of Figures ................................................................................................................. viii List of Tables ................................................................................................................... xv Chapter 1 Introduction..................................................................................................... 1 1.1. Part 1: Failure of gas metal arc welds in lap-shear specimens .......................... 1 1.2. Part 2: Development of a computational model for simulations of representative volume element specimens of lithium-ion battery modules ............... 3 Chapter 2 Failure Modes of Gas Metal Arc Welds in Lap-Shear Specimens of High Strength Low Alloy (HSLA) Steel ................................................................................... 5 2.1. Introduction ......................................................................................................... 5 2.2. Experiments ........................................................................................................ 8 2.2.1. Un-notched lap-shear specimens ........................................................... 8 2.2.2. Quasi-static test of the un-notched lap-shear specimens ..................... 10 2.2.3. Notched lap-shear specimens .............................................................. 10 2.2.4. Quasi-static tests of notched lap-shear specimens .............................. 11 2.2.5. Failure mechanism of notched lap-shear specimens ........................... 12 v 2.2.6. Weld geometry and micro-hardness of welded joints ......................... 13 2.3. Finite element model......................................................................................... 15 2.3.1. Finite element method ......................................................................... 15 2.3.2. Material stress-strain curves ................................................................ 16 2.3.3. Gurson’s yield function ....................................................................... 18 2.4. Results of the finite element analyses ............................................................... 21 2.4.1. Load-displacement response ............................................................... 21 2.4.2. Failure prediction ................................................................................ 22 2.5. Discussions on material properties and weld geometry .................................... 25 2.5.1. Finite element analysis for a parametric study .................................... 25 2.5.2. Effect of the material stress-strain curves ........................................... 26 2.5.3. Effect of the geometric characteristics of the heat affected zone ........ 28 2.5.4. Effect of weld metal geometry ............................................................ 31 2.6. Discussion and conclusions .............................................................................. 33 References ................................................................................................................ 36 Chapter 3 Analytical and Computational Stress Intensity Factor Solutions for Gas Metal Arc Welds in Lap-Shear Specimens ................................................................... 75 3.1. Introduction ....................................................................................................... 75 3.2. Specimens ......................................................................................................... 77 3.3. Analytical stress intensity factor solutions ....................................................... 77 3.4. Finite element analysis ...................................................................................... 81 3.5. Computational stress intensity factor solutions ................................................ 82 3.6. Discussions ....................................................................................................... 85 3.7. Conclusions ....................................................................................................... 89 vi References ................................................................................................................ 91 Chapter 4 Computational Models for Simulations of Lithium-Ion Battery Modules under Constrained Compression Tests ....................................................................... 108 4.1. Introduction ..................................................................................................... 108 4.2. Experiments .................................................................................................... 112 4.2.1. Module RVE specimens .................................................................... 112 4.2.2. Quasi-static and dynamic tests of the module RVE specimens ........ 113 4.3. Finite element analysis .................................................................................... 115 4.3.1. Finite element model ......................................................................... 115 4.3.2. Boundary and loading conditions ...................................................... 117 4.3.3. Contact modeling .............................................................................. 120 4.3.4. Material modeling of the heat dissipater ........................................... 122 4.3.5. Material modeling of the homogenized cells .................................... 123 4.3.6. Material modeling of the foam .......................................................... 124 4.4. Computational results ..................................................................................... 125 4.4.1. Results of the quasi-static finite element analysis ............................. 125 4.4.2. Results of the dynamic finite element analysis ................................. 127 4.5. Discussion ....................................................................................................... 128 4.6. Conclusions ..................................................................................................... 130 References .............................................................................................................. 132 Chapter 5 Conclusions .................................................................................................. 153 vii List of Figures Figure 2.1. (a) Wide lap-shear specimens with the weld length varying from 10 mm to 40 mm. (b) The normalized weld strengths (per weld length) for specimens of various thicknesses. ................................................................43 Figure 2.2. A schematic of (a) an un-notched lap-shear specimen and (b) a notched lap-shear specimen. .......................................................................................44 Figure 2.3. The failure location of an un-notched lap-shear specimen. The failure occurred in the base metal, away from the weld region. ..............................45 Figure 2.4. A close-up view near the weld of a notched lap-shear specimen. ..................46 Figure 2.5. The test setup for notched lap-shear specimens. ............................................47 Figure 2.6. (a) A failed specimen machined from a wide specimen with a weld length of 10 mm and (b) a failed specimen machined from a wide specimen with a weld length of 30 mm. .......................................................48 Figure 2.7. A scanning electron micrograph and close-up views of the failure surface from a specimen machined from a wide specimen with a weld length of 15 mm. ...........................................................................................49 Figure 2.8. A scanning electron micrograph and close-up views of the failure surface from a specimen machined from a wide specimen with a weld length of 30 mm. ...........................................................................................50 viii Figure 2.9. Micrographs of the cross sections of seven weld specimens with weld lengths of (a) 10 mm, (b) 15 mm, (c) 20 mm, (d) 25 mm, (e) 30 mm, (f) 35 mm, and (g) 40 mm. ...........................................................................51 Figure 2.10. The Vickers hardness values in the weld region for specimens with short and long welds. The indentations were carried out at an interval of about (a) 350 µm and (b) 200 µm. ...........................................................52 Figure 2.11. (a) The top view and (b) the side view of a finite element model of a notched lap-shear specimen. .........................................................................53 Figure 2.12. An optical micrograph of the cross section of a 10 mm weld specimen. .....54 Figure 2.13. An optical micrograph of the cross section of a 40 mm weld specimen. .....55 Figure 2.14. The finite element meshes near the weld for (a) the short weld model and (b) the long weld model with the different material sections. ...............56 Figure 2.15. The engineering stress-strain curves for the base metal from three representative sheet specimens and the resulting curve from the finite element analysis. ...........................................................................................57 Figure 2.16. A finite element model of the tensile specimen. ..........................................58 Figure 2.17. The tensile stresses as functions of the plastic strain for the base metal, the heat affected zones, and the weld metal used in (a) the short weld and (b) the long weld finite element models.................................................59 Figure 2.18. The load-displacement curves of the tested lap-shear specimens compared to those of the finite element analyses, with and without the consideration of void nucleation and growth for (a) the short weld model and (b) the long weld model. .............................................................60 ix
Description: