ebook img

Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions PDF

0.58 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

FERMILAB-PUB-16-017-E Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions T. Aaltonen,21 S. Amerioll,39 D. Amidei,31 A. Anastassovw,15 A. Annovi,17 J. Antos,12 G. Apollinari,15 J.A. Appel,15 T. Arisawa,51 A. Artikov,13 J. Asaadi,47 W. Ashmanskas,15 B. Auerbach,2 A. Aurisano,47 F. Azfar,38 W. Badgett,15 T. Bae,25 A. Barbaro-Galtieri,26 V.E. Barnes,43 B.A. Barnett,23 P. Barriann,41 P. Bartos,12 M. Baucell,39 F. Bedeschi,41 S. Behari,15 G. Bellettinimm,41 J. Bellinger,53 D. Benjamin,14 A. Beretvas,15 A. Bhatti,45 K.R. Bland,5 B. Blumenfeld,23 A. Bocci,14 A. Bodek,44 D. Bortoletto,43 J. Boudreau,42 A. Boveia,11 L. Brigliadorikk,6 C. Bromberg,32 E. Brucken,21 J. Budagov,13 H.S. Budd,44 K. Burkett,15 G. Busettoll,39 P. Bussey,19 P. Buttimm,41 A. Buzatu,19 A. Calamba,10 S. Camarda,4 M. Campanelli,28 F. Canelliee,11 B. Carls,22 D. Carlsmith,53 R. Carosi,41 S. Carrillol,16 B. Casalj,9 M. Casarsa,48 A. Castrokk,6 P. Catastini,20 D. Cauzsstt,48 V. Cavaliere,22 A. Cerrie,26 L. Cerritor,28 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,41 G. Chlachidze,15 K. Cho,25 D. Chokheli,13 A. Clark,18 6 1 C. Clarke,52 M.E. Convery,15 J. Conway,7 M. Corboz,15 M. Cordelli,17 C.A. Cox,7 D.J. Cox,7 M. Cremonesi,41 0 D. Cruz,47 J. Cuevasy,9 R. Culbertson,15 N. d’Ascenzov,15 M. Dattahh,15 P. de Barbaro,44 L. Demortier,45 2 M. Deninno,6 M. D’Erricoll,39 F. Devoto,21 A. Di Cantomm,41 B. Di Ruzzap,15 J.R. Dittmann,5 S. Donatimm,41 n M. D’Onofrio,27 M. Dorigouu,48 A. Driuttisstt,48 K. Ebina,51 R. Edgar,31 R. Erbacher,7 S. Errede,22 B. Esham,22 a S. Farrington,38 J.P. Fern´andez Ramos,29 R. Field,16 G. Flanagant,15 R. Forrest,7 M. Franklin,20 J.C. Freeman,15 J H. Frisch,11 Y. Funakoshi,51 C. Gallonimm,41 A.F. Garfinkel,43 P. Garosinn,41 H. Gerberich,22 E. Gerchtein,15 5 2 S. Giagu,46 V. Giakoumopoulou,3 K. Gibson,42 C.M. Ginsburg,15 N. Giokaris,3 P. Giromini,17 V. Glagolev,13 D. Glenzinski,15 M. Gold,34 D. Goldin,47 A. Golossanov,15 G. Gomez,9 G. Gomez-Ceballos,30 M. Goncharov,30 ] O. Gonz´alez L´opez,29 I. Gorelov,34 A.T. Goshaw,14 K. Goulianos,45 E. Gramellini,6 C. Grosso-Pilcher,11 x e J. Guimaraes da Costa,20 S.R. Hahn,15 J.Y. Han,44 F. Happacher,17 K. Hara,49 M. Hare,50 R.F. Harr,52 - T. Harrington-Taberm,15 K. Hatakeyama,5 C. Hays,38 J. Heinrich,40 M. Herndon,53 A. Hocker,15 Z. Hong,47 p e W. Hopkinsf,15 S. Hou,1 R.E. Hughes,35 U. Husemann,54 M. Husseincc,32 J. Huston,32 G. Introzzippqq,41 M. Iorirr,46 h A. Ivanovo,7 E. James,15 D. Jang,10 B. Jayatilaka,15 E.J. Jeon,25 S. Jindariani,15 M. Jones,43 K.K. Joo,25 S.Y. Jun,10 [ T.R. Junk,15 M. Kambeitz,24 T. Kamon,25,47 P.E. Karchin,52 A. Kasmi,5 Y. Katon,37 W. Ketchumii,11 1 J. Keung,40 B. Kilminsteree,15 D.H. Kim,25 H.S. Kimbb,15 J.E. Kim,25 M.J. Kim,17 S.H. Kim,49 S.B. Kim,25 v Y.J. Kim,25 Y.K. Kim,11 N. Kimura,51 M. Kirby,15 K. Kondo,51,∗ D.J. Kong,25 J. Konigsberg,16 A.V. Kotwal,14 6 M. Kreps,24 J. Kroll,40 M. Kruse,14 T. Kuhr,24 M. Kurata,49 A.T. Laasanen,43 S. Lammel,15 M. Lancaster,28 2 K. Lannonx,35 G. Latinonn,41 H.S. Lee,25 J.S. Lee,25 S. Leo,22 S. Leone,41 J.D. Lewis,15 A. Limosanis,14 5 6 E. Lipeles,40 A. Listera,18 Q. Liu,43 T. Liu,15 S. Lockwitz,54 A. Loginov,54 D. Lucchesill,39 A. Luc`a,17 0 J. Lueck,24 P. Lujan,26 P. Lukens,15 G. Lungu,45 J. Lys,26 R. Lysakd,12 R. Madrak,15 P. Maestronn,41 1. O. Majersky,12 S. Malik,45 G. Mancab,27 A. Manousakis-Katsikakis,3 