ebook img

Measurement of the invariant mass distributions for the pp -> ppeta' reaction at excess energy of Q = 16.4 MeV PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of the invariant mass distributions for the pp -> ppeta' reaction at excess energy of Q = 16.4 MeV

Measurement of the invariant mass distributions for the pp ppη reaction at excess energy of Q = 16.4 MeV ′ → P.Klajaa,b,c,P.Moskala,b,E.Czerwin´skia,b,R.Czyz˙ykiewicza,A.Deloffd,D.Gila,D.Grzonkab, L.Jarczyka,B.Kamysa,A.Khoukaze,J.Klajaa,b,K.Nakayamaf,W.Oelertb,J.Ritmanb, T.Sefzickb,M.Siemaszkog,M.Silarskia,J.Smyrskia,A.Ta¨schnere,M.Wolkeb,J.Zdebika, M.Zielin´skia,b,W.Zipperg 0 aInstituteofPhysics,JagellonianUniversity,PL-30-059Cracow,Poland 1 bInstitutfu¨rKernphysik,ForschungszentrumJu¨lich,D-52425Ju¨lich,Germany 0 cPhysikalischesInstitut,Universita¨tErlangen–Nu¨rnberg,D-91058Erlangen,Germany 2 dInstituteforNuclearStudies,PL-00-681Warsaw,Poland eInstitutfu¨rKernphysik,Westfa¨lischeWilhelms–Universita¨t,D-48149Mu¨nster,Germany n fDepartmentofPhysics,UniversityofGeorgia,GA-30602Athens,USA a gInstituteofPhysics,UniversityofSilesia,PL-40-007Katowice,Poland J 8 2 ] x Abstract e Theproton-protonandproton-η invariantmassdistributionshavebeendeterminedforthepp - ′ l ppη reactionatanexcessenergyofQ=16.4MeV.Themeasurementwascarriedoutusingt→he c ′ u COSY-11detectorsetupandtheprotonbeamofthecoolersynchrotronCOSY.Theshapesofthe n determinedinvariantmassdistributionsaresimilartothoseofthe pp ppηreactionandreveal [ → anenhancementforlargerelativeproton-protonmomenta.Thisresult,togetherwiththefactthat 1 theproton-ηinteractionismuchstrongerthattheproton-η′interaction,excludesthehypothesis v thattheobservedenhancementiscausedbytheinteractionbetweentheprotonandthemeson. 4 7 Keywords: pseudoscalarmesons,differentialdistributions,nearthresholdmesonproduction, 1 interaction 5 PACS:13.60,13.75.-n,14.40.-n,25.40.-h . 1 0 0 1 1. Introduction : v i Theunderstandingofthemeson-nucleoninteractionaswellasstudiesofmesonstructureand X productionmechanismsconstituteone ofthe basic issuesof the contemporaryhadronphysics. r a The η andη mesonsconstitutea mixtureof the SU(3)singletand octetstates with almostthe ′ samerelativecontributionsofvariousquarkflavours. Nevertheless,theyhaveunexpectedlydif- ferentproperties,e.g.asregardsthemass[1],branchingratios[2,3]orproductioncrosssections [4]. Thesedifferencesindicatethatalsotheinteractionofηandη mesonswithnucleonsmaybe ′ different. Up to now, the proton-η interaction was studied intensively but still rather large range of val- ues of the scattering length is reported depending on the analysis method [5]. The proton-η ′ Emailaddresses:[email protected](P.Klaja),[email protected](P.Moskal) PreprintsubmittedtoElsevier January28,2010 interaction is much less known. It is only qualitatively estimated (based on the pp ppη ′ → excitation function) to be much weaker than for the proton-η system [6]. In principle, stud- ies of pp ppmeson reactions permit informationabout the proton-mesoninteraction to be → gained not only from the shape of the excitation function but also from differential distribu- tionsofproton-protonandproton-mesoninvariantmasses. Therefore,inordertoinvestigatethe proton-η interaction the COSY-11 collaboration performeda measurement [4] of the proton-η and proton-protoninvariant mass distributions close to the threshold at Q = 15.5 MeV, where the outgoing particles possess small relative velocities. Indeed a large enhancementin the re- gionofsmallproton-ηandlargeproton-protonrelativemomentawasobserved1. However,the observedeffectcannotbeunivocallyassignedtotheinfluenceoftheproton-ηinteractioninthe finalstate [8, 9], since itcan also be explainedbythe admixtureof higherpartialwavesin the proton-protonsystem[10],orbytheenergydependenceoftheproductionamplitude[11,12]. Theendeavortoexplaintheoriginoftheobservedenhancementmotivatedthemeasurement of the proton-proton and proton-η invariant mass distributions for the pp ppη reaction ′ ′ → presentedinthisarticle. Iftheenhancementobservedintheproton-protoninvariantmassdistributionsforthe pp → ppηreactionwouldbeduetotheproton–ηinteractionthenitisexpectedtobesignificantlylower forthe pp ppη reactionsincetheproton-ηinteractionisstrongerthantheproton-η [6]. ′ ′ → Inordertomakeamodelindependentcomparisonofthespectraintheppηandppη systems ′ weperformedameasurementofthepp ppη reaction,nominallyatthesameexcessenergyas ′ → previouslymeasuredforthe pp ppηreaction. Invariantmassspectradeterminedatthesame → excessenergiesallowforthecomparisonwithoutaneedforacorrectionofkinematicalfactors intheoutgoingsystem. Itisimportanttostressthattheinvariantmassdistributionsforthe pp ppη reactionhave ′ → not been measured so far. This is because the total cross section for the η meson production ′ in hadroncollisionsis by morethan a factor of 30 smaller thanthe onefor the η mesonat the sameexcessenergyandadditionallythetotalcrosssectionfortheproductionofthemulti-pion backgroundgrowsbythreeordersofmagnitudewhenthebeamenergyincreasesfromtheηto theη productionthreshold[13]. Adeterminationoftheinvariantmassspectrareportedinthis ′ letterwasmadepossibleduetostochasticcoolingoftheprotonbeamoftheCOSYsynchrotron [14,15,16,17]andthegoodmomentumresolution(σ=4MeV/c)[4]achievedwiththeCOSY- 11 detector setup designed especially for measurementsnear the kinematicalthreshold. Suffi- cientstatisticswerecollectedtoallowthebackgroundtobesubtractedfromtheinvariantmass distributions. Detailed description of the COSY-11 method used for the pp ppη reaction measure- ′ → mentscanbefoundin[18,19,20],therefore,hereweconcentrateonthebackgroundsubtraction procedurecrucialforthedeterminationofinvariantmassdistributions. 2. Experimentanddataanalysis The measurementof the pp ppη reaction was conductedusing the cooler synchrotron ′ → COSY [14] and the COSY-11 detector setup [21, 22, 23] at the proton beam momentum of p = 3.260MeV/c, which correspondsto an excessenergyof Q = 16.4MeV. It was basedon B theregistrationofthetwooutgoingprotonsandreconstructionoftheirmomenta. Theη meson ′ 1ThesameenhancementwasalsoseeninindependentmeasurementsbytheCOSY-TOFgroup[7]. 2 isidentifiedusingthemissingmasstechnique. Figure1illustratesaschematicviewoftheCOSY-11apparatuswithatopologyofthepp ppX → reaction. Twooutgoingprotonspossessingsmallermomentathanthebeammomentumarebent inthedipolemagneticfieldtowardsthedetectorsystemleavingthevacuumchamberthroughthe exitwindow.Afterwards,theyaredetectedinthetwodriftchambers,D1andD2,inthescintilla- torhodoscopesS1andS2,andinthescintillatorwallS3.Thetarget2usedduringtheexperiment, wasrealizedasabeamof H moleculesgroupedinsideclustersofuptoabout106 atoms. The 2 averagedensityofthetargetwasaround5 1013atoms/cm2[24]. Itwasinstalledinfrontofthe · dipolemagnetasitcanbeseenschematicallyinFigure1. Inordertodeterminetheabsolutevaluesofthedifferentialcrosssections,thetimeintegrated