ebook img

Measurement of the ratio B(B[0,s] to J/psi f0(980)) / B(B[0,s] to J/psi phi(1020)) in pp collisions at sqrt(s) = 7 TeV PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of the ratio B(B[0,s] to J/psi f0(980)) / B(B[0,s] to J/psi phi(1020)) in pp collisions at sqrt(s) = 7 TeV

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-PH-EP/2013-037 2016/03/15 CMS-BPH-14-002 Measurement of the ratio B(B0 → J/ψ f (980))/B(B0 → J/ψ φ(1020)) in pp collisions s 0 √s at s = 7TeV 6 1 0 2 The CMS Collaboration∗ r a M 4 1 ] Abstract x e - p A measurement of the ratio of the branching fractions of the B0 meson to J/ψf (980) s 0 e and to J/ψφ(1020) is presented. The J/ψ, f (980), and φ(1020) are observed through h 0 [ theirdecaystoµ+µ−, π+π−,andK+K−,respectively. Thef0 andtheφareidentified 2 byrequiring|Mπ+π− −974MeV| < 50MeVand|MK+K− −1020MeV| < 10MeV. The v analysisisbasedonadatasampleofppcollisionsatacentre-of-massenergyof7TeV, 9 collected by the CMS experiment at the LHC, corresponding to an integrated lumi- 8 0 nosityof5.3fb−1. Themeasuredratiois B(B0s→J/ψf0)B(f0→π+π−) = 0.140±0.008(stat)± B(B0→J/ψφ)B(φ→K+K−) 6 s 0.023(syst),wherethefirstuncertaintyisstatisticalandthesecondissystematic. 0 . 1 0 5 PublishedinPhysicsLettersBasdoi:10.1016/j.physletb.2016.02.047. 1 : v i X r a (cid:13)c 2016CERNforthebenefitoftheCMSCollaboration.CC-BY-3.0license ∗SeeAppendixAforthelistofcollaborationmembers 1 1 Introduction SincetheobservationofthedecayB0 → J/ψπ+π−withJ/ψ → µ+µ−,andtheπ+π−massspec- s trumindicatingalargef (980)component[1],thischannelhasbeenregardedwithgreatinter- 0 estinheavy-flavorphysics. Moredetailedstudiesoftheπ+π− massspectrumhaveshownthe π+π− systemtobealmostentirelyCPodd[2,3]. Thisopensupthepossibilityofdirectlymea- suring the lifetime of the CP-odd part of the B0 meson [4, 5]. In addition, the B0 → J/ψπ+π− s s decay has been used for the measurement of the CP-violating phase φ [6, 7], making an im- s portant contribution to the world-average value of φ [8–13]. The phase φ is predicted to be s s smallinthestandardmodel[14],makingitsdeterminationinterestingbecauseofthelargeen- hancements that can be introduced by new physics [15, 16]. In what follows, we will refer to thef (980)asf andtheφ(1020)asφ. 0 0 This Letter presents the measurement of the ratio R of the branching fractions B(B0 → f0/φ s J/ψf )B(f → π+π−)andB(B0 → J/ψφ)B(φ → K+K−),whereinbothcasestheJ/ψisdetected 0 0 s throughitsdecayto µ+µ−. Thef0 andthe φ areidentifiedbyrequiring |Mπ+π− −974MeV| < 50MeV and |MK+K− −1020MeV| < 10MeV. The appearance of B0s → J/ψf0 decays was first discussedin[17]withatheoreticalestimatefor R ofapproximately0.2,whichisconsistent f0/φ with results from several experiments [2, 4, 18, 19]. Detailed studies of the π+π− mass spec- trumoftheB0s → J/ψπ+π−decayin0.3 < Mπ+π− < 2.5GeV[2,3]revealthisfinalstatetohave contributionsfromseveralresonancesin Mπ+π−,andthef0 componenttorangefrom65.0%to 94.5%. However, according to the same results, the contaminations from other resonances in |Mπ+π− −974MeV| < 50MeV are several orders of magnitude lower than the f0 component, including the non-resonant S-wave. Based on this, the measurement of R is performed as- f0/φ suming that the selected region of Mπ+π− is dominated by B0s → J/ψf0 decays and neglecting otherresonances. Systematicuncertaintiesareassignedtothemeasurementowingtotheseas- sumptions,takingintoaccounttheuncertaintyinthef