L. Marchesejj,6 F. Margaroli,46 P. Marinooo,41 0 K. Matera,22 M.E. Mattson,52 A. Mazzacane,15 P. Mazzanti,6 R. McNultyi,27 A. Mehta,27 P. Mehtala,21 6 C. Mesropian,45 T. Miao,15 D. Mietlicki,31 A. Mitra,1 H. Miyake,49 S. Moed,15 N. Moggi,6 C.S. Moonz,15 1 R. Mooreffgg,15 M.J. Morellooo,41 A. Mukherjee,15 Th. Muller,24 P. Murat,15 M. Mussinikk,6 J. Nachtmanm,15 : v Y. Nagai,49 J. Naganoma,51 I. Nakano,36 A. Napier,50 J. Nett,47 T. Nigmanov,42 L. Nodulman,2 S.Y. Noh,25 i X O. Norniella,22 L. Oakes,38 S.H. Oh,14 Y.D. Oh,25 T. Okusawa,37 R. Orava,21 L. Ortolan,4 C. Pagliarone,48 r E. Palenciae,9 P. Palni,34 V. Papadimitriou,15 W. Parker,53 G. Paulettasstt,48 M. Paulini,10 C. Paus,30 a T.J. Phillips,14 G. Piacentinoq,15 E. Pianori,40 J. Pilot,7 K. Pitts,22 C. Plager,8 L. Pondrom,53 S. Poprockif,15 K. Potamianos,26 A. Pranko,26 F. Prokoshinaa,13 F. Ptohosg,17 G. Punzimm,41 I. Redondo Ferna´ndez,29 P. Renton,38 M. Rescigno,46 F. Rimondi,6,∗ L. Ristori,41,15 A. Robson,19 T. Rodriguez,40 S. Rollih,50 M. Ronzanimm,41 R. Roser,15 J.L. Rosner,11 F. Ruffininn,41 A. Ruiz,9 J. Russ,10 V. Rusu,15 W.K. Sakumoto,44 Y. Sakurai,51 L. Santisstt,48 K. Sato,49 V. Savelievv,15 A. Savoy-Navarroz,15 P. Schlabach,15 E.E. Schmidt,15 T. Schwarz,31 L. Scodellaro,9 F. Scuri,41 S. Seidel,34 Y. Seiya,37 A. Semenov,13 F. Sforzamm,41 S.Z. Shalhout,7 T. Shears,27 P.F. Shepard,42 M. Shimojimau,49 M. Shochet,11 I. Shreyber-Tecker,33 A. Simonenko,13 K. Sliwa,50 J.R. Smith,7 F.D. Snider,15 H. Song,42 V. Sorin,4 R. St. Denis,19,∗ M. Stancari,15 D. Stentzw,15 J. Strologas,34 Y. Sudo,49 A. Sukhanov,15 I. Suslov,13 K. Takemasa,49 Y. Takeuchi,49 J. Tang,11 M. Tecchio,31 P.K. Teng,1 J. Thomf,15 E. Thomson,40 V. Thukral,47 D. Toback,47 S. Tokar,12 K. Tollefson,32 T. Tomura,49 D. Tonellie,15 S. Torre,17 D. Torretta,15 P. Totaro,39 M. Trovatooo,41 F. Ukegawa,49 S. Uozumi,25 F. V´azquezl,16 G. Velev,15 C. Vellidis,15 C. Vernierioo,41 M. Vidal,43 R. Vilar,9 J. Viz´andd,9 M. Vogel,34 G. Volpi,17 P. Wagner,40 R. Wallnyj,15 S.M. Wang,1 D. Waters,28 W.C. Wester III,15 D. Whitesonc,40 A.B. Wicklund,2 S. Wilbur,7 H.H. Williams,40 2 J.S. Wilson,31 P. Wilson,15 B.L. Winer,35 P. Wittichf,15 S. Wolbers,15 H. Wolfe,35 T. Wright,31 X. Wu,18 Z. Wu,5 K. Yamamoto,37 D. Yamato,37 T. Yang,15 U.K. Yang,25 Y.C. Yang,25 W.-M. Yao,26 G.P. Yeh,15 K. Yim,15 J. Yoh,15 K. Yorita,51 T. Yoshidak,37 G.B. Yu,14 I. Yu,25 A.M. Zanetti,48 Y. Zeng,14 C. Zhou,14 and S. Zucchellikk6 (CDF Collaboration)† 1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China 2Argonne National Laboratory, Argonne, Illinois 60439, USA 3University of Athens, 157 71 Athens, Greece 4Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain 5Baylor University, Waco, Texas 76798, USA 6Istituto Nazionale di Fisica Nucleare Bologna, kkUniversity of Bologna, I-40127 Bologna, Italy 7University of California, Davis, Davis, California 95616, USA 8University of California, Los Angeles, Los Angeles, California 90024, USA 9Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain 10Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 11Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA 12Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia 13Joint Institute for Nuclear Research, RU-141980 Dubna, Russia 14Duke University, Durham, North Carolina 27708, USA 15Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 16University of Florida, Gainesville, Florida 32611, USA 17Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy 18University of Geneva, CH-1211 Geneva 4, Switzerland 19Glasgow University, Glasgow G12 8QQ, United Kingdom 20Harvard University, Cambridge, Massachusetts 02138, USA 21Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014, Helsinki, Finland; Helsinki Institute of Physics, FIN-00014, Helsinki, Finland 22University of Illinois, Urbana, Illinois 61801, USA 23The Johns Hopkins University, Baltimore, Maryland 21218, USA 24Institut fu¨r Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany 25Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea; Ewha Womans University, Seoul, 120-750, Korea 26Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 27University of Liverpool, Liverpool L69 7ZE, United Kingdom 28University College London, London WC1E 6BT, United Kingdom 29Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain 30Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 31University of Michigan, Ann Arbor, Michigan 48109, USA 32Michigan State University, East Lansing, Michigan 48824, USA 33Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia 34University of New Mexico, Albuquerque, New Mexico 87131, USA 35The Ohio State University, Columbus, Ohio 43210, USA 36Okayama University, Okayama 700-8530, Japan 37Osaka City University, Osaka 558-8585, Japan 38University of Oxford, Oxford OX1 3RH, United Kingdom 39Istituto Nazionale di Fisica Nucleare, Sezione di Padova, llUniversity of Padova, I-35131 Padova, Italy 40University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 41Istituto Nazionale di Fisica Nucleare Pisa, mmUniversity of Pisa, nnUniversity of Siena, ooScuola Normale Superiore, I-56127 Pisa, Italy, ppINFN Pavia, I-27100 Pavia, Italy, qqUniversity of Pavia, I-27100 Pavia, Italy 42University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA 43Purdue University, West Lafayette, Indiana 47907, USA 44University of Rochester, Rochester, New York 14627, USA 45The Rockefeller University, New York, New York 10065, USA 46Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, rrSapienza Universit`a di Roma, I-00185 Roma, Italy 47Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA 3 48Istituto Nazionale di Fisica Nucleare Trieste, ssGruppo Collegato di Udine, ttUniversity of Udine, I-33100 Udine, Italy, uuUniversity of Trieste, I-34127 Trieste, Italy 49University of Tsukuba, Tsukuba, Ibaraki 305, Japan 50Tufts University, Medford, Massachusetts 02155, USA 51Waseda University, Tokyo 169, Japan 52Wayne State University, Detroit, Michigan 48201, USA 53University of Wisconsin-Madison, Madison, Wisconsin 53706, USA 54Yale University, New Haven, Connecticut 06520, USA (Dated: January 26, 2016) Wereportameasurementoftheforward-backwardasymmetry,A ,inb¯bpairsproducedinproton- FB antiproton collisions and identified by muons from semileptonic b-hadron decays. The event sample √ is collected at a center-of-mass energy of s=1.96TeV with the CDF II detector and corresponds to 6.9fb−1 of integrated luminosity. We obtain an integrated asymmetry of A (b¯b)=(1.2±0.7)% FB at the particle level for b-quark pairs with invariant mass, mb¯b, down to 40GeV/c2 and measure the dependence of AFB(b¯b) on mb¯b. The results are compatible with expectations from the standard model. PACSnumbers: 14.65.Fy I. INTRODUCTION to the quark-pair production. Details of the origin of the asymmetries can be found, e.g., in Refs. [1–3]. An Asymmetriesbetweendistributionsofheavyquarksand asymmetry in quark-pair production differing from the