luminosity(L)hasbeenestablishedbytheconcurrentmeasurementoftheangulardistributionof theelasticallyscatteredprotons[25]. Theextractedvalueoftheintegratedluminosityamounts toL = (5.859 0.055)pb 1[26]. − ± Inordertosearchforsmalleffectslikeproton-mesoninteractionitisofimportancetoaccount for smearing of the measured distributions due to the finite resolution of the detector system, whichmayaltertheshapeofthespectrumespeciallyclosetothekinematicallimit. Therefore, ashasbeendonepreviouslyintheanalysisofthe pp ppηreaction[4],akinematicalfitting → of the data has been performed[26] in order to improveresolution. To this end, the momenta oftheprotonswerevarieddemandingthatthemissingmassoftheunregisteredparticleequals the knownmass of the η meson exactly. Furthermore,as a result of the fit, only those proton ′ momentumvectorswhichwereclosesttothevectorsdeterminedfromtheexperimenthavebeen chosen. Theinverseofthecovariancematrixwasusedasametricforthedistancecalculation. Thekinematicalfitimprovestheresolutionbyafactorof1.5,ascanbeseeninFigure2.Afterthe kinematicalfiteacheventcanbecharacterizedbyboth: experimentallydeterminedmomentum vectorsand kinematicallyfitted momenta. In the subsequentanalysis the fitted momentawere usedtogroupeventsintos and s intervalsandtheninordertosubtractthebackground,for pp pη ′ eachgroupseparately,amissingmassspectrumwasdeterminedfromexperimentalmomentum vectors. The available range of s and s was divided into 22 bins. The width of the bins pp pη ′ (0.003 GeV2/c4) was chosen as a compromise between statistics and the experimental resolu- tion. Then, for each bin, the missing mass spectrum was reconstructedand the numberof the pp ppη eventswascalculatedseparatelyforeachintervalofs ,s . ′ pp pη → ′ In Figure 3, examplesof missing mass spectra for two intervalsof the invariantproton-proton massarepresented. Aclearsignalfromtheη mesonproductionisseenontopofacontinuous ′ spectrum fromthe multi pionbackground. A smooth behaviourof the backgroundallowsone to interpolateits shape underthe η peak with polynomialfunctionsthatmatchthe data below ′ andabovethepeak.Thesmoothbehaviourofthemulti-pionbackgroundinthepeakregionwas verifiedbyMonteCarlosimulations[26]. InbothpanelsofFigure3thedottedlinescorrespond to the result of the fit of the second order polynomial. An equally good approximationof the backgroundwas also achievedby a fit of the sum of two Gaussian distributions[26]. The pa- rameterizationswere performedinthe entirerangeofmissingmass outsideofthe pp ppη ′ → signal,andobviouslyreproducethebackgroundverywell. Thesituationismorecomplicatedforthesemissingmassspectrawhenthesignaliscloseto thekinematicallimit(seeFig. 4). Inthiscasetheshapeofthebackgroundontherightsideof 2TheH2clustertargetspecificationsaredescribedinreferences[22,24]. 3 thepeakcannotbeeasilypredicted. Suchspectraareobtainedforkinematicalregionsofhigher squaredinvariantproton-protonmassesandrelativelylowsquaredinvariantproton-η masses. In ′ ordertodescribetheshapeofthe backgroundinthese regions,the pp pp2πη, pp pp3π → → and pp pp4πreactions3 havebeengeneratedandthesimulatedeventswereanalysedinthe → same way as for the experimentaldata. The result of these simulations (dashed lines) is com- pared to the experimentaldata in Figure 4. The simulations of the different reaction channels were performedwith a distribution based on