componentandtheinterferenceswith 0 otherresonancesintheselectedmasswindowfor Mπ+π−. Experimentally,theratio R isgivenby f0/φ B(B0 → J/ψf )B(f → π+π−) Nf0 R = s 0 0 = obs (cid:101)φ/f0, (1) f0/φ B(B0s → J/ψφ)B(φ → K+K−) Nφ reco obs where Nf0 and Nφ are the observed yields of B0 → J/ψ(µ+µ−)f with f → π+π− and obs obs s 0 0 B0 → J/ψ(µ+µ−)φ with φ → K+K− decays, respectively, and (cid:101)φ/f0 is the ratio of the detection s reco efficiencies for the B0 decay mode with a φ to the decay mode with a f . Uncertainties in s 0 the b quark production cross section cancel in the ratio, as do those from the J/ψ → µ+µ− branchingfractionandtheintegratedluminosity. Giventhesimilartopologiesofthetwofinal states, systematic uncertainties related to the tracking efficiency and the muon identification alsocancelintheratio. 2 The CMS detector The central feature of the CMS apparatus is a superconducting solenoid of 6m internal diam- eter. Within the 3.8T field volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagneticcalorimeter,andabrassandscintillatorhadroncalorimeter,eachcomposedof abarrelandtwoendcapsections. Muonsaremeasuredinthepseudorapidityrange|η| < 2.4in gas-ionizationdetectorsembeddedinthesteelflux-returnyokeoutsidethesolenoid,whichare made using three technologies: drift tubes, cathode strip chambers, and resistive-plate cham- 2 3 Eventselection bers. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. The main subdetectors used in this analysis are the silicon tracker and the muonsystems. The silicon tracker measures charged particles within the pseudorapidity range |η| < 2.5 and consists of 1440 silicon pixel and 15148 silicon strip detector modules. Matching muons to tracksmeasuredinthesilicontrackerresultsinarelativetransversemomentumresolutionfor muons with 20 < p < 100GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps, T The p resolutioninthebarrelisbetterthan10%formuonswith p upto1TeV[20]. T T ThefirstleveloftheCMStriggersystem,composedofcustomhardwareprocessors,usesinfor- mationfromthecalorimetersandmuondetectorstoselectthemostinterestingeventsinafixed time interval of less than 4µs. The high-level trigger (HLT) processor farm further decreases theeventratetolessthan1kHz,beforedatastorage. A more detailed description of the CMS detector, together with a definition of the coordinate systemusedandtherelevantkinematicvariables,canbefoundinRef. [21]. 3 Event selection The data sample used for this measurement was collected in 2011 by the CMS experiment at theCERNLHCinproton-protoncollisionsatacentre-of-massenergyof7TeVandcorresponds toanintegratedluminosityof5.3fb−1. The search for B0 → J/ψf decays is performed in events with two muon candidates selected s 0 bythedimuontriggerattheHLT,requiringthemuonpairtooriginatefromadisplacedvertex. The dimuon candidates are further required to comply with L /σ > 3, where L is the xy xy xy (cid:126) magnitudeofthevectorL ,whichliesinaplanetransversetothebeamaxisandpointsfrom xy theinteractionpointtothedimuonvertex,and σ isitsuncertainty;cosα > 0.9,where α xy J/ψ J/ψ is the angle between the direction of the dimuon transverse momentum and(cid:126)L ; p > 4GeV xy T and |η| < 2.2 for each muon candidate; p > 7GeV for the dimuon; the distance of closest T approachofeachmuontrackwithrespecttotheothermuontrack<0.5cm. ReconstructionoftheB0 → J/ψf decaysbeginswiththesearchforJ/ψcandidatesbycombin- s 0 ingtwomuonsofoppositechargetoformavertexwithafitprobability>0.5%andaninvariant mass (M ) within |M −3097.6MeV| < 150MeV. To search for f candidates, two tracks of J/ψ J/ψ 0 oppositechargeassumedtobepionsareconstrainedtoavertexwithaprobability >5%. One pioncandidatemusthave p > 1GeVandtheother p > 2.5GeV. Inaddition,thef candidate T T 0 must have p > 3.5GeV and M in the range |M −974MeV| < 50MeV. The 974MeV is the T f0 f0 measured mass of f signal in data modeled by a Breit–Wigner function. This value is consis- 0 tentwiththef massfromtheParticleDataGroup[22]andtheLHCbmeasurement[1]. Finally, 0 a vertex is formed with the J/ψ and f candidates, constraining the dimuon mass to the nomi- 0 nalJ/ψ mass[22]. TheB0 → J/ψf candidatesarerequiredtohaveavertexprobability >10%, s 0 p > 13GeV,cosα > 0.994,whereα istheanglebetweenthedirectionoftheB0 transverse T B0 B0 s s s momentumandthevector(cid:126)L , andaproperdecaylength >100µm. Theproperdecaylength xy is defined as ((cid:126)L ·(cid:126)p M /p2), where(cid:126)p is the transverse momentum ofthe B0 candidate and xy T B T T s M istheworld-averageB0 mass[22]. InthecaseofmultipleB0 candidatesperevent,theone B s s with smallest B0s vertex fi√t χ2 is selected. The selection criteria for the B0s candidates are estab- lishedbymaximizing S/ S+B,where S isthesignalyieldobtainedfromMonteCarlo(MC) simulationand Bisthebackgroundyieldtakenfromsidebandregions,definedasthenumber ofeventswithaµ+µ−π+π− invariantmassintherange5.27to5.30GeVor5.43to5.46GeV. 3 Thesameprocedureandselectioncriteriaareappliedtothereconstructionofthenormalization channelB0 → J/ψφ,exceptthattheinvariantmassrequirement|M −1020MeV| < 10MeVis s φ tighterthanthatforthef . 0 4 Results The signal yields of both decay channels are extracted using unbinned maximum-likelihood fitsofthemassdistributions. TheinvariantmassdistributionoftheJ/ψ(µ+µ−)f (π+π−) can- 0 didates is shown in Fig. 1. It is fit with a superposition of a Gaussian function representing the signal, a polynomial function to account for the combinatorial background, and another Gaussianfunctionforanypossiblepeakingbackground. Thelattermodelsresonantstructures that could appear in the left sideband of the J/ψ(µ+µ−)f (π+π−) signal mass owing to the 0 misidentification of a kaon as a pion coming from decays such as B0 → J/ψK∗(892)(K+π−) and B0 → J/ψK+K−, as examples. In addition, B+ → J/ψK+(π+) decays can be a source of s backgroundwhencombinedwithanextrabackgroundpioncandidate. Whenallowingallpa- rameterstofloat,thefitreturnsNf0 = 873±49eventsandaB0massof5369.1±0.9MeV,with obs s aresolutionof15.9±0.9MeV,wheretheuncertaintiesarestatisticalonly. Themeasuredvalues oftheB0 massanditsresolutionareconsistentwiththeMCsimulation. s 5.3 fb-1 (7 TeV) 350 V e CMS M Data 9 300 Fit nts / 250 Signal e v Combinatorial background E200 Peaking background 150 100 50 0 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 Pull 2 J/y p p Invariant mass [GeV] 0 -2 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 J/y p +p - invariant mass [GeV] Figure 1: Invariant mass distribution of the B0 → J/ψ(µ+µ−)f (π+π−) candidates (filled cir- s 0 cles). ThesignalismodelledasaGaussian(dot-dashedline),thecombinatorialbackgroundas afirst-orderpolynomialfunction(dashed-double-dottedline),andthepeakingbackgroundby aGaussian(dottedline). Theresultofthetotalfitisshownwiththesolidline. Thebottomplot