antiquarks produced in hadron collisions are important SMpredictionisindicativeofnon-standard-modelphysics. for tests of the standard model (SM) and searches for Two asymmetries can be defined related to heavy-quark non-standard-model physics. The asymmetry arises from pair (QQ) production, the charge asymmetry, AC, and the interference of the different amplitudes contributing the forward-backward asymmetry, AFB, as follows: N (cosΘ>0)−N (cosΘ>0) A = Q Q , (1) C N (cosΘ>0)+N (cosΘ>0) Q Q ∗ Deceased † With visitors from aUniversity of British Columbia, Vancou- ver, BC V6T 1Z1, Canada, bIstituto Nazionale di Fisica Nu- N (cosΘ>0)−N (cosΘ<0) cleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, A = Q Q , (2) cUniversityofCaliforniaIrvine,Irvine,CA92697,USA,dInstitute FB NQ(cosΘ>0)+NQ(cosΘ<0) ofPhysics,AcademyofSciencesoftheCzechRepublic,18221, CzechRepublic,eCERN,CH-1211Geneva,Switzerland,fCornell where Θ denotes the heavy quark Q (anti-quark Q) pro- University, Ithaca, NY 14853, USA, gUniversity of Cyprus, duction angle in the incident parton-parton rest frame NicosiaCY-1678,Cyprus,hOfficeofScience,U.S.Department and N (N ) is the number of quarks (anti-quarks) pro- of Energy, Washington, DC 20585, USA, iUniversity College Q Q Dublin, Dublin 4, Ireland, jETH, 8092 Zu¨rich, Switzerland, duced in the fiducial range. The parton momentum kUniversityofFukui,FukuiCity,FukuiPrefecture,Japan910- is taken as parallel to the incident proton, and simi- 0017,lUniversidadIberoamericana,LomasdeSantaFe,M´exico, larly for the parton from the antiproton. Under the C.P.01219,DistritoFederal,mUniversityofIowa,IowaCity,IA assumption of CP conservation in strong interactions, 52242,USA,nKinkiUniversity,Higashi-OsakaCity,Japan577- N (cosΘ > 0) = N (cosΘ < 0) and the two asymme- 8502, oKansas State University, Manhattan, KS 66506, USA, Q Q pBrookhaven National Laboratory, Upton, NY 11973, USA, tries are equal, AC =AFB. qIstituto Nazionale di Fisica Nucleare, Sezione di Lecce, Via Proton-antiproton (pp¯) collisions at the Fermilab Teva- √ Arnesano, I-73100 Lecce, Italy, rQueen Mary, University of tron with the center-of-mass energy of s = 1.96 TeV London, London, E1 4NS, United Kingdom, sUniversity of allow for the study of asymmetries in pair-production Melbourne, Victoria 3010, Australia, tMuons, Inc., Batavia, IL 60510, USA, uNagasaki Institute of Applied Science, Na- of of top-quarks (tt¯) and bottom-quarks (b¯b). The first gasaki851-0193,Japan,vNationalResearchNuclearUniversity, measurement of the forward-backward asymmetry in tt¯ Moscow 115409, Russia, wNorthwestern University, Evanston, productionthatshowedadifferencebetweenthemeasured IL 60208, USA, xUniversity of Notre Dame, Notre Dame, IN A valueandtheSMpredictionwasreportedbytheCol- 46556, USA, yUniversidad de Oviedo, E-33007 Oviedo, Spain, FB lider Detector at Fermilab (CDF) experiment [4]. Later, zCNRS-IN2P3, Paris, F-75205 France, aaUniversidad Tecnica FedericoSantaMaria,110vValparaiso,Chile,bbSejongUniversity, in other CDF measurement, the difference with a signifi- Seoul143-747,Korea,ccTheUniversityofJordan,Amman11942, cancebetween2and3standarddeviations,andincreasing Jordan, ddUniversite catholique de Louvain, 1348 Louvain-La- asymmetry with tt¯invariant mass mtt¯, was reported [5]. Neuve, Belgium, eeUniversity of Zu¨rich, 8006 Zu¨rich, Switzer- The discrepancy prompted significant theoretical activity, land,ffMassachusettsGeneralHospital,Boston,MA02114USA, chiefly aimed at calculating predictions in various non- ggHarvardMedicalSchool,Boston,MA02114USA,hhHampton University, Hampton, VA 23668, USA, iiLos Alamos National standard-model scenarios [6, 7]. Recent SM estimates Laboratory, Los Alamos, NM 87544, USA, jjUniversit`a degli of A based on next-to-next-to-leading order (NNLO) FB StudidiNapoliFedericoII,I-80138Napoli,Italy quantum chromodynamic (QCD) calculations ease the 4 discrepancy [8, 9]. Additional measurements performed called box and LO diagrams (giving a positive contribu- by D0 [10] and CDF [11] are in good agreement with the tion to A ) [1–3]. Interference of different amplitudes FB higher-order calculations. Similarly good agreement with in flavor excitation of q+g processes leads to an asym- the SM prediction is reported by the LHC experiments metry, but the contribution is small with respect to the for the charge asymmetry in tt¯production [12–16]. qq¯contribution [2, 24]. Additional contributions to the Studyingtheb¯bforward-backwardasymmetrymaypro- asymmetry are expected from the interference with elec- videadditionalconstraintsonnon-standard-modelphysics troweak(EW)productionprocessesmediatedbyZ bosons scenarios. A CDF measurement of A in b¯b pair pro- or virtual photons, qq¯→ Z/γ∗ → b¯b, which are at the FB duction at high b¯b mass (mb¯b > 150GeV/c2) gives re- level of 10% [2, 25, 26]. No asymmetry is expected in gg sults consistent with the SM predictions [17]. The mea- processes also at higher orders. surement excludes a model with a 200GeV/c2 axigluon At the Tevatron, b¯b production occurs predominantly (gluon with axial coupling [7]), whereas a model contain- through gluon-gluon fusion unlike top-quark-pair produc- ing a heavier 345GeV/c2 axigluon is not excluded. The tion where the dominant production process is qq¯annihi- D0 collaboration has measured the b¯b forward-backward lation. As a consequence, when the full cross section is asymmetry using reconstructed B± mesons [18]. The considered including contributions from gg, qq¯, and q(q¯)g result is 3.3σ below the SM prediction evaluated with interactions, the integrated asymmetry predicted by the mc@nlo+herwig [19, 20], but consistent with zero SM is small. However, it is possible to enrich the sample asymmetry. In addition to the Tevatron measurements intheqq¯→b¯bfractionwithappropriateselectioncriteria, √ performed in pp¯collisions at s =1.96TeV, the LHCb which can lead to a sizable forward-backward asymmetry. experiment has measured the b¯b-production charge asym- There are several theoretical predictions predictions √ metry in pp collisions at s =7TeV [21]. The LHCb for A (b¯b) that cover the low b¯b invariant mass region FB result is consistent with the SM expectations. investigated in this study [2, 25, 27]. The prediction The study presented in this article investigates A in presented in Ref. [27], which also includes mixed EW- FB pp¯→b¯bX productiondowntomb¯b=40GeV/c2. Amuon QCD corrections is summarized in Table I. Near the from semileptonic b-hadron decays is used to distinguish Z pole, the SM bottom-quark asymmetry is maximal between b and¯b quarks. The fraction of b¯b events in the because it is dominated by tree-level exchange of EW dataisestimatedusingatemplatefitbasedontherelative gauge bosons. The selection criteria used in this analysis transverse momentum of the muon with respect to the match the criteria used in [27], except for the transverse axis of an associated jet [22], and the invariant mass of a