ebook img

Measurement Uncertainties in Science and Technology PDF

394 Pages·2014·6.878 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement Uncertainties in Science and Technology

Measurement Uncertainties in Science and Technology Michael Grabe Measurement Uncertainties in Science and Technology Second Edition MichaelGrabe Braunschweig,Germany ISBN978-3-319-04887-1 ISBN978-3-319-04888-8(eBook) DOI10.1007/978-3-319-04888-8 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014939933 ©Springer-VerlagBerlinHeidelberg2005,2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To thememoryofmyparents inloveandgratitude Preface to the Second Edition Truthistruth totheendofreckoning Shakespeare,MeasureforMeasure Physicalunits,thougharbitrarybynature,quantifythestructureofscienceandtech- nology.Therefore,inaconsistentsystemofunits,measurandsneedtorepresenttrue values—“true”withrespecttothesystemofunitsbeingconsideredcompleteinit- self. However,metrology suffers from a basic dilemma.For technical reasons, mea- suringprocessesareaccompaniedbymeasurementerrors.Thisiswhymeasuredre- sultsaremoreorlessblurred.Nevertheless,theendeavoursofmetrologyshouldbe traceable,i.emeasurementresultsshouldlocalizethetruevaluesofthemeasurands via intervals of the kind: estimator ± uncertainty. Hence, metrology needs robust evaluationprocedures—robustinthesensethattheproceduresspawnreliablyrated uncertaintyintervals. Clearly, measuring errors cannot be treated from within themselves, say, de- tached from the basic operating principles of measuring devices. In practice, ex- perimenters are faced with two hurdles. The first concerns the treatment of what C.F. Gauss termed “regular or constant errors”, currently referred to as unknown systematicerrors.Thesecondconcernsthehandlingofrandomerrors. The question of how to treat unknown systematic perturbations is unresolved. Inthisbook,Iarguethattheoneofthekeystoasatisfactorytreatmentofmeasure- menterrorsliesinthetreatmentofunknownsystematicperturbationsviaworst-case methods. Surprisinglyenough,theinfluenceofrandomerrorsonmeasurementuncertain- tiesisequallyunexplored.Indeed,whenattemptingtoestablishappropriatecondi- tionsofmeasurement,thescopeofconfidenceintervalsasintroducedbyW.Gosset (“Student”)appearsextendabletoanynumberofvariables,anobservationthatfol- lowsfromareinvestigationoftheroleofempiricalmomentsofsecondorder. In this book, the treatment of unknown systematic errors and of random errors leadtoanessentiallynewapproachtotheassignmentofmeasurementuncertainties, theGeneralizedGaussianErrorCalculus.Thecentraltopicisthecomplianceofthe formalismwiththerequirementsoftraceability. vii viii PrefacetotheSecondEdition A point of particular concern arising from a conceivably unified error calculus involvestheplethoraofpractice-relatedadhocapproaches,e.g.[48,51],whichcan now, advantageously, be cast into a comprehensible formalism. Beyond everyday applications, say, legal or scientific purposes, shifts of the numerical values of the fundamentalconstantsofphysicsmaybeanticipated.Astheeffectsofphysicsare bound by fundamental constants, numerical shifts, if substantiated, might lead to newresearchverifyingbasicconcepts. The second edition of Measurement Uncertainties in Science and Technology [38] orders and restructures the text of the first edition from scratch. Greater em- phasis is placed on the methodology: using a range of examples, I show how to designuncertaintyintervalslocalizingthetruevaluesofthemeasurands(i.e.“true” inviewoftheirrelationshiptotheadoptedsystemofphysicalunits).Theexamples demonstratetheefficiencyandreliabilityoftheprocedure.Asever,suggestionsand commentsareverywelcome. Braunschweig,Germany MichaelGrabe January2014 Preface to the First Edition InhistreatisesontheMethodofLeastSquaresC.F.Gauß[1]distinguishedirregular orrandomerrorsontheonehandandregularorconstanterrorsontheother.Asis wellknown,Gaußexcludedthelatterfromhisconsiderationsonthegroundthatthe observershouldeithereliminatetheirultimatecausesorrideverysinglemeasured valueoftheirinfluence. Today,theseregularorconstanterrorsarecalledunknownsystematicerrorsor, more simply, systematic errors. Such errors turned out, however, to be eliminable neitherbyappropriatelyadjustingtheexperimentalset-upsnorbyanyothermeans. Moreover, considering the present state of measurement technique, they are of an orderofmagnitudecomparabletothatofrandomerrors. ThepapersbyC.Eisenhart[9]andS.Wagner[10]inparticularhaveentrustedthe high-rankingproblemofunknownsystematicerrorstothemetrologicalcommunity. Butitwasnotuntilthelate1970s,thatittookcenterstageapparentlyinthewakeof aseminarheldatthePhysikalisch-TechnischeBundesanstaltinBraunschweig[20]. At that time two ways of formalizing unknown systematic errors were discussed. Oneofthesesuggestedincludingthemsmoothlyviaaprobabilisticartificeintothe classical Gaussian calculus and the other, conversely, proposed generalizing that formalisminordertobetterbringtheirparticularfeaturestobear. As the authorprefers to see it systematicerrors introducebiases andthis situa- tionwouldcompeltheexperimentertodifferentiatebetweenexpectationsontheone handand true values on the other—a