an equal populationof phase space includingthe proton-protonfinalstateinteraction[6,27]. Alinearsumofthesimulatedmissingmassspectra wasmatchedtothedatawiththerelativemagnitudesastheonlyfreeparameters.Inbothexam- ples,simulationsareinagoodagreementwiththeexperimentalbackgrounddistributionsbelow theη peak. Moreoverthebehaviourofthesimulatedbackgroundmatchesthekinematicallimit ′ ofthemissingmassdistributions. Forthedynamicsofthepionproduction,ithadbeenassumedthatpionsareproduceduniformly over the available phase space. As described in reference [27] the shape of the missing mass spectrumdoesnotchangesignificantlyattheedgeofthekinematicallimitifoneassumesreso- nantordirectpionproduction. Inordertoincreasetheconfidenceintheestimationofthebackgroundbehaviournearthekine- maticalboundaryandtoestimatethesystematicuncertaintiesduetothechoiceofthebackground parameterizations,thesedistributionsweredescribedinanindependentwaywithasecondorder polynomialdividedbytheFermifunctionforthedescriptionoftherapidslopeattheendofthe distributions.Tothisend,thefollowingformulawasapplied: F(mm,a,b,c,d,g) = (a + b mm + c mm2)/(1 + e(mm d)/g), (1) − · · wherea,b,c,dandgarefreeparameters. TheresultsarepresentedinFigure4asdottedlines. Itisseenthatundertheη peaktheresult ′ of Equation1 agrees well with the backgrounddeterminedfrom the simulationsand that both reproducetheshapeoftheslopequitewell. A furthercheckofthebackgroundwasperformedbyextractingthemissingmassdistributions for regionsof the squaredinvariantmasses of proton-protonand proton-mesonwherethe η is ′ notproduced. TheresultingmissingmassdistributionsareshowninFigure5andrepresentthe regionsoflowsquaredinvariantmassesoftheproton-mesonsubsystem(left)andhighsquared invariantmassesoftheproton-protonsubsystem(right). Forsuchvaluesof s or s thepro- pp pη ′ ductionoftheη mesonisnotkinematicallyallowedbecause s < (m +m )2 and s istoo ′ pη p η pp ′ ′ large leaving insufficient energy to create the η meson. The simulations reproduce the back- ′ groundverywellasonecanseeinFigure5. Themaincontributiontothesystematicuncertaintyofthedetermineddifferentialcrosssections comesfromtheuncertaintyoftheestimationoftheyieldoftheη eventswhich,inturn,isdue ′ to the assumption of the shape of the background. In order to estimate these errors, the num- bers of backgroundevents extracted under the two differentassumptions were compared. For the missing mass spectra with the signal far from the kinematicallimit, the backgrounddeter- minedbyGaussian distributionswascomparedtothe backgroundestimatedbya secondorder polynomial. For the spectra close to the kinematical limit, the background determination by 3Thesereactionchannelswerechosenasarepresentation ofthepossiblemulti-pionproductionbackground, since contributionfromthepp pp5π,6π,7πreactionscanbeneglected[18]andthemissingmassspectrumfrom2πhasa → similarshapeasthosefor3πand4πintherelevantkinematicalregion. 4 Monte-CarlosimulationswascomparedtoasecondorderpolynomialdividedbytheFermidis- tribution. Theuncertaintyofthebackgroundestimationconstitutesthemaincontributiontothe systematicerrorofthedifferentialcrosssections. Thedifferencesinthenumberofbackground events obtained by applying the above described different fit procedures are below 3% of the backgroundvalue,whichcorrespondstoabout20%ofthesignal,ascanbeseenforinstancein Figure4. Finally,themeasureddistributionswerecorrectedfortheacceptanceaccordingtothemethod describedelsewhere[4].Here,itisimportanttostressthatatthebeammomentumofp =3.260 B GeV/ctheCOSY-11acceptanceforthe pp ppη reactionisfiniteovertheentireareaofthe ′ → s vss Dalitzplot. ThisisshowninFigure6,whereonecanseethatthefullphasespacefor pp pη ′ the pp ppη reactioniscovered. ′ → 3. Results A comparison of the spp and √sp meson distributions between the pp ppη′ and the − → pp ppη reactions is presented in Figure 7. For the proton-meson system the comparison → was performed for the kinetic energy (√sp meson mp mmeson) and not as a function of s becausethe rangeof the s and s− are d−ifferent−due to the differentmasses of the η p meson pη pη − ′ andη′mesons.Buttherangeof(√sp meson mp mmeson)isthesamesincethemeasurements fortheηandη productionwereperfo−rmeda−tabou−tthesameexcessenergy4. ′ Inbothpanelsitisseenthattheshapeofthedistributionforthe pp ppηmeasurement(open → squares)isinagreementwiththatforthe pp ppη reaction(closedsquares)withintheerror ′ → bars, thus, showingthe same enhancementin the regionof largeproton-protoninvariantmass. Therefore,iftheη-protoninteractionisindeedmuchsmallerthantheη-protonasinferredfrom ′ theexcitationfunction[4,6],then,onewouldhaveobservedasignificantlysmallerenhancement inthecaseoftheη meson.Hence,thespectrapresentedheretendtoexcludethehypothesisthat ′ theenhancementisduetothemeson-protoninteraction. Theabsolutevaluesofthecrosssectionforthe pp ppη reactiondeterminedasafunctionof ′ → s ands aregiveninTables1and2,andareshowninFigure8. Thedetermineddistributions pp pη ′ differsignificantlyfromthepredictionsbasedonthehomogeneousphasespacepopulation(thick solidline). Also,theresultsofcalculationsincludingtheFSI (dottedline)donotdescribethe pp dataunderestimatingthecrosssectionsatlargevaluesof s andlowvaluesof s . Similarlyto pp pη thecaseofηmeson,abetteragreementwiththeexperimentaldatacanbeachievedwhentaking into account contributions from higher partial waves. The calculations depicted as solid lines resultfromacombinedanalysis(basedontheeffectiveLagrangianapproach)oftheproduction ofηandη mesonsinphoto-andhadro-inducedreactions[10,28,29,30]. Sincethecalculation ′ is done in the plane-wave basis, not onlythe 3P 1S s butalso the 1S 3P s (and all the 0 0 0 0 → → higherpartial-waves)transition5contributesattheexcessenergyof16.4MeV. On the other hand, one can explain the enhancement seen in the distributions by an energy dependentproductionamplitude[11]. Theresultindicatedbythedashedlineswasobtainedal- lowingforalinearenergydependenceofthe3P 1S spartialwaveamplitudeandneglecting 0 0 → 4ThenominalbeamenergycorrespondstoanexcessenergyofQ=15.5MeV,consistentwiththedatacollectedfor thepp ppηreaction.However,therealvaluewasdeterminedtobe16.4MeV[26].Thisdifferenceiswellwithinthe precisio→noftheabsolutebeammomentumadjustmentoftheCOSYsynchrotronamountingtoaboutδp/p=10 3[15] − 5 otherpartialwavestransitions[11]. Also,Cecietal.[12]haveshownrecentlythatthediscussed enhancementintheinvariantmassspectracanbewelldescribedbytheenergydependenceofthe productionamplitudewhenthe negativeinterferencebetweenthe π andthe ηmesonexchange amplitudesisassumed. Within the statistical and systematic error bars both model of Nakayama et al.[10] and of Deloff [11] describethe data well althoughtheydiffer slightly in the predictedshapes. Taking intoaccountstatisticaluncertaintiesonly,oneobtainsχ2 =2.1andχ2 =4.7forthecomparison of thedashedline andsolidline to thedata, respectively. Thisindicatesthatperhaps,notonly higherpartialwavesbutalsotheenergydependenceoftheproductionamplitudeshouldbetaken intoaccount. 