ebook img

Measuring redshift-space distortions with future SKA surveys PDF

0.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measuring redshift-space distortions with future SKA surveys

Measuring redshift-space distortions with future SKA surveys Alvise Raccanelli1,2,3, Philip Bull4, Stefano Camera5,6, David Bacon7, Chris Blake8, Olivier Doré2,3, Pedro Ferreira9, Roy Maartens10,7, Mario Santos10,11,6, Matteo Viel12,13, Gong-bo Zhao14,7 1DepartmentofPhysics&Astronomy,JohnsHopkinsUniversity,3400N.CharlesSt., 5 Baltimore,MD21218,USA 1 0 2JetPropulsionLaboratory,CaliforniaInstituteofTechnology,PasadenaCA91109,USA 2 3CaliforniaInstituteofTechnology,PasadenaCA91125,USA n 4InstituteofTheoreticalAstrophysics,UniversityofOslo,P.O.Box1029Blindern,N-0315Oslo, a Norway J 5JodrellBankCentreforAstrophysics,TheUniversityofManchester,ManchesterM139PL,UK 5 1 6CENTRA,InstitutoSuperiorTécnico,UniversidadedeLisboa,Lisboa1049-001,Portugal 7InstituteofCosmology&Gravitation,UniversityofPortsmouth,PortsmouthPO13FX,UK ] O 8CentreforAstrophysics&Supercomputing,SwinburneUniversityofTechnology,POBox218, Hawthorn,VIC3122,Australia C 9Astrophysics,UniversityofOxford,DWB,KebleRoad,OxfordOX13RH,UK . h 10PhysicsDepartment,UniversityoftheWesternCape,CapeTown7535,SouthAfrica p - 11SKASA,4rdFloor,ThePark,ParkRoad,Pinelands,7405,SouthAfrica o 12INAF-OsservatorioAstronomicodiTrieste,ViaTiepolo11,34143,Trieste,Italy r t 13INFNsez. Trieste,ViaValerio2,34127Trieste,Italy s a 14NationalAstronomyObservatories,ChineseAcademyofScience,Beijing,100012,P.R.China [ 1 E-mail: [email protected] v 1 Thepeculiarmotionofgalaxiescanbeaparticularlysensitiveprobeofgravitationalcollapse. As 2 such, itcanbeusedtomeasurethedynamicsofdarkmatteranddarkenergyaswellthenature 8 3 ofthegravitationallawsatplayoncosmologicalscales. Peculiarmotionsmanifestthemselvesas 0 anoverall anisotropyinthemeasured clusteringsignalas afunctionofthe angletothe line-of- . 1 sight,knownasredshift-spacedistortion(RSD).Limitingfactorsinthismeasurementincludeour 0 5 abilityto modelnon-lineargalaxy motionsonsmall scalesandthe complexitiesofgalaxy bias. 1 Theanisotropyinthemeasuredclusteringpatterninredshift-spaceisalsodrivenbytheunknown : v distancefactorsattheredshiftinquestion,theAlcock-Paczynskidistortion.Thisweakensgrowth i X rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this r chapter we will briefly describe the scientific background to the RSD technique, and forecast a the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy cataloguesandintensitymapping,assessingtheircompetitivenesswithcurrentandfutureoptical galaxysurveys. AdvancingAstrophysicswiththeSquareKilometreArray June8-13,2014 GiardiniNaxos,Italy (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ RSDwiththeSKA 1. Introduction Oneofthebiggestchallengesofmoderncosmologyistounderstandtheacceleratedexpansion rateoftheUniverse. Anumberofproposalshavebeenputforward,themostnotableofwhichare the presence of dark energy or, alternatively, a modification to general relativity on cosmological scales. Radio surveys have been used to test these different hypotheses in the past, mainly using the integrated Sachs-Wolfe effect and the galaxy angular power spectrum (see e.g. Nolta et al. 2004; Raccanelli et al. 2008; Xia et al. 2010). With the new generation of radio arrays such as LOFAR(Rottgeringetal.2011)andASKAP(Johnstonetal.2008),andinpreparationtotheSKA, there is a growing interest in understanding how future radio surveys can constrain cosmological parameters,andmaybediscriminatebetweenthetwoscenariosdescribedabove. Someexamplesof theseinvestigationscanbefoundinRaccanellietal.(2012);Cameraetal.(2012);Raccanellietal. (2014). HerewefocusonhowtheproposedSKAsurveyswillbeabletoprovidemeasurementsof Redshift-SpaceDistortions(RSD),allowinginthiswaymeasurementsofcosmologicalparameters, andinparticularthegrowthofstructures. In this chapter, we will briefly review the physics of Redshift-Space Distortions and how we modeltheireffectonthepowerspectrum. Weinvestigatepotentialissuesandsystematicsandthen wepresentforecastsforthemeasurementswecanperformusingthedifferentproposedSKAsur- veys,focusinginparticularonmodelsdescribingthegrowthofstructures. Intwocomplementary chapters (Bull et al. 2015; Camera et al. 2015) are presented forecasts for the BAO and large- scale measurements, investigating how those can constrain dark energy models and primordial non-Gaussianity. 2. Thephysicsofthegrowthrate The presence of a dark energy component in the energy-density of the Universe (or the fact thatourtheoryofgravityneedstobemodifiedonlargescales),modifiesthegravitationalgrowthof large-scalestructures. Thelarge-scalestructureweseetracedbythedistributionofgalaxiesarises throughgravitationalinstability,whichamplifiesprimordialfluctuationsthatoriginatedinthevery earlyUniverse. Therateatwhichstructuregrowsfromsmallperturbationsoffersakeydiscriminant between cosmological models, as different models predict measurable differences in the growth rate of large-scale structure with cosmic time (e.g. Jain & Zhang 2008; Song & Percival 2008; Song&Koyama2008). Forinstance,darkenergymodelsinwhichgeneralrelativityisunmodified predict different large-scale structure formation compared to Modified Gravity models with the same background expansion (e.g. Dvali et al. 2000; Carroll et al. 2004; Brans 2000; Yamamoto etal.2008,2010). Thegrowthrate, f(a),asafunctionofscalefactoraisdefinedas: dlnδ (a) M f(a) ≡ , (2.1) dlna whereδ (a)istheamplitudeofthegrowingmodeofmatterdensityperturbations. Intheconfor- M malNewtoniangaugetheevolutionequationsforthevelocitypotentialθ andδ are: M δ˙ = 3(Φ˙ +H Ψ)−(cid:2)k2+3(H 2−H˙)(cid:3)θ , (2.2) M M θ˙ = −H θ +Ψ. (2.3) M M 2 RSDwiththeSKA Weusedotstodenotederivativeswithrespecttoconformaltime,andourconventionsforthemetric potentialsaredisplayedintheperturbedlineelement: ds2=a2(η)(cid:2)−(1+2Ψ)dη2+(1−2Φ)dxidx(cid:3) i whichsatisfy(inthequasi-staticregime)thefieldequations: 2∇2Φ=κa2µ(a,k)ρ¯ ∆ andΦ/Ψ= M M γ(a,k). Theparametersµ andγ encapsulatealltheinformationaboutdeviationfromGRformetric theoriesofgravity(Bakeretal.2011). Again,inthequasistaticregime,theevolutionequationforδ simplifiesto: M 3 δ¨ +H δ˙ − H 2Ω ξδ =0, (2.4) M M M M 2 where we have defined ξ ≡ µ/γ (which is equal to 1 in GR). Using x=lna as the independent variablewehave: (cid:32) (cid:33) H (cid:48) 3 (cid:48)(cid:48) (cid:48) δ + 1+ δ − Ω ξδ =0. (2.5) M H M 2 M M Primesdenotederivativeswithrespecttox. Wecanconvertthisintoanevolutionequationfor f : f(cid:48)+q(x)f + f2= 3Ω ξ, (2.6) 2 M where q(x)= 1[1−3ω(x)(1−Ω (x))]. The effect of the expansion rate (via q(x)) and modified 2 M gravity(viaξ)areexplicitinthetimeevolutionof f. 3. RedshiftSpaceDistortions MeasurementsofRSDplayedanimportantroleindevelopingthecurrentcosmologicalmodel, anditwillbeafundamentalpartofseveralfuturecosmologicalexperiments,becauseobservations of RSD in galaxy surveys are a powerful way to study the pattern and the evolution of the Large Scale Structure of the Universe (Kaiser 1987; Hamilton 1997), as they provide constraints on the amplitude of peculiar velocities induced by structure growth, thereby allowing tests of the theory ofgravitygoverningthegrowthofthoseperturbations. RSDhavebeenmeasuredusingtechniques based on both correlation functions and power-spectra (e.g. Peacock et al. 2001; Percival et al. 2004; Tegmark et al. 2006; Guzzo et al. 2008; Samushia et al. 2012; Samushia et al. 2013; Reid et al. 2010; Reid et al. 2012; Sánchez et al. 2012; Blake et al. 2010, 2011, 2012); the most recent analysescomefromBOSSDR11andGAMA(Samushiaetal.2014;Blakeetal.2013). 3.1 Formalism RSD arise because we infer galaxy distances from their redshifts using the Hubble law: the radialcomponentofthepeculiarvelocityofindividualgalaxieswillcontributetoeachredshiftand will be misinterpreted as being cosmological in origin, thus altering our estimate of the distances to them. The correction due to peculiar velocities can be used to set constraints on cosmological modelsandparameters,asitdependsonthecoherentlargescaleinfallofmattertowardoverdense regions. Therelationbetweentheredshift-spacepositionsandreal-spacepositionris: s(r)=r+v (r)rˆ, (3.1) r 3 RSDwiththeSKA wherev isthevelocityintheradialdirection. r TheRedshift-SpaceDistortions(RSD)correctionscomefromthefactthatthereal-spaceposi- tionofasourceintheradialdirectioninmodifiedbypeculiarvelocitiesduetolocaloverdensities; thiseffectcanbemodeledas(Kaiser1987;Hamilton1997): δs(k)=(cid:0)1+βµ2(cid:1)δr(k), (3.2) where,inthelinearregime,β isthequantitythatsolvesthelinearizedcontinuityequation: βδ+∇¯ ·v¯=0. (3.3) Here β = f/b, where b is the bias relating the visible to the underlying matter distribution (see Section3.3formoredetailsonit). For this reason, measuring f from RSD allows us to set constraints on cosmological models andparameters. 3.2 Thepowerspectrum The matter power spectrum depends on a variety of cosmological parameters, and for this reasonitsmeasurementhasbeenused(togetherwithitsFouriertransform,thecorrelationfunction) toconstraine.g. darkenergyparameters(Samushiaetal.2012),modelsofgravity(Raccanellietal. 2013),neutrinomass(dePutteretal.2012;Zhaoetal.2012),darkmattermodels(Cyr-Racineetal. 2014; Dvorkin et al. 2014), the growth of structures (Samushia et al. 2013; Reid et al. 2012), and non-Gaussianity(Rossetal.2013). Wedefinethepowerspectrumas: Ps(k,µ,z)=(cid:2)b(z)+ f(z)µ2(cid:3)2Pr(k,z)+P (z), (3.4) g m shot wherethesuperscriptsrandsindicaterealandredshift-space,respectively,andthesubscripts and m stands for matter and galaxies; µ is the angle with the line of sight. The shot noise contribution g istakentobe: 1 P (z)= . (3.5) shot n¯ (z) g The standard analysis of RSD makes use of the so-called Kaiser formalism (Equation 3.4), that relies on several simplifying assumptions, including considering only the linear regime and thedistantobserverapproximation;inSection3.4webrieflymentionsomepossibleextensionsof thismodel. InthisChapterwewillmakeuseoftheKaiserformula,butforadetaileddataanalysis somefurtherinvestigationswillbeneeded. 3.3 Bias While the distribution of galaxies is the observed quantity, the cosmological model directly predicts the statistical distribution of (dark) matter. The simplest assumption is that the galaxy distribution is a biased version of the underlying matter field, the so-called linear bias model, at positionx: δ (x)=bδ (x), (3.6) galaxies matter 4 RSDwiththeSKA with b a constant bias factor independent of a given smoothing scale R over which the density fields are calculated. This model is motivated by the fact that rare peaks in the density field (e.g. clustersofgalaxies)havetobemorestronglyclustered(i.e. biased)thanmatteritself (e.g.Kaiser 1984). Thisisasimplifyingassumptionandtherelationshipbetweengalaxiesandmatterismore complex: in fact, clustering properties of galaxies do depend on galaxies’ intrinsic features. For example the relation could be scale-dependent, nonlinear, stochastic, non-local, a function of the particularsampleofgalaxieschosen,afunctionofcosmictimeordependentonmanyotherphys- ical quantities (such as the gas temperature, environment, merging history, etc.). Thus, the above equationcanbegeneralizedtoamorecomplexform: δ (x)= f(δ (x)+ε), (3.7) galaxies matter withε embeddingallthedependenciesonphysicalquantitiesotherthandarkmatterdensity. Currently, analytical efforts to model the bias are first attempting to model the halo-matter bias by relying on: the peak background split formalism in a coarse grained perturbation theory framework (e.g. Schmidt et al. 2013, and references therein); the excursion set approach also for non gaussian initial conditions as in Musso et al. (2012); perturbation theories (Bernardeau et al. 2001). Particular emphasis is also put on unveiling the scale dependence of the bias, out to the largestscales,thatcanbeapowerfulprobefortestinginitialconditionsand/orthenatureofgravity and it has been recently shown that also in the standard cosmological model (ΛCDM) the halo bias is scale dependent due to general relativitistic effects and not only to non-gaussianities (e.g. Baldaufetal.2011). A comprehensive analysis of halo bias is presented in Smith et al. (2006) by comparing the resultsofN-bodysimulationswithsemi-analyticalprescriptionsbasedonperturbationtheoryand thehalomodel,alsorelyingonthecross-spectrumbetweenmatterandhaloes. Intheworkabove, itisshownthatthenon-linearitiesofthebiasaredeterminednotonlybythenon-linearevolutionof thepowerspectrumbutalsobythefactthathaloesofdifferentmassesarebiasedinadifferentway. InarecentstudybasedonN-bodysimulationscomplementedbyagalaxyformationmodel,Crocce etal.(2013)foundanearlyscaleindependentbiasatthelevelof∼2−5%atscaleslargerthan20 Mpc/hforamockLuminousRedGalaxiessample. Overall, simulations show that on scales larger than ≈30 Mpc/h the simplest linear parame- terization works reasonably well, so for the purposes of this Chapter, we will assume the bias to belinearandconstantatthescalesofinterestsforSKAforecastsasinEquation3.6;however,this assumptionshouldbecarefullytestedinthefuture. 3.4 BeyondtheKaisermodel Equation 3.4 is valid only on linear scales, assumes the plane-parallel approximation and is derivedusingNewtonianphysics;thisapproximationisvalidwhenconsideringpairseparationsin alimitedrangeofscales,largeenoughtoavoidnon-lineareffect(i.e. (cid:38)30Mpc)andarerelatively small (up to ∼200 Mpc). If one wants to extend analyses of RSD to smaller and larger scales, therearemodificationstothestandardformalismtotakeintoaccount. 5 RSDwiththeSKA 3.4.1 Non-linearities Within dark matter haloes, peculiar velocities of galaxies are highly non-linear, and these velocitiescaninduceRSDthatarelargerthanthereal-spacedistancebetweengalaxieswithinthe halo. For this reason, on small scales we observe the so-called Fingers of God (FOG) effect – strong elongation of structures along the line of sight (Jackson 1972). This results in a damping of the power spectrum on small scales compared to the predictions of the linear model, and is usually modeled by multiplying the linear power-spectrum by a function F(σ ,k,µ), where σ is v v theaveragevelocitydispersionofgalaxieswithintherelevanthaloes. Modeling of non-linearities has been investigated numerous times (e.g. Scoccimarro 2004; Taruya et al. 2009, 2010; Reid et al. 2010; Anselmi et al. 2010; Anselmi & Pietroni 2012; Kwan etal.2011;Neyrincketal.2009,2011;Jennings2012;Carron&Szapudi2013). InthisChapterwelookonlyatlinearscales;extensionstothequasi-andnon-linearregimes willhelpgivingmoreconstrainingpower,buttheyrequireinvestigationsthatarebeyondthescope ofthispaper. 3.4.2 Largescaleeffects Whenconsideringwidesurveysandgalaxypairswithlargeseparation,amorepreciseanalysis involving wide-angle and GR corrections should be used (see e.g. Szalay et al. 1997; Matsubara 1999;Szapudi2004;Papai&Szapudi2008;Raccanellietal.2010;Samushiaetal.2012;Monta- nari&Durrer2012;Bertaccaetal.2012;Raccanellietal.2013;Raccanellietal.2013a). Moreover, onverylargescales,themodelingforthepowerspectrumneedstotakeintoaccountGeneralRel- ativity(GR)effectsthatwillbeimportantonscalescomparabletothehorizon(seee.g.Yoo2010; Bonvin&Durrer2011;Challinor&Lewis2011;Yooetal.2012;Jeongetal.2011;Bertaccaetal. 2012;Raccanellietal.2013b;Dioetal.2014). However,includingwide-angleandGRcorrectionsinthepowerspectrumisbeyondthescope of this Chapter. A more detailed analysis of large scale effects for the SKA is carried out in the SKAChapter“CosmologyontheLargestScales”(Cameraetal.2015). 3.5 Alcock-PaczynskiEffect Positions of galaxies are given in terms of angular positions and redshifts; angular diame- ter distances and Hubble expansion rates as functions of redshift are required in order to convert angular and redshift separations into physical distances. Those functions depend on the adopted cosmological model. If the real cosmology is significantly different from the fiducial one, this difference will introduce additional anisotropies in the correlation function through the Alcock- Paczynski effect. This can significantly bias the measurements of growth (see e.g. Ballinger et al. 1996;Simpson&Peacock2010;Samushiaetal.2012;Montanari&Durrer2012). InthepresenceofAlcock-Paczynskieffect,theredshift-spacepower-spectrumis: (cid:34) (cid:115) (cid:35) (b+µ(cid:48)2f)2 k(cid:48) (cid:18) 1 (cid:19) Ps(k(cid:48),µ(cid:48),α ,α ,p)= Pr 1+µ(cid:48)2 −1 , (3.8) ⊥ || α2α α F2 ⊥ || ⊥ where p are standard cosmological parameters determining the shape of the real-space power- spectrum, k(cid:48) and µ(cid:48) are the observed wavevector and angle, related to the real quantities by k(cid:48) = || 6 RSDwiththeSKA k(cid:48) α k , k(cid:48) =α k , µ(cid:48) = || , where F =α /α , with α and α being the ratios of angular || || ⊥ ⊥ ⊥ (cid:113)k(cid:48)+k(cid:48) || ⊥ || ⊥ || ⊥ andradialdistancesbetweenfiducialandrealcosmologies,α = Hfid ,α = Dreal. || Hreal ⊥ Dfid IgnoringtheAPeffectisequivalenttoassumingthatα factorsareequaltounityinEq.(3.8). 4. SKASurveys TheSquareKilometreArray(SKA)projectisaninternationalefforttobuildtheworld’slargest radio telescope, several times more sensitive than any existing radio telescope and capable of ad- dressing fundamental questions about the Universe (Carilli & Rawlings 2004). The SKA will be developed in two stages. The first stage currently encompasses two mid-frequency facilities (∼ 1 GHz)operatingwithinSouthAfrica(SKA1-Mid)andAustralia(SKA1-Sur). Alowfrequencyar- ray(SKA1-Low∼100MHz)willalsobesetinAustralia. WerefertoDewdneyetal.(2009)fora descriptionofthesetups. InthesecondstageoftheSKA,theplanistoextendthearraybyabouta factorof10,bothincollectingareaandprimarybeam(fieldofview),thussignificantlyincreasing the survey power of the facility. In the following sections, we consider two types of surveys that canbeusedtoprobetheredshiftspacedistortions. 4.1 HIsurveys The most straightforward way to go after the RSD signal is through a line galaxy survey. In theradio,thesolutionistousetheHI21cmlinewhich,bymeasuringitscharacteristicshape,will allowdeterminationofveryaccurateredshifts(δz<1.0×10−4). Theadvantageofsuchthreshold surveysisthatwecanbeconfidenttobefreeofanyforegroundcontamination. Thedisadvantage isthatitrequireshighsensitivitiestodetectHIgalaxiesatnon-localredshifts(thehighestredshift HIgalaxiesdetecteduptodatewasatz∼0.14withArecibo(Freudlingetal.2011)). Cosmological applications will require detecting enough galaxies to beat shot noise and over alargeenoughareatoreducecosmicvariance. WiththesensitivitiesforSKA1andtaking10,000 hours of observation time, the optimal