distinctionthat does not exist in the conven- tionalerrorcalculus.Thisperspectiveandanotherreason,whichwillbeexplained below, have induced the author to propose a generalization of the classical error calculus concepts. Admittedly, his considerations differ substantially from those recommended by the official metrology institutions. Today, the latter call for in- ternational validity under the heading Guide to the Expression of Uncertainty in Measurement[41–43]. Meanwhile,bothformalandexperimentalconsiderationshaveraisednumerous questions:TheGuidedoesnotmakeadistinctionbetweentruevaluesandexpecta- tions;inparticular,uncertaintyintervalsarenotrequiredtolocalizethetruevalues of the measurands. Nonetheless, physical laws in general as well as interrelations ix x PrefacetotheFirstEdition betweenphysicalconstantsinparticulararetobeexpressedintermsoftruevalues. Therefore,ametrologywhichisnotaimedataccountingforasystemoftruevalues isscarcelyconceivable. AstheGuidetreatsrandomandsystematicerrorsinlikemanneronaprobabilis- tic basis, hypothesis testing and analysis of variance should remain valid; in least squares adjustments, the minimized sum of squared residuals should approximate the number of the degrees of freedom of the linear system. However, all these as- sumptionsdonotwithstandadetailedanalysis. Incontrasttothis,thealternativeerrormodeltobediscussedheresuggestsheal- inganswersandproceduresappearingapttoovercomethesaiddifficulties. Inadditiontothis,theproposaloftheauthordiffersfromtherecommendations of the Guide in another respect, inasmuch as it provides the introduction of what maybecalled“well-definedmeasurementconditions”.Thismeansthateachofthe measurands,tobelinkedwithinajointerrorpropagation,shouldbesubjectedtothe samenumberofrepeatedmeasurements.Asobviousasthismightseem,theauthor wishes to boldly point out that just this procedure would return the error calculus back to the womb of statistics which it had left upon its way through the course oftime.Well-definedmeasurementconditionsallowcompleteempiricalvariance– covariance matrices to be assigned to the input data and this, in fact, offers the possibilityofexpressingthatpartoftheoveralluncertaintywhichisduetorandom errorsbymeansofStudent’sstatistics. Thoughthisideaisinconsistentwiththetraditionalnotionsoftheexperimenters whichhaveatalltimesbeenreferredtoincompletesetsofdata,theattainablead- vantages when reformulating the tools of data evaluation in terms of the classical lawsofstatisticsappeartobeconvincing. Afterall,thereisanotherpointworthmentioning:theapproachtoalwaysassess thetruevaluesofthemeasurandsingeneralandthephysicalconstantsinparticular may be seen to endorse, quasi a priori, the fundamental demand of metrology for traceability. Actually, the gist of this definition implies nothing else but just that whathasbeenstatedabove,namelythelocalizationoftruevalues.WhiletheGuide cannotguaranteetraceability,thisisthebasicpropertyofthealternativeerrormodel referredtohere. Last but not least, I would like to express my appreciation to my colleagues’ experiencewhichIreferredtowhenpreparingthemanuscript,aswellastheircrit- icism which inspired me to clarify the text. For technical support I am grateful to Dr.MichaelWeyrauchandtoDipl.-Übers.HanneloreMewes. Braunschweig,Germany MichaelGrabe January2005 Contents PartI Characterization,CombinationandPropagationofErrors 1 BasicIdeasofMeasurement . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 TrueValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 MeasurementUncertainties . . . . . . . . . . . . . . . . . . . . 4 1.4 BreakdownoftheGaussianApproach. . . . . . . . . . . . . . . 5 1.5 Non-GaussianProspect . . . . . . . . . . . . . . . . . . . . . . 6 1.6 AppraisingMeasurementUncertainties . . . . . . . . . . . . . . 11 1.7 QuotationofNumericalValues . . . . . . . . . . . . . . . . . . 14 2 FormalizationofMeasuringProcesses . . . . . . . . . . . . . . . . 17 2.1 RandomVariables . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 ProbabilityDensities . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 GeneralizedGaussianErrorCalculus . . . . . . . . . . . . . . . 23 2.4 ElementsofEvaluation . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6 Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 NormalParentDistributions. . . . . . . . . . . . . . . . . . . . . . 29 3.1 One-DimensionalNormalDensity . . . . . . . . . . . . . . . . 29 3.2 MultidimensionalNormalDensity . . . . . . . . . . . . . . . . 33 3.3 Chi-SquareandFDensity . . . . . . . . . . . . . . . . . . . . . 37 3.4 Student’s(Gosset’s)Density . . . . . . . . . . . . . . . . . . . . 40 3.5 Fisher’sDensity . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6 Hotelling’sDensity . . . . . . . . . . . . . . . . . . . . . . . . 47 4 EstimatorsandExpectations . . . . . . . . . . . . . . . . . . . . . 53 4.1 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 StatisticalEnsemble . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Behrens–FisherProblem . . . . . . . . . . . . . . . . . . . . . . 61 4.5 DownfalloftheAnalysisofVariance . . . . . . . . . . . . . . . 64 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.