ebook img

Measurement of Untruncated Nuclear Spin Interactions via Zero- to Ultra-Low-Field Nuclear Magnetic Resonance PDF

0.93 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of Untruncated Nuclear Spin Interactions via Zero- to Ultra-Low-Field Nuclear Magnetic Resonance

MeasurementofUntruncatedNuclearSpinInteractionsviaZero-toUltra-Low-FieldNuclear MagneticResonance J. W. Blanchard,1,2,3 T. F. Sjolander,1,2 J. P. King,1,2 M. P. Ledbetter,4 E. H. Levine,2 V. S. Bajaj,1,2 D. Budker,3,4,5 and A. Pines1,2 1Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 2Department of Chemistry, University of California at Berkeley, CA, 94720 3Helmholtz-Institut Mainz, Johannes Gutenberg University, Germany 4Department of Physics, University of California at Berkeley, CA, 94720-7300 5Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 (Dated:October27,2015) 5 1 Zero-toultra-low-fieldnuclearmagneticresonance(ZULFNMR)providesanewregimeforthemeasure- 0 mentofnuclearspin-spininteractionsfreefromeffectsoflargemagneticfields,suchastruncationoftermsthat 2 donotcommutewiththeZeemanHamiltonian. Onesuchinteraction,themagneticdipole-dipolecoupling,is t avaluablesourceofspatialinformationinNMR,thoughmanytermsareunobservableinhigh-fieldNMR,and c the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information O isretainedintheformofso-calledresidualdipolarcouplings. Wereportzero-toultra-low-fieldNMRmea- 5 surementsofresidualdipolarcouplingsinacetonitrile-2-13Calignedinstretchedpolyvinylacetategels. This 2 representsthefirstinvestigationofdipolarcouplingsasaperturbationontheindirectspin-spin J-couplingin theabsenceofanappliedmagneticfield.Asaconsequenceofworkingatzeromagneticfield,weobserveterms ] ofthedipole-dipolecouplingHamiltonianthatareinvisibleinconventionalhigh-fieldNMR.Thistechniqueex- h pandsthecapabilitiesofzero-toultra-low-fieldNMRandhaspotentialapplicationsinprecisionmeasurement p ofsubtlephysicalinteractions,chemicalanalysis,andcharacterizationoflocalmesoscalestructureinmaterials. - m PACSnumbers:82.56.-b,82.56.Dj,76.60.-k,76.60.Jx e h c Nuclearspininteractionsareofsubstantialimportancefor As a proof of concept, we present in this Letter direct ob- . s many fields, including chemistry, quantum information pro- servationoftheuntruncatedresidualdipolarcouplingbetween c cessing, and precision measurement of fundamental symme- nuclearspinsinaweaklyaligningenvironmentintheabsence i s tries. The most common technique for measuring such in- of an external magnetic field. Dipolar couplings have long y h teractionsisnuclearmagneticresonance(NMR),typicallyin been used in high-field NMR to provide structural informa- p large magnetic fields in order to maximize signal via higher tioninadditiontothechemicalshift. Previousworkdemon- [ nuclearspinpolarizationandsensitivityofinductivedetection stratedzero-fieldJ-spectroscopyofseveralsystemsforchem- [1]. However,theonlytermsofthespin-couplingHamiltoni- icalanalysis[23–25]. Additionalinformationmayalsobeob- 3 v ans that may be observed in high-field NMR are those that tained from zero-field NMR spectra via application of weak 8 commute with the Zeeman Hamiltonian, which effectively magneticfields[4].Intheregimewheredipole-dipoleinterac- 6 truncates many interaction Hamiltonians that possess differ- tionscanbetreatedasaperturbationtothe J-coupling,zero- 7 ent symmetry. Recently, however, NMR experiments have toultra-low-field(ZULF)NMRallowssensitivemeasurement 5 beencarriedoutintheoppositeregimeofverysmallmagnetic ofthedipole-dipolecouplingtensor. However,directdipole- 0 . fields [2–5], taking advantage of advances in hyperpolariza- dipolecouplingsobservedinsolidsaretypicallyontheorder 1 tion [6–9] and new detection modalities [10–16], which of- oftensofkHz,substantiallylargerthan J-couplings,andco- 0 5 ferasignificanttimesavingscomparedtoearlierfield-cycling herenceandpopulationlifetimesareoftentooshortforcurrent 1 techniques [17, 18]. In zero- to ultra-low-field NMR (ZULF ZULFmethodology. Furthermore,alldipole-dipolecoupling : NMR),thestrongestinteractions arethelocalspin-spincou- termsaveragetozeroinisotropicliquids[1]. Smaller,scaled v i plings, which involve coupling tensors that are of different couplingsareobtainedbyweaklyaligningthemoleculeofin- X symmetryfromtheZeemanHamiltonianandaremanyorders terestinanisotropicmedia,suchasliquidcrystals[26–28]or r ofmagnitudesmallerinamplitude,thuspermittingthedirect stretched gels [29, 30], where molecular motion is partially a observation of nuclear spin interactions that vanish at high restricted, yieldingresidualcouplings. Suchtechniqueshave magneticfields. Suchtermsthatareonlydirectlyobservable found widespread use in high-field NMR for structural mea- in the absence of large magnetic fields include the antisym- surements of proteins and small organic molecules [31–34]. metricJ-coupling(ofimportanceformeasurementsofchiral- Here,weinvestigatetheeffectsofresidualdipole-dipolecou- ity and parity violation), several terms of the direct dipole- plings(RDCs)onthezero-fieldspectrumofamodelXA spin 3 dipole coupling, and a number of as-yet-unobserved exotic system: acetonitrile-2-13C (13CH CN, where we have found 3 interactions such as those mediated by pseudoscalar (axion- it valid to neglect the 14N spin due to self-decoupling aris- like) bosons [19, 20], which would lead to anomalous spin- ingfromfastquadrupolarrelaxation[35])alignedinstretched spintensorcouplings[21,22],mostofwhichdonotcommute crosslinkedpolyvinylacetate(PVAc)gels. withtheZeemanHamiltonian. Polyvinyl acetate (PVAc) polymer sticks containing be- 2 dipole-dipoleinteractionsis (cid:88) H =(cid:126) J I ·I jk j k j;k>j µ (cid:88) γ γ (cid:104) (cid:16) (cid:17)(cid:16) (cid:17) (cid:105) −(cid:126)2 0 j k 3 I ·rˆ I ·rˆ −I ·I , (1) 4π r3 j jk k jk j k j;k>j jk where(cid:126)isthereducedPlanckconstant,µ isthevacuumper- 0 meability, γ and γ are the gyromagnetic ratios of spins I j k j andI ,andr istheinternuclearvectorconnectingthespins. k jk In the case of isotropic liquids, the dipole-dipole interaction term averages to zero. However, in aligned samples, such asstretchedgels,themotionalaveragingofthedipole-dipole termisincomplete. Forthesystemstudiedhere,theswelling ofthepolymergelwithacetonitrilealongtheaxisoftheNMR FIG.1. a)Schematicillustrationofthechangeinsymmetrythatoc- cursduringuniaxialstretchingofthegelenvironmentduetoswelling tube leads to an orientational probability distribution of the with acetonitrile-2-13C. The change in the order parameter is illus- solventmoleculesthatisslightlyanisotropic,withtheprefer- trated by the different three-dimensional shapes. b) Energy level entialalignmentaxis(thedirector)determinedbytheswelling structure of a partially ordered 13CH3 spin system. F is the total direction[29,30]. Thisaxisiscollinearwiththesensitivedi- spinangular momentum, K isthe totalproton angularmomentum, rectionofthedetector,andisdenotedz. Becauseoftherapid andJ istheone-bond13C–1HJ-coupling. Solidarrowsindicate CH rotation of the acetonitrile methyl group and the axial sym- allowedtransitions,dashedlinesindicateforbiddentransitions.Note metry of the alignment medium, the x and y components of thatforthissystem,bothcouplingsarenegative. ther vectorsareaveragedtozero,andthezcomponentsare jk scaledbythedegreeofalignment. Consideringtheseaverag- ingeffectsonthesecondtermofEq. (1),theresidualdipolar tween 1-6% v/v divinyl adipate (DVA) crosslinker were pre- couplingHamiltonianis pared in 5 mm NMR tubes as described in the Supporting (cid:88) (cid:16) (cid:17) Information. Anisotropic gels were prepared by adding ace- H =−(cid:126) D 3I I −I ·I , (2) RDC jk j,z k,z j k tonitrile to the tubes and allowing the polymers to swell for j;k>j 2 weeks. Because the polymers were confined to the NMR tubes in which they were cast, swelling was uniaxial and where equivalent to stretching along the axis of the NMR tube. A µ γ γ (cid:126)1(cid:68) (cid:69) schematicrepresentationoftheprocessisshowninFig.1(a). D = 0 j k 3cos2θ −1 , (3) jk 4π r3 2 jk In order to maximize the ZULF NMR signal, the samples jk were prepared using labeled acetonitrile-2-13C to which was andwhereθ istheanglebetweentheinternuclearvectorand added5%v/vdeuteratedacetonitrileforthepurposeofhigh- jk theC -axisofacetonitrile.Wemayalsodefinethecouplingas field NMR characterization. The molecular order parameter 3 being directly proportional to the molecular order parameter [36,37]foracetonitrileinthestretchedgelenvironmentwas (cid:68) (cid:69) S = 1 3cos2θ −1 [36,37],whereθ istheanglebetween determinedbyanalyzingthequadrupolarsplittingofthedeu- zz 2 z z the C -axis of acetonitrile and the laboratory z-axis and the teriumresonance[26,38]usinga14.1TNMRspectrometer 3 time average provides a measure of the extent of alignment with deuterium frequency 92.1 MHz (for additional details, betweenthetwoaxessystems,suchthat see Supporting Information). The value for the electric-field gradient around the deuterium nuclei in acetonitrile was ob- µ γ γ (cid:126)1(cid:16) (cid:17) tainedfromtheliterature[38]. Djk = 4π0 rj3k 2 3cos2φjk−1 Szz, (4) jk The ZULF NMR apparatus has been described previously [4, 6, 39]. Samples were pre-polarized in a 2 T permanent where φ is the angle between r and the C axis, π/2 for jk jk √ 3 magnet located outside of the magnetic shielding for ∼20 s D andthetetrahedralangle(2arctan 2)forD .Because HH CH and then shuttled pneumatically to the zero-field region over the order parameter S may be readily extracted from high- zz 0.5–1s. NMRsignalsweredetectedwithanatomicmagne- fielddeuteriumNMRspectra,theonlyremainingparameters tometer featuring a 0.6 × 0.6 × 1.0 cm3 87Rb vapor cell op- forthedipole-dipolecouplingstrengthsaretheanglesanddis- eratingat180◦C.Transientsignalswerecollectedover∼20s. tancesthatdefinethemoleculargeometry,whichmaybeob- ThespectrainFig.2aretheaverageofbetween256and1024 tainedfromtheliterature[40]. transients,andthespectrainFig.3aretheaverageof8tran- Itisworthpointingoutthedifferencebetweentheeffective sients. residualdipolecouplingHamiltonianinzerofieldandinhigh The spin Hamiltonian in the presence of J-couplings and field. The zero-fieldheteronuclearcoupling term interms of 3 (a) Jiso/2π (b) 2xJiso/2π (c) 285 280 6% DVA 275 z) 5% DVA H 270 cy ( 265 4% DVA n ue 260 q e 2% DVA Fr 255 140 1% DVA 135 130 130 135 140 260 270 280 290 0 1 2 3 4 5 6 Frequency (Hz) Frequency (Hz) Molecular Order Parameter (/10-4) FIG.2. Zero-fieldspectraofacetonitrile-2-13Cwithdifferentdegreesoforderingarisingfromtheconcentrationofthecross-linkerdivinyl adipate (DVA). (a) K = 1 and (b) K = 3 peaks. (c) Peak positions as a function of molecular order parameter. The lines are calculated 2 2 transitionfrequenciesfromEqs.