showsthepull,whichisthedeviationofthedatafromthefitdividedbytheuncertaintyinthe data. The J/ψ(µ+µ−)φ(K+K−) invariant mass distribution is modelled by two Gaussian functions for the signal and a constant function for the combinatorial background. A signal yield of Nφ = 8377±107 events is obtained, with a B0 mass of 5366.8±0.2MeV and a resolution obs s of 17.1±0.1MeV, which are consistent with the MC simulation. The corresponding invariant 4 4 Results massdistributionispresentedinFig. 2. 5.3 fb-1 (7 TeV) V Me1000 CMS 5 Data 4. s / 800 Fit nt Signal e v 600 Combinatorial background E 400 200 0 5.25 5.3 5.35 5.4 5.45 ull 2 J/y KK mass [GeV] P 0 -2 -4 5.25 5.3 5.35 5.4 5.45 J/y K+K- invariant mass [GeV] Figure2: InvariantmassdistributionoftheB0 → J/ψ(µ+µ−)φ(K+K−)candidates(blackfilled s circles). The signal model is a double Gaussian (dot-dashed line), while the combinatorial backgroundmodelisaconstantfunction(dash-double-dottedline). Thetotalfitisrepresented by the solid line. The bottom plot shows the deviation of the data to the fit divided by the statisticaluncertaintyinthedata. Using the MC simulation, the detection efficiencies for the two processes are calculated as the ratio of the reconstructed and generated yields. The B0 meson production is simulated using s PYTHIA 6.4.24 [23] and its decays simulated with EVTGEN [24]. The B0 mass and lifetime are s set to 5369.6MeV and 438µm in the simulation. The decay model used for the B0 → J/ψf s 0 decay is a phase-space model reweighted to reflect the spin-1 structure of the J/ψ → µ+µ− decay. The corresponding models for the B0 → J/ψφ decay are: a pseudoscalar-vector-vector s with CP violation [25, 26] for the B0 decay, with parameters [24] ||A ||2 = 0.24, ||A ||2 = 0.6, s || 0 ||A ||2 = 0.16,φ = 2.5,φ = 0,andφ = −0.17;avector-lepton-leptonmodelwithradiation ⊥ || 0 ⊥ (PHOTOS) [27] for the J/ψ → µ+µ− decay; and a vector-scalar-scalar model [24] for the φ → K+K− decay. Theeventsareprocessedwitha GEANT4-baseddetectorsimulation[28]andthe samereconstructionalgorithmsusedondata. InordertovalidatetheMCsimulationsamples, relevant kinematic and geometric variables of both simulated decay channels are compared withthedataafterbackgroundsubtractionandfoundtobeinagreement. Forexample,Fig. 3 comparesthe p andinvariantmassdistributionsofthef (π+π−)candidatesforbackground- T 0 subtracted data and MC simulation. The f width was set to 50MeV in the MC simulation. 0 This is consistent with what is observed in our data as shown in the Fig. 3.b. The ratio of the detectionefficienciesforthetwoB0 decaysiscalculatedtobe (cid:101)φ/f0 = 1.344±0.095, wherethe s reco uncertainty reflects the limited size of simuated samples. Using the corresponding values of Nf0 , Nφ , and (cid:101)φ/f0 in Eq. (1), we measure R = 0.140±0.008, where the uncertainty is obs obs reco f0/φ statisticalonly. Thestabilityofthe R measurementisverifiedwithcontrolchecksusingdifferentrunperi- f0/φ ods, selection criteria, and geometric acceptances. To study possible effects from varying run 5 5.3 fb-1 (7 TeV) 5.3 fb-1 (7 TeV) V V Ge 0.4 CMS Data a) Me 0.18 CMS Data b) 2 1 vents / 00.3.35 MC ents / 100..1146 MC e v ber of 0.25 er of e 0.01.21 um 0.2 mb n u 0.08 ed 0.15 d n z e 0.06 mali 0.1 aliz Nor orm0.04 0.05 N 0.02 0 0 4 6 8 10 12 14 16 18 0.85 0.9 0.95 1 1.05 1.1 p of p +p - [GeV] p +p - invariant mass [GeV] T Figure 3: Comparison of normalized MC simulation (triangles) and background-subtracted data(squared)for(a)the p and(b)invariantmassdistributionsofthef (π+π−)candidates. T 0 conditions, the value of R is determined for two subsamples, found by dividing the data f0/φ into two. The ratio is also measured after changing the selection criteria for the proper decay length and p of the B0 candidates and the p of the leading and subleading pion candidates, T s T andbyusingdifferentazimuthalangleandηrequirementsforthemuons. Noneofthesecross- checksrevealedanystatisticallysignificantbias. 5 Systematic uncertainties PotentialsystematicuncertaintiesinthemeasurementofR comefromsourcessuchastheB0 f0/φ s signalyieldextractionprocedure,therelativeefficiencyestimation,andpossiblecontributions totheB0 yieldsfromotherdecaysproducingtheJ/ψπ+π− andJ/ψK+K− finalstates. s Systematicuncertaintiesinthesignalyieldextractionareestimatedbychangingthemodeling ofthesignalandthebackgroundinvariantmassdistributionsinthelikelihoodfits. Forthecase oftheB0 → J/ψf massdistributionthesignalshapeischangedtoadouble-Gaussianfunction s 0 and the background to an exponential function, while for the B0 → J/ψφ mass distribution s the signal is changed to a Gaussian function and its background is modelled as a first-order polynomialfunction. Thesechangesleadtoamaximumvariationof2.1%in R . f0/φ Thereareseveralfactorsthatmayaffecttheestimateof(cid:101)φ/f0. WhiletheMCsimulationpackage reco uses a Breit–Wigner model to simulate the f → π+π− process, it has been pointed out [2, 3] 0 thataFlatte´ modelisabetterdescriptionofthisdecay. Toestimatetheeffectofthesimulation model, the Breit–Wigner model used in the simulation is compared to a Flatte´ model in the selected Mπ+π− region. Thedifferenceinthemodelsreflectsasystematicerrorof5.8%in(cid:101)rφe/cfo0. This is quoted as a systematic uncertainty. In addition, in the MC simulation the f width is 0 set to 50MeV. This value is varied by ±10MeV, resulting in a systematic uncertainty of 8.6% in R . The models used in the MC simulation of the B decays are set to phase-space [24] f0/φ s insteadofthedefaultdecaymodels,leadingtoa6.2%systematicuncertaintyin R . Finally, f0/φ thestatisticaluncertaintyin(cid:101)φ/f0 owingtothefinitenumberofMCevents,whichcorresponds reco to7.1%,isaddedasasystematicuncertainty. As mentioned in the introduction, detailed studies of the π+π− mass spectrum of the B0 → s J/ψπ+π− decay[2,3]inamasswindowof0.3–2.5GeV,revealthisfinalstatetohavecontribu- 6 6 Summary tions from several resonances in Mπ+π−, and the f0 component to range from 65.0 to 94.5% in the entire mass window studied by LHCb. To study the effects of the interferences and the f 0 fraction observed by LHCb in the estimate of (cid:101)φ/f0, the model reported in [3] for the lowest f reco 0 fractionandlargestnon-resonantcomponentwascomparedtothesingleBreit–Wignermodel used in the MC simulation of the f0 → π+π decay. The comparison in the selected Mπ+π− re- gionshowsavariationof5.6%inR . Thisisquotedasasystematicuncertaintycomingfrom f0/φ this source. It can be observed in the same LHCb study that the contaminations from other resonances in the mass region |Mπ+π− −974MeV| < 50MeV are several orders of magnitude lowerthanthef component, includingthenon-resonantS-wave. Toestimatethevariationin 0 the B0 yield coming from these possible contributions, the f mass window is widened from s 0 50 to 100MeV around the f mass, resulting in a variation in R of 6.4% that is quoted as a 0 f0/φ systematicuncertainty. FortheB0 → J/ψK+K− decaychannel, thecontributionoftheS-wave s inaφmasswindowsimilartowhatisusedinthisanalysishasbeenfoundtobenegligible[29]. Combiningtheseuncertaintiesinquadratureleadstoatotalsystematicuncertaintyof16.5%. 