Measuring the orbital angular momentum of light with time mapping and using it to probe higher dimensional states. by PaulJoseph Bierdz A dissertationsubmittedin partialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy (Physics) intheUniversityofMichigan 2014 DoctoralCommittee: AssistantProfessorHui Deng,Chair ProfessorPaul R. Berman ProfessorC¸agliyanKurdak ProfessorTheodoreB. Norris ProfessorDuncan G. Steel ©PaulJosephBierdz 2014 In memoryofmy mother. ii Acknowledgments First, Iwant to thankmy advisorHui. OutofBo, Rene´e and myselfwewere herfirsts. During our first summer, she spent countless hours in the lab training us and having a exorbitant amount of patience. I am embarrassed to think back about how long it took me toalignalaserintoafiber forthefirst time. But shewas notembarrassed ofmeand rather patiently encouraged me in all things. I also appreciate and am thankful for her allowing meto pursuemy owncuriosityin thescientificrealm whilestillfundingme. Hui was also immenselyapproachableand we hadmanyfruitful conversationabout whatit meansto be a scientist. Apart from work, she was friendly and would host annual parties at her house ortakeus outfor icecream every timetheundergraduates wouldleaveusat theend ofthe summer. Sheisarolemodelofsomeonewhocanbeincrediblypatient,incrediblyavailable and alsoincrediblybrilliantand successful. I would also like to thank my committee members, Professor Paul Berman, Professor C¸agliyan Kurdak, Professor Ted Norris and Professor Duncan Steel, for taking their time to allow me to present my research to them and their many useful comments. I also want tothank ProfessorLumingDuan forhisuseful commentsduringmyprelim. IwanttothankProfessorMilesPadgettfromtheUniversityofGlasgowforallthecool work that he has done with orbital angular momentum of light that has kept me interested in this field when my work was slow. I had the pleasure of meeting him and learned a lot duringourshortmeeting. Now for past and present members of Hui’s group. Our optics tables are filled with experiments, thanks to you all. I thank you for our conversations and your friendship. Thank you Rene´e Harton, Lei Zhang, Seckin Senlik, Minchuan Zhou, Zhaorong “Joey” Wang, Tyler Hill, Jinhai Chen, Hoon Kim and Glenn Leung. I want to thank Tyler in particular for all the interesting mathematical problems we worked on. And also Lei for iii reminding me to register for the pre-defense meeting with Rackham. Glenn, I wish you good luck. I also want to thank Connor Roncaioli and Minho Kwon for directly helping withmealotofmyexperiments. Oh wait, Iforgot someone! Bo Zhang! Hewouldbe really sad ifIdidn’tmentionhim, soI’ll givehimhisownparagraph. Thankyou Bo. ThankyousomuchforallthefriendsthatIhavemadehereattheUniversity: Michelle Adan,Sarah Anderson,MattBales, KevinBergemann, AlexBurgers,MidhatFarooq,Jake Ketchum, Jee Hyun Kim, Se Ryeon Lee, Yen Ting Lin, Gechuan Liu, Grant Meadors, Justin Nieusma, Ben Norman, Max Radin, Ryo Saotome, Tim Saucer, Chao Shen, Chris Trowbridge, Jia Xu, Yifan Zhang, Yuanyuan Zhang and Zhen Zhang. I want to especially thankMichelleandMattfortheirpracticalhelpwithfindingajobandwritingathesis;and thankYuanyuanforherhelp incritiquingmypresentations. To all the support staff in the physics department, you have been wonderful and really helped a panicked graduate student in times of need. I want to extend a special thanks to the Graduate Coordinator, Christina Zigulis who should also be considered my therapist, and JoeSheldon whoensured thesafety ofallmypackages includingfistbumps. ToAdamLausche. IamsothankfulthatImetyouandthatyouwereseveralyearsolder thanme. Youweremygraduatestudentmentor. Eventhoughyouwerenotinphysics,you pavedthepathfor me. To Dr. Don Lincoln, my advisor at Fermilab, who helped me apply to college and graduateschool,whogavememuchneededadviceaboutfindingajobaftergraduateschool and just being a general all around great guy and really inspired me to continue to be a scientist,evenifnotin highenergy. To JinJi,thecreatorofthisLATEX templateand alltheothercontributors1. ToProfessorTheoLasserandMatthiasGeissbu¨hlerfortheirMorgenstemningandother color-blindfriendlycolormapsforMATLAB[1]. 1http://www-personal.umich.edu/˜dalle/codes/thesis-umich/ iv Now I want to take some time to thank the various people that helped brought me to and throughoutgraduateschoolwhereIcould completethiswork. Tomymother. Shegavebirthtomeandraisedmeandinstilledinmetheimportanceof education. She would take us to the library almost every night to hang out and read books and let me check out any book, even if it seemed silly. So I would check a book half my sizefilled withgloriousimagesofstars,galaxiesandnebulaealongwithGo,Dog. Go![2]. She would feed my penchant for mathematics by buying me a small bag of marbles for every milestone I would make. She wanted all of my brothers and me to go to college. Well Mom,I’m gettingaPhD; Ididit,thankyou forgettingmethisfar. Imissyou. To my brothers, in our shared childhood and beyond. So many fights, but so many laughs. To my grandparents, who raised me after my parents’ deaths and also for being great grandparentsbefore thatand great-grandparents now;what adifferenceahyphenmakes! To theRuthenbergs. The best that I can say is that it’s complicated, but you knowwho youare and whyyouare here. To my wife Arina. Thank you for your all your support for these six long years. I have discovered you are truly a marvelous person, which these acknowledgements are too narrow tocontain. To Zoe¨ and Mia. Withoutyou,thisthesis probablywouldhavebeen finished sooneror withmorecontent,butifIhad thechancetogoback andmakethedecisionagain,I’dpick you every time. Zoe¨ I am so happy that you made me a father. I love playing with you, I loveteachingyouandIlovelovingyou. TheuniverseisamazingandIhopethatyou’llsee thatforyourselfandbeabletodiscoverasectionforyourselftoshoweveryone. AndMia, Ilookforward to meetingyou. There have been countless others, but I must get on with the rest of the thesis. I still thank you. And I thank you, yes you, the reader, for reading and I hope that you can learn somethingaboutorbitalangularmomentumoflight. v TABLE OF CONTENTS Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi ListofAppendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii ListofAbbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Chapter 1 OrbitalAngularMomentum ofLight . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 HistoryofOAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Lightand momentum . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Paraxial waveequation . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Laguerre-Gaussian and othersets ofmodes . . . . . . . . . . . . 3 1.2 QuantumNatureofOAM . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 EntanglementofOAM . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 ApplicationsofOAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 QuantumApplicationsofOAM . . . . . . . . . . . . . . . . . . 10 1.3.2 Enhanced ClassicalCommunication . . . . . . . . . . . . . . . . 12 1.3.3 ImagingwithOAM . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.4 Opticaltweezers . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 OutlineofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Measurement ofthe OrbitalAngularMomentum ofLight . . . . . . . . . . . 19 2.1 Pattern matchingmethods . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Modalmatching . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.2 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.3 Diffractionpatterns . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Filteringmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 vi 2.2.1 Cylindricallenses . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 Forked diffractiongrating . . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Vortexphaseplate . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.4 Q-plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 OAMbeam-splittermethods . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.1 Doveprism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.2 QuantumZenoInterrogator . . . . . . . . . . . . . . . . . . . . 38 2.3.3 Imagereformater . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4 Summary ofDetectionofOAM. . . . . . . . . . . . . . . . . . . . . . . 40 3 HighFidelity Detection of the Orbital Angular Momentum ofLight by Time Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 PrincipleoftheOAMspectrometer . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 Energy distribution . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Experimentalimplementation . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Analysisofthespectrometerperformance . . . . . . . . . . . . . . . . . 45 3.4.1 Laguerre-Gaussian modes . . . . . . . . . . . . . . . . . . . . . 46 3.4.2 Singlemodefibre . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.3 VPP/SLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.4 Limitingfactors offidelity . . . . . . . . . . . . . . . . . . . . . 51 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Effects ofmisalignmentonOrbital AngularMomentum . . . . . . . . . . . . 53 4.1 Define overlapintegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1.1 DerivationofVPP tensor . . . . . . . . . . . . . . . . . . . . . . 54 4.1.2 Overlapbetween Gaussianand LG . . . . . . . . . . . . . . . . 55 4.1.3 Overlapbetween Gaussianand VPP . . . . . . . . . . . . . . . . 56 5 ACompactOrbitalAngularMomentumSpectrometerUsingQuantumZeno Interrogation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 Imperfect OAMFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 Pinholespatialfilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 Discussionofresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 GeneralizedQuantum Zeno Interrogation . . . . . . . . . . . . . . . . . . . . 68 6.1 OriginalQuantumZeno Interrogation . . . . . . . . . . . . . . . . . . . 68 6.2 Serial Binary QZI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3 Weak ParallelQZI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.1 M = 1 bomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.2 M > 1 bombs . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.4 Strong Parallel QZI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 vii 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 viii LIST OF FIGURES 1.1 Thisfigureisdividedintotwosections: (left)intensityand(right)phase. More precisely, three rows and 10 columns. The columns represent different ℓ’s rangingfrom0to4,thenrepeatingforphase. Therowsrepresentdifferentp’s ranging from 0 to 2. Negativevalues ofℓ will havethesame intensity,but the phasewouldtwistin theoppositedirection. . . . . . . . . . . . . . . . . . . . 4 1.2 Top: The angular position ranging from all angles (open aperture), to narrow angularrange. Bottom: Thecorrespondingorbitalangularmomentumoflight (OAM)uncertaintywheretheoriginalstatebeforepassingthroughtheangular aperturewas ℓ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 A diagram of a vortex coronagraph. L1, L2, L3 are lens in the system. VC is the vortex coronagraph (acts like vortex phase plate (VPP) that adds the helically phase twist to the on-axis starlight (reddish-orange), but does not addmuchphasetwisttotheoff-axisbrowndwarf’sorextrasolarplanet’slight (greenish-blue). Sincetheon-axislightgetsahelical phasetwist,itwillfocus toan annularshapeandthusblockedbytheLyotstop. Theoff-axisextrasolar planet’slighttopassthroughand arriveat detectorD. . . . . . . . . . . . . . . 14 1.4 The image above is taken from a 1.5-meter portion of the Palomar Observa- tory’s Hale Telescope in California. The star’s intensity (HR8799) has been greatly suppressed and replaced with an X to indicate the position. The star is 120 light years away. The three planets, called HR8799b, c and d respec- tively are believed to be gas giants larger than Jupiter and orbiting the star at 24, 38 and 68 AU. For comparison, Jupiter is about 5 AU away from our Sun. This is the first image taken of extrasolar planets from a telescope this size. Imagecredit: NASA andJPL-Caltech and PalomarObservatory . . . . . 15 1.5 A cartoon of a particle trapped by a focused laser beam. (Left) The particle, as shown, is off-centered. There is a restoring force, the gradient force, that moves the particle towards the region of high intensity. This force is repre- sented by the red arrow. (Right) The particle is also off-centered, but is now trappedbyanorbitalangularmomentumoflight(OAM)beam. Itmovesalong the annulus because that is the region with highest intensity and will rotated abouttheopticalaxis,thusimpartingtheparticlewithorbitalangularmomen- tum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ix
Description: