ebook img

Measurements of Non-photonic Electron Production and Azimuthal Anisotropy in $\sqrt {s_{NN}} = 39$, 62.4 and 200 GeV \auau\ Collisions from STAR at RHIC PDF

0.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurements of Non-photonic Electron Production and Azimuthal Anisotropy in $\sqrt {s_{NN}} = 39$, 62.4 and 200 GeV \auau\ Collisions from STAR at RHIC

Measurements of Non-photonic Electron Production and √ Azimuthal Anisotropy in s = 39, 62.4 and 200 GeV Au+Au NN Collisions from STAR at RHIC MustafaMustafa(fortheSTARCollaboration)1 Dept.OfPhysics,PurdueUniversity,WestLafayette,[email protected] 2 1 0 Abstract 2 t DuringRHIC2010run,STARhascol√lectedalargeamountofminimum-bias,centralandhigh c p triggerdatainAu+Aucollisionsat s =39,62.4and200GeVwithdetectorconfiguration O T NN forminimumphotonicconversionbackground. Inthisarticlewereportonanewhighprecision 8 measurementofnon-photonicelectronmid-rapidityinvariantyield,improvednuclearmodifica- √ 1 tionfactorandv inAu+Aucollisionsat s = 200GeV.Wealsopresentmeasurementsof 2 √ NN √ mid-rapidityinvariantyieldat sNN =62.4andv2at sNN =39and62.4GeV. ] x e - l c 1. Introduction u n [ Exploiting the merits of heavy quarks is one of the most important and promising tools to probethestronglyinteractingpartonicmediumcreatedinheavy-ioncollisions.Heavyquarksare 1 mostlycreatedthroughgluonfusion[1],almostexclusively[2]earlyintheheavy-ioncollision, v therefore, they experience the different stages of the medium evolution. Also, their masses are 9 9 external to QCD [3] and thus are not modified by the presence of the medium. Hence, the 1 kinematics of emerging heavy quarks carry a memory of their interactions with the medium. 5 Bycomparingtheheavyquarkproductioninheavy-ioncollisionstothebaselineproductionin 0. p+pandd+Aucollisions,weseektofurtherunderstandflavordependenceofenergylossinthe 1 medium. Azimuthal anistropy of heavy quarks provides further information on the strength of 2 their interaction with the medium, and more experimental discrimination power for theoretical 1 models. : v Inthisarticlewereportonthepreliminaryresultsofmeasuringtheproductionofelectrons i X from heavy flavor semi-leptonic decays, so-called non-photonic electrons (NPE). We show a new high precision measurement of NPE production at mid-rapidity in Au+Au collisions at r √ a s = 200GeV,thenusingourpreviouslypublished p+ pmeasurement[4]weshowanim- NN proved nuclear modification factor R and compare it to theoretical models. Then we show AA measurementsofNPEazimuthalanistropy,v {2},v {4}andv {EP}. Finally,weshowmeasure- 2 √2 2 mentsofNPEproductioninAu+Aucollisionsat s =62.4GeV,andv {2}measurementsat √ NN 2 s =39and62.4GeV. NN 1AlistofmembersoftheSTARCollaborationandacknowledgementscanbefoundattheendofthisissue. PreprintsubmittedtoNuclearPhysicsA October19,2012 2. DatasetsandAnalyses In RHIC run 2010, STAR has sampled nearly 2.6 nb−1 luminosity of Au+Au collisions at √ s = 200 GeV. Minimum Bias (MB) trigger data is used for low p electrons. High p NN T T trigger (HT) data is used for higher statistical precision at high p . We have also utilized data T √ fromanindependent0−5%centralitytrigger. Weuseabout1nb−1 forthe s = 200GeV NN results we show here. During the same RHIC run STAR has also collected Au+Au collisions √ dataat s =39and62.4GeV,whichisusedforthemeasurementsweshowhere. NN For analyses in all collision energies, the most important detector is the STAR Time Pro- jectionChamber(TPC)withlargeacceptance,whichprovidestrackinganddE/dxforelectrons identification. HadronrejectionisdoneutilizingTimeofFlight(TOF)[6]informationatlow p T andtheBarrelElectromagneticCalorimeter(BEMC)[7]athigh p . TheBEMCisalsousedfor T triggeringonhigh p electrons. T ToextractNPE,westatisticallysubtractthecontributionofphotonicelectrons(PE)fromthe identifiedinclusiveelectrons. Byreconstructingtheinvariantmassofelectronpairsweestimate thePEcontributionfromgammaconversion, andπ0, ηDalitzdecays. ExtractedyieldofPEis thencorrectedbya p dependentreconstructionefficiencydeterminedfromsimulationtobeat T thelevelof30-60%. 3. Results Figure 1 left shows the new measurement of NPE mid-rapidity differential invariant yield for p = 1.5 - 10 GeV/c. The novelty of this measurement lies in the achieved high statistical T precision.Thelargeamountofstatisticsallowsdifferentiatingthemeasurementsinfivecentrality bins,inadditiontoa0−5%centralitybinfromacentraltrigger.Withsuchaprecisionandguided bythescaledFONLLupperbound, onecanqualitativelynoticethesuppressionoftheyieldin Au+Aucollisionscomparedto p+pcollisionsdespitethelargelog-scalespannedinthefigure. J/ψcontributionhasbeensubtractedfromthisresult. Figure1upper-rightpanelshowsNPER using0−10%centralityspectraandSTARpub- AA lished p+p[4]resultscomparedtoacollectionofmodelsofdifferentenergylossmechanisms. AsweseeintheFigure, despitethesuccessofdescribingthesuppressionoflighthadrons[9], gluonradiationalonefailstoexplaintheobservedlargeNPEsuppressionathigh p . Thelarge T uncertaintyfromourbaselinep+pmeasurementdominatesthecurrentoveralluncertainty.Anal- ysisofthelargeamountofcollectedhighqualitydatafromRHICruns2009and2012areneeded toimprovethebaselineprecision.Withthecurrentprecisionthepredictionsfromallotherenergy energylossmodelsdescribethedata. Figure 1 lower-right shows NPE v measurements from 2- and 4- particle correlations and 2 √ eventplanemethod,representedasv {2},v {4}andv {EP}inAu+Aucollisionsat s =200 2 2 2 NN GeV.MinimumBiasdataisusedforlow p v {2}andv {4}measurements. HTdataisusedfor T 2 2 high p v {2} and v {EP} measurements. The v {2} and v {EP} are consistent with each other T 2 2 2 2 for p > 3 GeV/c. While both show a pronounced systematic increase in v towards high p , T 2 T at this point we cannot distinguish whether this rise is due to jet-like correlations unrelated to the reaction plane or due to the path length dependence of partonic energy loss. For p < 3 T GeV/c we show both v {2} and v {4}. In v {4} the non-flow contribution is negligible and the 2 2 2 flowfluctuationscontributionisnegative,henceprovidingalowerboundonthev ofNPE.Both 2 √ v measurementsarefinite,whichindicatesastrongcharm-mediuminteractionat s = 200 2 NN GeV. 2 2 STAR Preliminary 0-10%(Ncoll:941) 102 DDGGLLVVRRaadd.+dENLg/dy=1000 MMiinnbbiiaassXX11ee++0044 1100--2200%%XX11ee++0000 1.5 CUJET 10 TMatrix 00--55%%XX22ee++0022 2200--4400%%XX11ee--0011 Collisonaldissociation. 1 00--1100%%XX11ee++0011 4400--6600%%XX11ee--0022 AA 1 Ads/CFTD=3 10-1 pp++pp//4422mmbbXX22ee--0022 R 10-2 STAR Preliminary 0.5 -2]c) 10-3 V/ 10-4 0 e 2 4 6 8 10 G 10-5 p (GeV/c) [( T y 10-6 Nd 2d1πdppTT1100--87 00.02..253 NNNPPPEEE vvv222{{{224}}} 222000000 GGGeeeVVV 000---666000%%% MHMTBB STAR Preliminary 2 10-9 NPE v2{EP} 200 GeV 0-60% 0.15 10-10 v20.1 10-11 0.05 10-12 FFOONNLLLL((uuppppeerrlliimmiittxxNN )) 0 ccoollll 10-13 FFOONNLLLL -0.05 FFOONNLLLL((lloowweerrlliimmiitt)) 10-14 -0.1 2 4 6 8 10 0 1 2 3 4 5 6 7 8 p (GeV/c) p (GeV/c) T T √ Figure1:(Coloronline)(Left)Invariantyieldsvs. pT ofnon-photonicelectronat sNN =200GeV,andscaledSTAR publishedp+p[4].Errorbarsandboxesarestatisticalandsystematicerrors,respectively.FONLLpredictionsarescaled √ byNcollshownascurves. (Upper-right)Non-photonicelectronsnuclearmodificationfactor,RAA,at sNN =200GeV comparedtomodels[9]-[13]. GreybandisthelighthadronsRAA. ErrorbarsandbracketsareAu+Austatisticaland systematicerrors,respectively. Errorboxesaretheuncertaintiesfromourbaseline p+pmeasurement. (Lower-right) √ Non-photonicelectronsazimuthalanistropyv2{2},v2{4}andv{EP}at sNN = 200GeV.Errorbarsandbracketsare statisticalandsystematicerrors,respectively. ToprovidemoreexperimentaldiscriminationpowerfortheoreticalmodelsSTARisextend- ing its NPE program to lower energies. The quest is to see if the energy loss of heavy quarks islessenedorturnedoffatlowerenergies. Figure2showsNPEinvariantyieldinAu+Aucol- √ lisionsat s = 62.4GeVtogetherwithascaledFONLLprediction. Whileaprevious p+p NN measurementbyISR[8]seemstoagreewithFONLLupper-band,ourmeasurementissystem- aticallyhigherthanboth. Measurementofv {2}atlowerenergiesshowninFigure3seemtobe √ 2 consistentwithinerrorswiththatat s = 200GeVfor p > 1.0GeV/c. Theresultsfordata NN T pointsatp <1.0GeV/cseemtoindicateamildercharm-mediuminteractioncomparedtothose √ T at s =200GeV. NN 4. Summary InthisarticlewereportedonSTARnewpreliminaryresultsofnon-photonicelectronmea- √ surements. ThenewNPEmeasurementsin s = 200GeVcollisionsarepreciseinabroad NN p region. NPEnuclearmodificationfactormeasurementshowalargesupressionofNPEpro- T ductionincentralAu+Aucollisions. WeobservelargeNPEv atlow p whichindicateastrong 2 T charm-mediuminteraction. Thev increasestowardshigher p (> 3GeV/c)ispossiblydueto 2 T jet-correlations unrelated to the reaction plane and/or due to path-length dependence of heavy quarkenergyloss. 3 2Nd1-2 (GeV/c) h pdpdTT111100001234 STFFIFFISSAOOOORRRNNNN ·· LLLLP LLLLNNr ecc((((ooucuclllieellppm//nn33pptt66eeirrnrrmmaa lla·· bb··r NNy NNccooccllooll//llll33//336666mmmmbbbb))))Au+Au @M210 00i--n-1s42-00NB0%N%%i a = s ··· · 6 111 20100.20-0424GeV 0.3 1 p2Nevt1100--21 40-60% · 10-3 0.25 NNPPEE vv22{{22}} 220000 GGeeVV 00--6600%% MHTB STAR Preliminary NPE v{2} 39 GeV 0-60% MB 10-3 0.2 NPE v2{2} 62 GeV 0-60% MB 2 10-4 0.15 10-5 v2 0.1 10-6 0.05 10-7 0 10-8 -0.05 10-9 -0.1 10-10 0 0.5 1 1.5 2 2.5 3 3.5 4 10-11 p (GeV/c) 10-12 T 10-13 2 2.5 3 3.5 4 4.5 5 5.5 6 Figure 3: (Color online) Non-photonic electrons at p(GeV/c) √ T sNN =39,62.4GeVazimuthalanistropyv2{2}. Er- rorbarsandboxesarestatisticalandsystematicerrors, Figure 2: (Color online) Invariant yields vs. pT respectively. of non-photonic electrons in Au+Au collisions at √ sNN = 62.4 GeV. Error bars and brackets are sta- tisticalandsystematicerrors,respectively. ISRp+p √ collisionsat sNN=62.2GeVscaledbyNcollisalso plotted [8]. FONLL predictions are scaled by Ncoll shownascurves. AtlowerenergieswereportedonmeasurementofNPEinvariantyieldinAu+Aucollisions √ at s = 62.4 GeV which is systematically higher than a FONLL prediction. We have also NN √ presented our results of azimuthal anistropy at s = 39 and 62.4 GeV by measuring v {2} NN √ 2 whichfor p <1.0GeV/cseemtoindicateamildercharm-mediuminteractionthanat s = T NN 200GeV. References References [1] Cacciari,et.al.Phys.Rev.Lett.95122001(2005). [2] Le´vaiet.al.Phys.Rev.C56,2707(1997). [3] Mu¨ller,Nucl.Phys.A,750,84?97(2005). [4] Agakishievetal.,(STARCollaboration)Phys.Rev.D83,052006(2011). [5] Andersonetal.,(STARCollaboration)Nucl.Instr.Meth.A499,659(2003). [6] STARTOFproposal,http://drupal.star.bnl.gov/STAR/files/future/proposals/tof-5-24-2004.pdf [7] Beddoetal.,(STARCollaboration)Nucl.Instr.Meth.A499,725(2003). [8] Basileetal.,ILNUOVOCIMENTO(1981),65A,N4,421-456. [9] Djordjevicetal.,Phys.Lett.B632,81(2006),andreferenceswithin. [10] Buzzatti,Gyulassi,arXiv:1207.6020. [11] VanHeesetal.,Phys.Rev.Lett.100,192301(2008). [12] Sharmaetal.,Phys.Lett.C80,054902(2009). [13] HorowitzPh.Dthesis.(2012). 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.