(8-14)withnofreeparameters.Theorderparameterforeachsamplewascalculatedfromhigh-fielddeuterium quadrupolesplittingsusingliteraturevaluesfortheelectricfieldgradient[38]andthedipole-dipolecouplingstrengthswerecalculatedfrom Eq. (4)usingbondlengthsfromRef. [40]. Solidsymbolsrepresentallowed∆m = 0transitions,opensymbolsrepresenttransitionswith F ∆m =±1.Dashedlinesindicatepossibletransitionsthatarenotresolved. F the total 1H angular momentum K and the 13C angular mo- Inaddition,therearenominallyforbidden(assumingthatthe mentumSis detectorisonlysensitiveinthez-direction)∆m =±1transi- F tionswithfrequency H(het) =−(cid:126)D (3K S −K·S), (5) CH z z D ω1,±1 = J − CH. (9) ascomparedtothehigh-fieldcase, 0,0 CH 2 H(trunc) =−2(cid:126)D K S , (6) ForthetransitionsbetweenK = 3 states,thereareallowed CH z z 2 transitionswithfrequencies whereinatermoftheform ω2,0 =2J +2D , (10) (cid:126) 1,0 CH CH HRDC −H(trunc) = 2DCH(K+S−+K−S+), (7) ω2,±1 =2J + 1(D +3D ), (11) 1,±1 CH 2 CH HH is truncated because it does not commute with the high-field andnominallyforbiddentransitions∆m = ±1withfrequen- Zeeman Hamiltonian. The zero-field Hamiltonian is untrun- F cies cated, and thus includes this so-called “heteronuclear flip- flop”termthatisinvisibletohigh-fieldNMR. 1 ω2,±2 =2J − (7D +3D ), (12) In the regime where Djk (cid:28) Jjk, the residual dipolar cou- 1,±1 CH 4 CH HH plings may be treated as a perturbation on the J-coupling, 1 ω2,±1 =2J + (5D −3D ), (13) yieldingenergyshiftsthatarecalculatedintheSupportingIn- 1,0 CH 4 CH HH formation, andsummarizedschematicallyinFig.1(b), along 1 ω2,0 =2J + (5D +9D ). (14) withtheallowedtransitions. 1,±1 CH 4 CH HH Because the observable in this experiment is the z- magnetization M (t) ∝ Tr{ρ(t)(cid:80) I γ},thedetectablecoher- If the detector axis is not exactly aligned with the direc- ences are those wzith ∆F = 0,±1j jaznjd ∆m = 0. An addi- tor/quantizationaxis, thenominallyforbiddentransitionsbe- F tional selection rule, ∆K = 0, arises in the case of equiva- comeobservable. lentspins(e.g. themethylprotonsinacetonitrile)becauseK2 Zero-field spectra of acetonitrile-2-13C (13CH3CN) in stretched polyvinyl acetate gels are shown in Fig. 2(a) for commuteswiththeHamiltonian[4,39]. Itfollowsthatthere is one allowed transition between K = 1 states, between the increasing values of the molecular order parameter. As the |F = 0,mF = 0(cid:105) and |F = 1,mF = 0(cid:105)2states. Based on the orderparameterincreases,the K = 21 peakscorrespondingto first-orderenergyshiftspresentedintheSupportingInforma- theorderedportionofthesamplesplit,whiletheK = 1 peak 2 tion,thistransitionhasfrequency correspondingtoexcessisotropicliquidexternaltothegelre- mainsunchanged. Thelower-frequencypeakinFig. 2(a)cor- ω1,0 = J +D . (8) respondstothe∆m = 0transitiondescribedbyEq.(8)and 0,0 CH CH F 4 thehigher-frequencypeakcorrespondstothe∆m =±1tran- F 80 nT sition described by Eq. (9). The magnitude and phase of the ∆m = ±1 peak are determined by the projection of the ini- F 60 nT tialspin-statepopulationontothetransversecomponentofthe detectionoperator,andisthusasignatureofimperfectionsin 50 nT theexperimentalconfiguration. Becausethe∆m =±1peaks F areconsistentlynarrowerthanthe∆m =0peaksinFig.2(a), 40 nT F it appears that the linewidth is affected by inhomogeneity in thegelproducingadistributionoforderparametersandthus 30 nT aspreadintransitionfrequenciesproportionaltoD . CH Figure2(b)showsfourK = 3 peaks,threefromthealigned 20 nT 2 acetonitrile-2-13C,andonefromtheisotropicliquid. Thetwo 10 nT lower-frequencypeaksarisefromthe∆m =0transitionsde- F scribedbyEqs.