4. Summary Using the COSY-11 detector setup and the proton beam of the cooler synchrotron COSY theproton-protonandproton-η invariantmassdistributionshavebeendeterminedforthe pp ′ → ppη reactionatanexcessenergyofQ=16.4MeV. ′ Similartotheearlierobservationfortheηmesonproductionthemeasureddifferentialcross sectiondistributions(s ands )forthe pp ppη reactionatQ=16.4MeVstronglydeviate pp pη ′ ′ → fromthepredictionsbasedonahomogeneouspopulationofeventsovertheallowedphasespace. Also, the inclusion of the proton-proton final state interaction is not sufficient to explain the enhancementseenintherangeoflarges values. pp Withinthe achieveduncertainties,the shapeof theproton-protonandproton-mesoninvari- ant mass distributions determined for the η meson is essentially the same to that established ′ previously for the η meson. Since the enhancementis similar in both cases, and the strength of proton-η and proton-η interaction is different [6, 26], one can conclude that the observed ′ enhancementisnotcausedbyaproton-mesoninteraction. Finally, calculations assuming a significant contribution of P-wave in the final state [10], and models including energy dependence of the production amplitude [11, 12], reproduce the datawithinerrorbarsequallywell. Therefore,onthebasisofthepresentedinvariantmassdis- tributions, it is not possible to disentangle univocally which of the discussed models is more appropriate. As pointed out in [10], future measurements of the spin correlation coefficients shouldhelpdisentanglethesetwomodelresultsinamodelindependentway. Acknowledgements: The work was partially supportedby the EuropeanCommunity-ResearchInfrastructureActiv- ityundertheFP6andFP7programmes(HadronPhysics,RII3-CT-2004-506078,PrimeNetNo. 227431.),bythePolishMinistryofScienceandHigherEducationundergrantsNo.3240/H03/2006/31 and1202/DFG/2007/03,bytheGermanResearchFoundation(DFG),bytheFFEgrantsfromthe ResearchCenterJu¨lich,andbythevirtualinstitute”SpinandstrongQCD”(VH-VI-231). whichcorrespondsto 1MeVuncertaintyinQ. 5Thetransitionbetw∼eenangularmomentumcombinationsoftheinitialandfinalstatesaredescribedaccordingtothe conventionalnotation[31]inthefollowingway: 2Si+1LiJ→2S+1 LJ,l (2) where, superscript“i”indicates theinitial statequantities. S denotesthetotalspinofnucleons, and J standsforthe overallangularmomentumofthesystem.Landldenotetherelativeangularmomentumofnucleon-nucleonpairandof themesonrelativetotheNNsystem,respectively. 6 [1] C.Amsleretal.,Phys.Lett.B667(2008)1. [2] C.P.Jessopetal.,Phys.Rev.D58(1998)052002. [3] G.Brandenburgetal.,Phys.Rev.Lett.75(1995)3804. [4] P.Moskaletal.,Phys.Rev.C69(2004)025203. [5] A.M.Green,S.Wycech,Phys.Rev.C71(2005)014001. [6] P.Moskaletal.,Phys.Lett.B482(2000)356. [7] M.Abdel-Baryetal.,Eur.Phys.J.A16(2003)127. [8] A.Fix,H.Arenho¨vel,Phys.Rev.C69(2004)014001. [9] A.Fix,H.Arenho¨vel,Nucl.Phys.A697(2002)277. [10] K.Nakayamaetal.,Phys.Rev.C68(2003)045201. [11] A.Deloff,Phys.Rev.C69(2004)035206. [12] S.Ceci,A.Sˇvarc,B.Zauner,ActaPhys.Pol.BSuppl.2(2009)157. [13] M.Zielin´ski,DiplomaThesis,e-printarXiv:hep-ex/0807.0576. [14] R.Maier,Nucl.Instr.&Meth.A390(1997)1. [15] D.Prasuhnetal.,Nucl.Instr.