6 Summary √ UsingdatacollectedbytheCMSexperimentinproton-protoncollisionsat s = 7TeV,corres- pondingtoanintegratedluminosityof5.3fb−1,873±49eventsofB0 → J/ψ(µ+µ−)f (π+π−) s 0 and 8377±107 events of B0 → J/ψ(µ+µ−)φ(K+K−) are observed. The f and φ are identi- s 0 fied in the mass ranges |Mπ+π− −974MeV| < 50MeV and |MK+K− −1020MeV| < 10MeV, respectively. TheratioofthebranchingfractionofB0 → J/ψ(µ+µ−)f (π+π−)tothebranching s 0 fractionofB0 → J/ψ(µ+µ−)φ(K+K−), R ,isfoundtobe s f0/φ B(B0 → J/ψf )B(f → π+π−) s 0 0 = 0.140±0.008(stat)±0.023(syst). (2) B(B0 → J/ψφ)B(φ → K+K−) s This result is consistent with the theoretical prediction of about 0.2 [17] and with previous measurementsindifferentrangesof Mπ+π− [2,4,19]. Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent perfor- manceoftheLHCandthankthetechnicalandadministrativestaffsatCERNandatotherCMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid fordeliveringsoeffectivelythecomputinginfrastructureessentialtoouranalyses. Finally,we acknowledgetheenduringsupportfortheconstructionandoperationoftheLHCandtheCMS detectorprovidedbythefollowingfundingagencies: BMWFWandFWF(Austria);FNRSand FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST,andNSFC(China);COLCIENCIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus); MoER,ERCIUTandERDF(Estonia);AcademyofFinland,MEC,andHIP(Finland);CEAand CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Re- public of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, References 7 IPST,STARandNSTDA(Thailand);TUBITAKandTAEK(Turkey);NASUandSFFR(Ukraine); STFC(UnitedKingdom);DOEandNSF(USA). Individuals have received support from the Marie-Curie programme and the European Re- search Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; theAlexandervonHumboldtFoundation; theBelgianFederalSciencePolicyOf- fice; the Fonds pour la Formation a` la Recherche dans l’Industrie et dans l’Agriculture (FRIA- Belgium);theAgentschapvoorInnovatiedoorWetenschapenTechnologie(IWT-Belgium);the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Sci- enceandIndustrialResearch,India;theHOMINGPLUSprogrammeofFoundationforPolish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di SanPaolo(Torino);theConsorzioperlaFisica(Trieste);MIURproject20108T4XTM(Italy);the ThalisandAristeiaprogrammescofinancedbyEU-ESFandtheGreekNSRF;andtheNational PrioritiesResearchProgrambyQatarNationalResearchFund. References [1] LHCbCollaboration,“FirstobservationofB0 → J/ψf (980)decays”, Phys.Lett.B 698 s 0 (2011)115,doi:10.1016/j.physletb.2011.03.006,arXiv:1102.0206. [2] LHCbCollaboration,“AnalysisoftheresonantcomponentsinB0 → J/ψπ+π−”, Phys. s Rev.D 86(2012)052006,doi:10.1103/PhysRevD.86.052006,arXiv:1204.5643. [3] LHCbCollaboration,“MeasurementoftheresonantandCPcomponentsin B0 → J/ψπ+π− decays”, Phys.Rev.D 89(2014)092006, s doi:10.1103/PhysRevD.89.092006,arXiv:1402.6248. [4] CDFCollaboration,“MeasurementofbranchingratioandB0 lifetimeinthedecay s B0 → J/ψf (980)atCDF”, Phys.Rev.D 84(2011)052012, s 0 doi:10.1103/PhysRevD.84.052012,arXiv:1106.3682. [5] LHCbCollaboration,“MeasurementoftheB0 effectivelifetimeintheJ/ψf (980)final s 0 state”, Phys.Rev.Lett. 109(2012)152002,doi:10.1103/PhysRevLett.109.152002, arXiv:1207.0878. 0 [6] LHCbCollaboration,“MeasurementoftheCP-violatingphaseφ inB → J/ψf (980)”, s s 0 Phys.Lett.B 707(2012)497,doi:10.1016/j.physletb.2012.01.017, arXiv:1112.3056. [7] LHCbCollaboration,“MeasurementoftheCP-violatingphaseφ inB0 → J/ψπ+π− s s decays”, Phys.Lett.B 736(2014)186,doi:10.1016/j.physletb.2014.06.079, arXiv:1405.4140. [8] D0Collaboration,“MeasurementofB0 mixingparametersfromtheflavor-taggeddecay s B0 → J/ψφ”, Phys.Rev.Lett. 101(2008)241801, s doi:10.1103/PhysRevLett.101.241801,arXiv:0802.2255. [9] CDFCollaboration,“Firstflavor-taggeddeterminationofboundsonmixing-inducedCP violationinB0 → J/ψφdecays”, Phys.Rev.Lett. 100(2008)161802, s doi:10.1103/PhysRevLett.100.161802,arXiv:0712.2397. 8 References J/ψφ [10] D0Collaboration,“MeasurementoftheCP-violatingphaseφ usingtheflavor-tagged s decayB0 → J/ψφin8fb−1 ofppcollisions”, Phys.Rev.D. 85(2012)032006, s doi:10.1103/PhysRevD.85.032006,arXiv:1109.3166. [11] LHCbCollaboration,“MeasurementoftheCP-violatingphaseφ inthedecay s B0 → J/ψφ”, Phys.Rev.Lett. 108(2012)101803, s doi:10.1103/PhysRevLett.108.101803,arXiv:1112.3183. [12] ATLASCollaboration,“Time-dependentangularanalysisofthedecayB0 → J/ψφand s extractionof∆Γ andtheCP-violatingweakphaseφ byATLAS”, JHEP 12(2012)072, s s doi:10.1007/JHEP12(2012)072,arXiv:1208.0572. [13] CMSCollaboration,“MeasurementoftheCP-violatingweakphaseφ andthedecay s widthdifference∆Γ usingtheB0 → J/ψφ(1020)decaychannelinppcollisionsat √ s s s = 8TeV”,(2015).arXiv:1507.07527.SubmittedtoPhys.Lett.B. [14] J.Charlesetal.,“Predictionsofselectedflavourobservableswithinthestandardmodel”, Phys.Rev.D 84(2011)033005,doi:10.1103/PhysRevD.84.033005, arXiv:1106.4041. [15] P.BallandR.Fleischer,“ProbingnewphysicsthroughBmixing: status,benchmarksand prospects”, Eur.Phys.J.C 48(2006)413,doi:10.1140/epjc/s10052-006-0034-4, arXiv:hep-ph/0604249. [16] A.Lenz,“UnparticlephysicseffectsinB -B mixing”, Phys.Rev.D 76(2007)065006, s s doi:10.1103/PhysRevD.76.065006,arXiv:0707.1535. [17] S.StoneandL.Zhang,“S-wavesandthemeasurementofCP-violatingphasesinB s decays”, Phys.Rev.D 79(2009)074024,doi:10.1103/PhysRevD.79.074024, arXiv:0812.2832. [18] BELLECollaboration,“ObservationofB0 → J/ψf (980)andevidencefor s 0 B0 → J/ψf (1370)”, Phys.Rev.Lett 106(2011)121802, s 0 doi:10.1103/PhysRevLett.106.121802,arXiv:1102.2759. [19] D0Collaboration,“MeasurementoftherelativebranchingratioofB0 → J/ψf (980)to s 0 B0 → J/ψφ”, Phys.Rev.D 85(2012)011103,doi:10.1103/PhysRevD.85.011103, s arXiv:1110.4272. [20] CMSCollaboration,“PerformanceofCMSmuonreconstructioninppcollisioneventsat √ s = 7TeV”, JINST 7(2012)P10002,doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071. [21] CMSCollaboration,“TheCMSexperimentattheCERNLHC”, JINST 03(2008)S08004, doi:10.1088/1748-0221/3/08/S08004. [22] ParticleDataGroup,J.Beringeretal.,“ReviewofParticlePhysics”, Phys.Rev.D 86 (2012)010001,doi:10.1103/PhysRevD.86.010001. [23] T.Sjo¨strand,S.Mrenna,andP.Skands,“PYTHIA6.4physicsandmanual”, JHEP 05 (2006)026,doi:10.1088/1126-6708/2006/05/026,arXiv:hep-ph/0603175. [24] D.Lange,“TheEvtGenparticledecaysimulationpackage”, Nucl.Instrum.Meth.A 462 (2001)152,doi:10.1016/S0168-9002(01)00089-4.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.