(10-11)andthesmallhigher-frequencypeak 0 nT correspondstothe∆m =±1transitiondescribedbyEq.(12). F TransitionscorrespondingtoEqs.(13-14)arenotresolved. 132 134 136 138 140 142 In high-field NMR, terms in the Hamiltonian that do not Frequency (Hz) commutewiththeZeemanHamiltonianareneglected,dueto their immeasurably small effect on the NMR spectrum. Due FIG.3. Acetonitrile-2-13C K = 1 peaksasafunctionofmagnetic 2 to the absence of a large Zeeman interaction, ZULF NMR fieldappliedorthogonaltothedirectoraxis,collinearwiththemag- netometerpumpbeam. providesspectroscopicaccesstoallspin-couplingterms[41]. Intraditionalhigh-fieldNMR, onlypartoftheheteronuclear dipolarcoupling,H(trunc),fromEq.(6),yieldsmeasurableef- azimuthalangletobeaveragedtozero. Ifthesetermsarenot fectsinthespectrum. Byitself,thistermwouldyieldnoshift of the |F = 0,m = 0(cid:105) ↔ |F = 1,m = 0(cid:105) transition. In averagedtozero(e.g. inabiaxialphase),theywillfurtherlift F F degeneracyandyieldadditionalpeaks[43]. Fig.2(a),theresidualdipolarcouplingsclearlyshiftthepeak relativetotheisotropicliquidshowingtheobservationofthe We have also investigated the effect of applied magnetic untruncatedHamiltonianofEq.(2),includingthecontribution fieldsonthespectrum,asshowninFig.3. Whentheeffective ofEq.(7),aninteraction“invisible”totraditionalNMR.The detectionoperatoriscollinearwiththegeldirectoraxis,only absenceoftruncationthatpermitsobservationofthistermhas the ∆mF = 0 transition is observed (corresponding here to a also been demonstrated via the preparation of heteronuclear 10nTappliedfield). Asthefieldisincreased,however,rota- spin-singletstatesinRef.[42]. tion of the nuclear spins mixes states with different mF, and As shown in Fig. 2(c), the frequency shift varies linearly rotationofthealkalielectronspinselicitsachangeinthesen- with the order parameter. The data closely match the simu- sitiveaxisofthedetector. Theoverallresultisthatasthefield lated curves, which are calculated from the order parameter is increased, the vectors defining the detection operator and usingEqs.(4)and(8-14). thequantizationaxisceasetobecollinear. Thisinturnleads to the observation of ∆m = ±1 transitions, which become Inthesituationwherethesensitiveaxisofthemagnetome- F dominantabove50nT,atwhichpointtheeffectivedetection ter is parallel to the director of the gel alignment, only the ∆m = 0transitionsaredetected. Ifthedetectionaxis(ordi- operatorhasbeenrotatedsubstantiallyawayfromthedirector F rectionofalignment)isrotated,the∆m =±1transitionsare axis. F alsoobservable,leadingtopeaksathigherfrequency,within- In the regime where the Zeeman interaction strength is on tensitydependentontheinitialspinstatepopulationsandthe theorderoftheresidualdipolarcoupling,thepeakfrequencies angle between the detection and alignment axes. The addi- in Fig. 3 do not vary linearly with the applied field strength. tionalpeaksappearinFig.2becausethemeasurementswere Thisisbecausethedipole-dipolecouplingHamiltoniandoes carriedoutusingamagnetometerconfigurationthatfeatureda not commute with the Zeeman Hamiltonian, and thus first- rotatedaxisofdetectionduetoanon-zeroeffectivefieldatthe order perturbation is no longer sufficient to