ebook img

Measuring Two Angularities on a Single Jet PDF

40 Pages·2014·2.52 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measuring Two Angularities on a Single Jet

Measuring Two Angularities on a Single Jet Andrew Larkoski, Ian Moult, Duff Neill QCDEvolution2014 May 13, 2014 AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet Motivation Angular and energy resolutions of modern detectors unprecedented. With high luminosity one can probe increasingly detailed questions about the structure of QCD radiation. Such detailed questions often require take the form of multi-differential cross-sections, often on a single “sector.” AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet Drell-Yan: (cid:126)q and Beam Thrust T Process: pp l+l−+X and measure: → Lepton-Pair Transverse Momentum (cid:126)q . T Lepton-Pair Invariant Mass Q2. Beam thrust: τ = (cid:80)i|p(cid:126)Ti|e−|yi| pp(cid:174)l(cid:43)l(cid:45)(cid:43)X l− dΣ dΤdqT2dQ^2 qT,Τ(cid:60)(cid:60)Q^2 Τ P H P¯ l+ qT (cid:200) (cid:200) AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet Drell-Yan: (cid:126)q and Beam Thrust T Factorization in region (cid:126)q2 Qτ Q2: T ∼ (cid:28) (cid:90) dσ = σ dYdt dt d2k d2k H(Q2)δ(2)((cid:126)q (cid:126)k (cid:126)k ) dτd(cid:126)q2dQ2 0 a b Ta Tb T − Ta− Tb T (cid:16) e−Yt +eYt (cid:17) B (x ,(cid:126)k ,t )B (x ,(cid:126)k ,t )S τ a b n a Ta a n¯ b Tb b − Q Q x = e±Y a,b E cm 1110.0839: Jain, Procura, Waalewijn See also: 0708.2833 J. Collins, T. Rogers, and A. Stasto, 0807.2430 T. C. Rogers. AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet Drell-Yan and Fully Unintegrated PDFs Operators and phase space of region (cid:126)q2 Qτ Q2: T ∼ (cid:28) Bn(x,(cid:126)kT,t)=θ(p−)(cid:104)p(p−)|χ¯n(0)δ(xp−−P−)δ(2)((cid:126)kT −P(cid:126)T)δ(t−xp−P+)χn(0)|p(p−)(cid:105) 1 S(τ)= Nctr(cid:104)0|T{Sn(0)Sn†¯(0)}δ(τ−τˆ)T¯{Sn†(0)Sn¯(0)}|0(cid:105) (cid:16) (cid:17) Resumsαnlnm τ termsinperturbationtheory. s Q Bn(x,(cid:126)kT,t)correctlycomputeslowerboundaryonly. pp(cid:174)l(cid:43)l(cid:45)(cid:43)X dΣ dΤdqT2dQ^2 qT2(cid:126)QΤ(cid:60)(cid:60)Q^2 Τ FU(cid:45)PDFPhaseSpace qT (cid:200) (cid:200) AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet Drell-Yan and TMD-PDFs Now factorize in region (cid:126)q τ Q T | | ∼ (cid:28) (cid:90) dσ = σ dYd2k d2k d2k H(Q2)δ(2)((cid:126)q (cid:126)k (cid:126)k ) dτd(cid:126)q2dQ2 0 Ta Tb Ts T − Ta− Tb T (cid:16) (cid:17) B (x ,(cid:126)k )B (x ,(cid:126)k )S τ,(cid:126)k n a Ta n¯ b Tb Ts Q x = e±Y a,b E cm AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet Drell-Yan and TMD-PDFs Operators and phase space of region (cid:126)q τ Q: T | | ∼ (cid:28) Bn(x,(cid:126)kT)=θ(p−)(cid:104)p(p−)|χ¯n(0)δ(xp−−P−)δ(2)((cid:126)kT −P(cid:126)T)χn(0)|p(p−)(cid:105) 1 S(τ,(cid:126)kT)= Nctr(cid:104)0|T{Sn(0)Sn†¯(0)}δ(τ−τˆ)δ(2)((cid:126)kT −P(cid:126)T)T¯{Sn†(0)Sn¯(0)}|0(cid:105) (cid:16) (cid:17) Resumsαnlnm |q(cid:126)T| termsinperturbationtheory. s Q S(τ,(cid:126)kT)correctlycomputesupperboundary. pp(cid:174)l(cid:43)l(cid:45)(cid:43)X dΣ dΤdqT2dQ^2 qT(cid:126)Τ(cid:60)(cid:60)Q^2 Τ Space Phase MD(cid:45)PDF T qT (cid:200) (cid:200) ThisisanSCETII factorization. AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet Drell-Yan: Beam thrust and (cid:126)q phase space T How do we interface the different factorization descriptions? (cid:40) dσ Bn(xa,q(cid:126)T,τ) τ Bn(xb,q(cid:126)T,τ) τ S(τ) = H ⊗ ⊗ dτd2(cid:126)qT Bn(xa,(cid:126)qT)⊗q(cid:126)T B(xb,(cid:126)qT)⊗q(cid:126)T S(τ,(cid:126)qT) pp(cid:174)l(cid:43)l(cid:45)(cid:43)X dΣ dΤdqT2dQ^2 qT,Τ(cid:60)(cid:60)Q^2 Τ DFs (cid:45)P D M T F U(cid:45) P D Fs q T (cid:200) (cid:200) AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet Drell-Yan: Beam thrust and (cid:126)q phase space T τ (cid:126)q phase space interpolates between EFT power countings: T − SCET SCET I II p Q(1,λ2,λ) p Q(1,λ2,λ) n n ∼ ∼ p Q(λ2,λ2,λ2) p Q(λ,λ,λ) us s ∼ ∼ Wrong soft or collinear function in a region wrong phase → space boundaries: pp(cid:174)l(cid:43)l(cid:45)(cid:43)X pp(cid:174)l(cid:43)l(cid:45)(cid:43)X dΣ dΣ dΤdqT2dQ^2 dΤdqT2dQ^2 qT2(cid:126)QΤ(cid:60)(cid:60)Q^2 qT(cid:126)Τ(cid:60)(cid:60)Q^2 Τ FU(cid:45)PDFPhaseSpace Τ TMD(cid:45)PDFPhaseSpace qT qT (cid:200) (cid:200) (cid:200) (cid:200) AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet Drell-Yan: Beam thrust and (cid:126)q phase space T τ (cid:126)q phase space interpolates between EFT power countings: T − SCET SCET I II p Q(1,λ2,λ) p Q(1,λ2,λ) n n ∼ ∼ p Q(λ2,λ2,λ2) p Q(λ,λ,λ) us s ∼ ∼ SCET has only UV renormalization group. I SCET also has rapidity resummation, e.g., CS eqn. II 1202.0814,Chiu,DN,Jain,Rothstein pp(cid:174)l(cid:43)l(cid:45)(cid:43)X dΣ dΤdqT2dQ^2 qT,Τ(cid:60)(cid:60)Q^2 Τ TMD(cid:45)PDFs FU(cid:45)PDFs qT (cid:200) (cid:200) AndrewLarkoski,IanMoult,DuffNeill MeasuringTwoAngularitiesonaSingleJet

Description:
Such detailed questions often require take the form of multi-differential cross-sections, often on a single “sector.” Andrew Larkoski, Ian Moult, Duff Neill.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.