&Meth.A441(2000)167. [16] H.Stockhorstetal.,IKPAnnualReport(1997)160. [17] H.Stockhorst,ShriftendesFZ-Ju¨lich,MatterandMaterials11(2002)176. [18] P.Moskaletal.,Phys.Rev.Lett.80(1998)3202. [19] P.Moskaletal.,Phys.Lett.B474(2000)416. [20] A.Khoukazatal.,Eur.Phys.J.A20(2004)345. [21] S.Brauksiepeetal.,Nucl.Instr.&Meth.A376(1996)397. [22] H.Dombrowskietal.,Nucl.Instr.&Meth.A386(1997)228. [23] P.Klajaetal.,AIPConf.Proc.796(2005)160. [24] A.Khoukazetal.,Eur.Phys.J.D5(1999)275. [25] P.Moskaletal.,Nucl.Instr.&Meth.A466(2001)448. [26] P.Klaja,PhDthesis,e-Print:arXiv:0907.1491. [27] P.Moskaletal.,J.Phys.G32(2006)629. [28] K.Nakayama,Y.Oh,H.Haberzettl,ActaPhys.Pol.BSuppl.2(2009)23. [29] K.Nakayama,H.Haberzettl,Phys.Rev.C69(2004)065212. [30] K.Nakayama,Y.Oh,H.Haberzettl,e-print:arXiv:hep-ph/0803.3169. [31] H.O.Meyeretal.,Phys.Rev.C63(2001)064002. 7 s [GeV2/c4] dσ [µb/GeV2/c4] pp dspp 3.5215 1.01 0.11 0.12 stat sys ± ± 3.5245 4.28 0.25 0.56 stat sys ± ± 3.5275 4.06 0.26 0.59 stat sys ± ± 3.5305 3.78 0.26 0.55 stat sys ± ± 3.5335 3.52 0.26 0.52 stat sys ± ± 3.5365 2.74 0.25 0.46 stat sys ± ± 3.5395 1.99 0.23 0.40 stat sys ± ± 3.5425 2.75 0.25 0.40 stat sys ± ± 3.5455 2.23 0.23 0.37 stat sys ± ± 3.5485 2.66 0.25 0.39 stat sys ± ± 3.5515 1.96 0.21 0.30 stat sys ± ± 3.5545 2.18 0.23 0.34 stat sys ± ± 3.5575 1.93 0.22 0.31 stat sys ± ± 3.5605 1.62 0.22 0.33 stat sys ± ± 3.5635 1.76 0.20 0.26 stat sys ± ± 3.5665 1.66 0.19 0.24 stat sys ± ± 3.5695 1.76 0.19 0.26 stat sys ± ± 3.5725 1.39 0.16 0.22 stat sys ± ± 3.5755 1.12 0.14 0.19 stat sys ± ± 3.5785 1.07 0.11 0.11 stat sys ± ± 3.5815 0.72 0.09 0.09 stat sys ± ± 3.5845 0.013 0.004 0.002 stat sys ± ± Table 1: Differential cross section as a function of the squared invariant mass of the proton-proton system, for the pp ppη reactionatQ=16.4MeV. → ′ 8 s [GeV2/c4] dσ [µb/GeV2/c4] pη′ dspη′ 3.5945 0.14 0.02 0.02 stat sys ± ± 3.5975 0.76 0.06 0.09 stat sys ± ± 3.6005 1.25 0.09 0.14 stat sys ± ± 3.6035 1.32 0.10 0.17 stat sys ± ± 3.6065 1.62 0.12 0.24 stat sys ± ± 3.6095 1.28 0.13 0.28 stat sys ± ± 3.6125 1.69 0.15 0.33 stat sys ± ± 3.6155 1.91 0.16 0.37 stat sys ± ± 3.6185 1.87 0.15 0.36 stat sys ± ± 3.6215 1.94 0.15 0.38 stat sys ± ± 3.6245 2.62 0.18 0.44 stat sys ± ± 3.6275 2.33 0.18 0.48 stat sys ± ± 3.6305 3.37 0.19 0.51 stat sys ± ± 3.6335 4.96 0.22 0.54 stat sys ± ± 3.6365 3.93 0.21 0.45 stat sys ± ± 3.6395 2.21 0.17 0.40 stat sys ± ± 3.6425 2.93 0.16 0.32 stat sys ± ± 3.6455 3.34 0.18 0.48 stat sys ± ± 3.6485 2.96 0.15 0.38 stat sys ± ± 3.6515 2.30 0.13 0.35 stat sys ± ± 3.6545 1.27 0.08 0.22 stat sys ± ± 3.6575 0.22 0.03 0.04 stat sys ± ± Table2:Differentialcrosssectionasafunctionofthesquaredinvariantmassoftheproton-η system,forthepp ppη ′ → ′ reactionatQ=16.4MeV. 9 Si S2 Figure1: SchematicviewoftheCOSY-11detectorfacility[21]. Protonsoriginatingfromthepp ppXreactionare → bentinthedipolemagneticfield,andleavethevacuumchamberthroughtheexitwindow.Afterwardstheyaredetected inthetwodriftchambers D1andD2, inthescintillator hodoscopes S1andS2, andinthescintillator wallS3. The scintillationdetectorS4andthesiliconpaddetectorSiareusedincoincidencewiththeD1,D2andS1detectorsforthe registrationoftheelasticallyscatteredprotons. 60000 50000 nts40000 u co30000 20000 10000 0 -0.02 0 0.02 D p [ GeV/c ] Figure 2: Spectrum of the difference between the simulated and reconstructed proton momentum. The dashed line denotesthespectrumbeforekinematicalfitandthesolidlinecorrespondstothesituationafterthefittingprocedure. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.