describe the sys- Rbcell.Weattributethiseffecttoimperfectionsinthemagne- tem. tometer configuration, potentially related to laser alignment, In conclusion, we have demonstrated the direct influence AC Stark shifts, or a combination of the two. We point out of the heteronuclear dipole-dipole coupling “flip-flop” term thattheeffectwasdiminishedafterexpandingthepumpbeam (whichisnotdirectlyobservableinthehigh-fieldregime)on (thusdecreasingthelaserpowerdensity)andsubsequentlyre- ZULFNMRspectra.Theresultsareinagreementwithazero- aligning the optics for the experiments in Fig. 3. It is worth free-parametermodelofresidualdipolarcouplingutilizinglit- noting that the rotation of the detection axis is necessary for eraturevaluesforinternucleardistancesandtheelectricfield the detection of the higher-frequency peaks only due to the gradientofacetonitrile,thelatterbeingusedtodeterminethe axial symmetry of the system under study, which causes the order parameter via high-field deuterium NMR. The sub-Hz termsofthedipolarcouplingHamiltonianthatdependonthe resolution of ZULF NMR may be of use for chemical and 5 structural analysis of small molecules, as well as for preci- [8] M. E. Halse and P. T. Callaghan, J. Magn. Reson. 195, 162 sionmeasurementsearchesforanomalousspin-spincouplings (2008). alongthelinesofRef. [21]. [9] S.Glo¨ggler,R.Muller,J.Colell,M.Emondts,M.Dabrowski, B.Blu¨mich,andS.Appelt,Phys.Chem.Chem.Phys.13,13759 In principle, all terms of the spin coupling Hamiltonian (2011). are observable in ZULF NMR, increasing the information [10] D.BudkerandM.Romalis,NaturePhys.3,227(2007). available in NMR spectra. With appropriate systems (e.g. [11] Y.S.Greenberg,Rev.Mod.Phys.70,175(1998). alignedchiralmolecules)andcontinuingimprovementsinpo- [12] I.K.Kominis,T.W.Kornack,J.C.Allred,andM.V.Romalis, larizationandmagnetometersensitivity,ZULFNMRmaybe Nature422,596(2003). a promising method to measure subtle interactions such as [13] R. McDermott, A. H. Trabesinger, M. Muck, E. L. Hahn, A.Pines,andJ.Clarke,Science295,2247(2002). the as-yet-unobserved antisymmetric components of the J- [14] A. H. Trabesinger, R. McDermott, S. K. Lee, M. Muck, couplingtensor[44]. BasedoncalculationsinRef.[45],mea- J.Clarke,andA.Pines,J.Phys.Chem.A108,957(2004). surement of a non-zero antisymmetric J-coupling could per- [15] J.C.Allred,R.N.Lyman,T.W.Kornack,andM.V.Romalis, mit the observation of a first-order energy shift arising from Phys.Rev.Lett.89(2002). paritynon-conservationinthemolecularHamiltonian. [16] P.D.D.Schwindt,S.Knappe,V.Shah,L.Hollberg,J.Kitching, L.A.Liew,andJ.Moreland,Appl.Phys.Lett.85,6409(2004). Thistechniquemayalsofindapplicationasaprobeofma- [17] N.F.RamseyandR.V.Pound,Phys.Rev.81,278(1951). terialstructure, allowingforthemeasurementofinteractions [18] D.B.Zax,A.Bielecki,K.W.Zilm,A.Pines,andD.P.Weit- withlowerthanazimuthalsymmetry. Forexample,measure- ekamp,J.Chem.Phys.83,4877(1985). mentofthefullanisotropicspin-spincouplingtensorofsmall [19] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978), URL http:// molecularprobeswithinporousmaterialsmayprovideamore link.aps.org/doi/10.1103/PhysRevLett.40.223. completedescriptionoflocalgeometrythandomeasurements [20] J.E.MoodyandF.Wilczek,Phys.Rev.D30,130(1984). oftotalsurfaceareaoraverageporediameter. [21] M.P.Ledbetter,M.V.Romalis,andD.F.J.Kimball,Phys.Rev. Lett.110,040402(2013). [22] P. W. Graham and S. Rajendran, Phys. Rev. D 88, 035023 (2013). [23] J. W. Blanchard, M. P. Ledbetter, T. Theis, M. C. Butler, ACKNOWLEDGEMENT D.Budker,andA.Pines,J.Am.Chem.Soc.135,3607(2013). [24] T. Theis, J. W. Blanchard, M. C. Butler, M. P. Ledbetter, ThisworkwassupportedinpartbytheDirector,Officeof D.Budker,andA.Pines,Chem.Phys.Lett.580,160(2013). Science,OfficeofBasicEnergySciences,MaterialsSciences [25] M. C. Butler, M. P. Ledbetter, T. Theis, J. W. Blanchard, D.Budker,andA.Pines,J.Chem.Phys.138,184202(2013). and Engineering Division, of the US Department of Energy [26] P. Diehl and C. Khetrapal, in NMR Basic Principles and underContractNo. DE-AC02-05CH11231(infrastructurefor Progress / Grundlagen und Fortschritte, edited by P. Diehl, atomicmagnetometrydetection)andbytheNationalScience E. Fluck, and R. Kosfeld (Springer Berlin Heidelberg, 1969), Foundationunderaward#CHE-1308381(zero-fieldNMRan- vol.1ofNMRBasicPrinciplesandProgress/Grundlagenund alytical chemistry and spectroscopy). J.W.B. was also sup- Fortschritte,pp.1–95,ISBN978-3-662-12602-8. ported by a National Science Foundation Graduate Research [27] J.EmsleyandJ.Lindon,NMRSpectroscopyUsingLiquidCrys- talSolvents(PergamonPress,1975),ISBN9780080199191. FellowshipunderGrantNo.DGE-1106400. Wewouldliketo [28] N.TjandraandA.Bax,Science278,1111(1997). thank Roberto R. Gil for helpful discussions of stretched gel [29] R. Tycko, F. J. Blanco, and Y. Ishii, J. Am. Chem. Soc. 122, preparation. 9340(2000). [30] J.J.Chou,S.Gaemers,B.Howder,J.M.Louis,andA.Bax,J. Biomol.NMR21,377(2001). [31] N.Tjandra,J.G.Omichinski,A.M.Gronenborn,G.M.Clore, andA.Bax,Nat.Struct.Biol.4,732(1997). [1] C. P. Slichter, Principles of Magnetic Resonance (Springer, [32] G.M.Clore,A.M.Gronenborn,andN.Tjandra,J.Magn.Re- 1990),3rded. son.131,159(1998). [2] S. Appelt, F. W. Haesing, H. Kuehn, U. Sieling, and [33] J.Prestegard,H.Al-Hashimi,andJ.Tolman,Q.Rev.Biophys. B.Blu¨mich,Chem.Phys.Lett.440,308(2007). 33,371(2000). [3] S. Appelt, F. W. Hasing, U. Sieling, A. Gordji-Nejad, [34] P.Trigo-Mourino, R.Sifuentes, A.Navarro-Vazquez, C.Gay- S.Glo¨ggler,andB.Blu¨mich,Phys.Rev.A81,023420(2010). athri,H.Maruenda,andR.R.Gil,Nat.Prod.Commun.7,735 [4] M.P.Ledbetter,T.Theis,J.W.Blanchard,H.Ring,P.Ganssle, (2012). S. Appelt, B. Blu¨mich, A. Pines, and D. Budker, Phys. Rev. [35] H.Spiess,U.Haeberlen,andH.Zimmermann,J.ofMagn.Re- Lett.107,107601(2011). son.25,55 (1977). [5] J. Collel, P. Turschmann, S. Glo¨ggler, P. Schleker, T. Theis, [36] A.Saupe,Z.Naturforsch.A19,161(1964). M.Ledbetter,D.Budker,A.Pines,B.Blu¨mich,andS.Appelt, [37] A.Saupe,Z.Naturforsch.A20,572(1965). Phys.Rev.Lett.110,137602(2013). [38] W. J. Caspary, F. Millett, M. Reichbach, and B. P. Dailey, J. [6] T.Theis,P.Ganssle,G.Kervern,S.Knappe,J.Kitching,M.P. Chem.Phys.51,623(1969). Ledbetter,D.Budker,andA.Pines,NaturePhys.7,571(2011). [39] M. P. Ledbetter, C. W. Crawford, A. Pines, D. E. Wemmer, [7] T. Theis, M. P. Ledbetter, G. Kervern, J. W. Blanchard, P. J. S.Knappe, J.Kitching, andD.Budker, J.Magn.Reson.199, Ganssle,M.C.Butler,H.D.Shin,D.Budker,andA.Pines,J. 25(2009). Am.Chem.Soc.134,3987(2012). 6 [40] M.Kessler,H.Ring,R.Trambarulo,andW.Gordy,Phys.Rev. 79,54(1950). [41] D.B.Zax,A.Bielecki,K.W.Zilm,andA.Pines,Chem.Phys. Lett.106,550(1984). [42] M.Emondts,M.P.Ledbetter,S.Pustelny,T.Theis,B.Patton, J.W.Blanchard,M.C.Butler,D.Budker,andA.Pines,Phys. Rev.Lett.112,077601(2014). [43] A.M.Thayer,M.Luzar,andA.Pines,Liq.Cryst.2,241(1987). [44] K.J.Harris,D.L.Bryce,andR.E.Wasylishen,Can.J.Chem. 87,1338(2009). [45] A.BarraandJ.Robert,Mol.Phys.88,875(1996).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.