survey area will be around 5,000 deg2. This will allow the detectionofabout107galaxiesusingband2fromSKA1-MidorSKA1-Sur,whileSKA1-Midband 1shoulddetectlessgalaxies(∼104)sinceitwillbeconstrainedtohigherredshifts(0.4(cid:46)z(cid:46)3). SKA2, on the other hand, should be capable of detecting about 109 galaxies over a 30,000 deg2 area, up to z∼2.0, making it the largest galaxy redshift survey ever. The noise calculations and parameters for this HI galaxy survey can be found in the HI simulations chapter (Santos et al. 2015a). InFigure1weplottheredshiftdistributionsandbiasforthedifferentSKAconfigurations describedabove. 4.2 Late-timeHIintensitymapping A relatively new alternative to large galaxy redshift surveys is 21 cm intensity mapping. Galaxy surveys need high signal-to-noise detections of many millions of individual sources, re- quiring high flux sensitivity and long, dedicated surveys to reach z∼1. Intensity mapping (IM) attempts to circumvent these requirements by performing fast, low angular resolution surveys of the redshifted 21 cm emission line from neutral hydrogen (HI) integrated over many unresolved galaxies. For a more extensive discussion on HI intensity mapping, particularly in the context of 7 RSDwiththeSKA 107 SKA1 MID B1 16 SKA1 MID B1 SKA1 MID B2 SKA1 MID B2 SKA1 SUR B1 14 SKA1 SUR B1 106 SKA1 SUR B2 SKA1 SUR B2 SKA 2 12 SKA 2 105 10 N(z)104 b(z) 8 103 6 102 4 101 2 1 0 0 0.5 1.0 1.5 2.0 0 1 2 3 z z Figure1: Redshiftdistributions(leftpanel)andbias(rightpanel)fortheSKA1andSKA2surveysusedin thiswork. the SKA, we refer to Santos et al. (2015b). If we assume that, after reionisation, all the neutral hydrogeniscontainedwithingalaxies,ashostgalaxiesarebiasedtracersofthecosmologicallarge scale structure, so too is the integrated HI emission. Much of the cosmological information of interest (e.g. RSDs and BAOs) is found at large scales, so the lack of resolution is tolerable, and asthesignalisfromanemissionline,redshiftinformationisautomaticallyprovidedaswell. This allowslargesurveystobeperformedextremelyrapidly,efficientlyrecoveringthe3Dredshift-space matter power spectrum on large scales. An intensity mapping survey on SKA1-MID or SUR will be able to measure BAOs and RSDs over 25,000 deg2 on the sky from 0(cid:46)z(cid:46)2.5, for example (Santosetal.2015b). One way of thinking about an IM survey, then, is as a galaxy survey with the small angular scales averaged out. Information in the radial direction is mostly preserved, as modern radio re- ceivershavesufficientlynarrowfrequencychannelbandwidthsthathighredshiftresolutioncanbe obtained. The model for the RSD signal in intensity maps is therefore quite similar to that for a galaxysurvey,exceptthattheobservableisthepowerspectrumofHIbrightnesstemperaturefluc- tuations,(cid:104)δT∗δT (cid:105)∝T2P(k),whereT isthemeanHIbrightnesstemperature. Notethattheshot b b b b noise contribution has to be replaced by a more complicated direction-dependent noise term (see e.g.Bulletal.2014). InthischapterwewillfocusontheRSDconstraintsthatcanbeachievedby measuringtheanisotropicpowerspectrumwithIMsurveysonSKA1-MIDandSUR.Ourforecasts arefor10,000hourautocorrelationsurveysover25,000deg2 onbands1and2ofbotharrays. 5. Forecast In this Section we forecast the cosmological measurements that will be performed using the SKAusingtheconfigurationpresentedinSection4;wepresentforecastsonparametersdescribing modelsforthegrowthofstructuresmentionedinSection5.2. 5.1 FisherAnalysis Inordertopredicttheprecisioninthemeasurementsofcosmologicalparameters,weperform aFishermatrixanalysis(Fisher1935;Tegmarketal.1997);wewritethecurvatureorFishermatrix 8 RSDwiththeSKA forthepowerspectruminthefollowingway: (cid:90) zmax (cid:90) kmax (cid:90) +1 (cid:20) n¯g(z)P(k,µ,z) (cid:21)2 Vs(z)k2 ∂P(k,µ,z)∂P(k,µ,z) F = dz dk dµ B , αβ zmin kmin −1 1+n¯g(z)P(k,µ,z) 8π2[P(k,µ,z)]2 ∂ϑα ∂ϑβ nl (5.1) where ϑ is the α(β)-th cosmological parameter,V is the volume of the survey and n¯ is the α(β) s g meancomovingnumberdensityofgalaxies. Thelasttermaccountsforthenon-linearitiesinduced bytheBAOpeak(Seo&Eisenstein2007): (cid:16) (cid:17) −k2Σ2−k2µ2 Σ2−Σ2 B =e ⊥ || ⊥ , (5.2) nl andΣ =Σ D,Σ =Σ (1+f)D,whereΣ isaconstantphenomenologicallydescribingthenonlin- ⊥ 0 || 0 0 eardiffusionoftheBAOpeakduetononlinearevolution. FromN-bodysimulationsitsnumerical valueis12.4h−1Mpcandseemstodependlinearlyonσ ,butonlyweaklyonkandcosmological 8 parameters. Theintegralinkisperformedineachredshiftbinusing(Smithetal.2003): 2π k = ; (5.3) min 1/3 V bin k =k (1+z)2/(2+ns). (5.4) max NL,0 IntherestofthisSectionwepresentthemodelsweinvestigate: wefocusonwaystoexplain thecosmicacceleration,eitherviadynamicaldarkenergyormodificationsofthemodelforgravity. 5.2 Growthofstructures WestudyhowtheSKAcouldconstrainparametersdescribingthegrowthofstructures. There areseveral modelsfor itbased ondifferentexplanations forthe acceleratedexpansionof theUni- verse;theycanbedividedintotwomaincategories: darkenergyandmodifiedgrowth. Measuring RSD allows us to test different cosmological models and provides a good discriminant between modifiedgravityanddarkenergymodels(seee.g.Linder2005,2007;Guzzoetal.2008). 5.2.1 DarkEnergyModels In the standard ΛCDM model, the accelerated expansion of the universe is caused by a dark energy component that behaves like a cosmological constant, but alternative models have been proposedandarestillallowedbydata. Dynamical models can be distinguished from the cosmological constant by considering the evolutionoftheequationofstateofdarkenergy,w= p/ρ,where pandρ arethepressuredensity and energy density of the fluid, respectively. In the cosmological constant model, w=−1, while fordynamicalmodelsw=w(a). ItistheusefultoconsideraTaylorexpansionoftheequationof state(Linder2003): w(a)=w +w (1−a); (5.5) 0 a intheΛCDMmodelwehavew =−1andw =0. Ifadeviationfromthesevalueswillbedetected 0 a (inparticularifw (cid:54)=0),thenthiswouldsuggestthatthecorrectmodelisonewherethedarkenergy a componentoftheuniverseisevolvingwithtime. 9 RSDwiththeSKA In Figure 2 we plot constraints on the parameters {w ,w } (including Planck+BOSS priors), 0 a for the different SKA1 and SKA2 surveys, comparing results with predictions for the Euclid ex- periment. 0.4 SKA1-MID B1 (IM) SKA1-SUR B1 (IM) SKA2 (gal.) 0.2 Euclid (gal.) a 0.0 w 0.2 0.4 1.1 1.0 0.9 w 0 Figure2: PredictedconstraintsfromSKAondynamicaldarkenergyparameters. Weshowpredictedcon- straintsfromSKAIMandSKA2,comparedwithpredictionsforEuclid. SKA1 HI surveys will not be able to provide competitive constraints on these parameters, so wedon’tshowthem,butresultsfromtheIMsurveyswillbecompetitive,andtheSKA2galaxysur- veyshouldbeabletoallowimprovementsonmeasurementsofdynamicaldarkenergyparameters overthepredictedEuclidgalaxysurvey. 5.2.2 ModifiedGrowthModels Measuringthemattervelocityfieldatthelocationsofthegalaxiesgivesanunbiasedmeasure- mentof fσ ,providedthatthedistributionofgalaxiesrandomlysamplesmattervelocities,where 8m f is given by Equation 2.1 and σ quantifies the amplitude of fluctuations in the matter density 8m field. Thegrowthfactorissometimesparameterizedas(Linder2005): D(a)=aexp(cid:20)(cid:90) a(cid:2)Ωγ(a(cid:48))−1(cid:3)da(cid:48)(cid:21), (5.6) m a(cid:48) 0 whichleadstothefollowingexpressionfor f: f =[Ω (a)]γ , (5.7) m where: Ω a−3 m Ω (a)= , (5.8) m (cid:104) (cid:105) ∑iΩi exp 3(cid:82)a1[wi(a(cid:48))+1]daa(cid:48)(cid:48) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.