momentum requirement on the b and¯b quark, pTb,¯b: we secondary vertex within a second jet. The background- require particle-level jets to have transverse energy ET > subtracted asymmetry is unfolded to particle level, where 20GeV [28], while pTb,¯b >15GeV/c is used in Ref. [27]. “particlelevel”referstoquantitiesreconstructedfromfinal- The events with pTb,¯b < 20 GeV/c can influence the b¯b state particles with lifetimes greater than 10ps [23]. The asymmetry at low mb¯b, that is only the first bin in Table articleisstructuredasfollows. SectionIIbrieflydescribes I, for which the prediction has the highest uncertainty. the origin of the asymmetry in heavy-quark pair pro- duction and the theoretical predictions. In Sec. III, the TABLE I. A prediction from Ref. [27] for different regions data sample and event selection are presented. The de- FB of b¯b invariant mass. The integral values for each bin are termination of the observed asymmetry from the data is shown. The first contribution to the uncertainties on the described in Sec. IV. The backgrounds are investigated in predictions comes from neglecting higher-order QCD terms, Sec. V. The unfolding procedure is discussed in Sec. VI. while the second comes from varying the factorization and In Sec. VII, the systematic uncertainties are given. The renormalization scales. results are presented in Sec. VIII. mb¯b [GeV/c2 ] AFB(b¯b) [%] 35 – 75 0.19±0.06−0.01 +0.01 75 – 95 2.49±0.16+0.52 −0.44 II. ORIGIN OF PRODUCTION ASYMMETRIES 95 – 130 1.44±0.27+0.16 −0.12 AND PREDICTIONS >130 2.14±0.63−0.01 +0.03 Inclusive 0.34±0.08+0.01 −0.00 In the SM, the two main strong-interaction pair- production processes are quark-antiquark annihilation (qq¯→ b¯b) and gluon fusion (gg → b¯b), neither of which induces an asymmetry at leading order (LO) in QCD. III. THE CDF II DETECTOR AND EVENT However, when higher-order corrections are considered, SELECTION there are several sources of asymmetry [1–3]. Radiative corrections to quark-antiquark annihilation involve either The CDF II detector [29] is a forward-backward and virtual or real gluon emission, which leads to an asym- cylindrically symmetric detector designed to study pp¯col- √ metry due to the interference of initial- and final-state lisions with a center-of-mass energy s=1.96TeV at the radiative gluon processes (giving a negative contribution FermilabTevatroncollider. Thedetectorisapproximately to A ) and interference of processes represented by so- hermeticoverthefullangularcoverageandiscomposedof FB 5 a series of detectors to determine trajectories of charged rapiditiesoftheband¯bquarks,∆y [36],whichisinvariant b particles embedded in an axial magnetic field of 1.4 T, under Lorentz transformations along the beam axis. For surrounded by electromagnetic and hadronic calorimeters abquarkfromtheb¯bpairmovingintheforwarddirection and muon detectors. ∆y > 0, and for the backward direction ∆y < 0. The b b The analysis relies on the full data set collected by asymmetry A in terms of ∆y is defined as follows: FB b the CDF II detector of pp¯ collision data but applica- tion of a prescaled online event-selection system (trigger) N(∆y >0)−N(∆y <0) leads to the reduction of the integrated luminosity of the A = b b . (3) sample to 6.9fb−1. The process pp¯→ b¯bX is analyzed FB N(∆yb >0)+N(∆yb <0) using the so-called soft-muon technique, i.e., using the In dijet events, where one of the jets contains a muon, muon produced in the semileptonic decay of a b-quark ∆y is defined as follows: to distinguish between b-jets from b and ¯b-quarks. The b trigger requires a muon candidate with transverse mo- ∆y =Q(µ)(y −y ), (4) b AJ µJ mentum p >8GeV/c and pseudorapidity |η|<0.6 [28]. T The offline selection requires at least two jets with trans- where Q(µ) is the charge of the muon, y is the rapidity AJ verse energies E >20GeV and a muon candidate with of the away jet, and y is the rapidity of the muon jet. T µJ p >10GeV/c inside the cone of one of the jets (muon Note that ∆y is positive if a b-quark is accompanied by T b jet). Theotherjet(awayjet)isrequiredtobeazimuthally a forward muon jet or a ¯b-quark by a backward muon opposed (|∆φ|>2.8) with |η|<1.0 and balanced in p jet, i.e., ∆y > 0 if the b quark is in forward direction T b withthemuonjet. Thep balanceconditionrequiresthat and consequently ∆y <0 if the b quark is in backward T b thedifferencebetweentransversemomentaofthetwojets direction. does not exceed 60% of the highest of the two. In addi- An unfolding procedure (see Sec. VI) is used to remove tion, both the away and muon jets are identified as b jets detector effects and infer A in b¯b production at the FB using two configurations of the secondary-decay-finding particlelevel. Toretrievetheparticle-levelA ,theback- FB algorithm secvtx [30] and applying the more efficient groundissubtractedfromtheobserveddistributions, and configuration to the away jet. The algorithm identifies the CDF II detector acceptance and resolution are taken jetsthatmostlikelyoriginatefromthefragmentationofa intoaccount. Asthesignof∆y dependsonthechargeof b b quark by requiring the presence of charged-particle tra- the muon, corrections for cascade decays b→c→µ and jectories(tracks)thatformreconstructableverticessignif- B0 −B0 mixing are included in the unfolding proce- icantly displaced from the vertex of the pp¯collision. The (s) (s) dure. To measure A at the particle level as a function FB reconstructed jet E [28, 31] is corrected for the effects of jet fragmentationT, calorimeter non-uniformities, and of mb¯b, the mb¯b and ∆yb distributions are simultaneously unfolded. We define a one-dimensional distribution of multiparticle interactions. Hence, the fiducial region of events divided into eight bins: two ∆y -bins (positive b themeasurementisdefinedbythefollowingrequirements: two azimuthally opposed () b-jets, balanced in p , with and negative ∆yb), and four mb¯b-bins ([40,75], [75,95], T [95,130], and [130,∞]GeV/c2) as shown in Fig. 1, and |η|<1.0 and p >20GeV/c; muon with p >10GeV/c T T perform a one-dimensional unfolding where ∞ stands for and |η|<0.6 inside the cone of one of the b-jets. the kinematic maximum. The simulations use a pythia (version 6.2.16 [32]) LO Monte Carlo dijet sample enriched in heavy flavor by 0.25 L = 6.9 fb-1 requiring a muon with p >8GeV/c and |η|<1.2. The T n mb¯b distribution in events where a Z or a virtual photon n / bi 0.20 apryetphroiaduMceodntisemCoadrleolesdambyplreewuesiinghgttinhgeeravteinotsoffrtohme LthOe actio 0.15 differential cross sections of the QCD and EW processes nt fr 0.10 computed using madgraph [33] as reported in Ref. [34]. Eve 0.05 BPaarctkicglreo-ulenvde lsubtracted data A 10% asymmetry [35] is incorporated into the model of 0.00 Z−γ∗ production. [130, ¥ ][95, 130][75, 95] [40, 75] [40, 75] [75, 95][95, 130][130, ¥ ] (D y<0) (D y<0) (D y<0) (D y<0) (D y>0) (D y>0)(D y>0) (D y>0) Forsimulatedevents,themuonandawayjetsatparticle b b b b b b b b m [GeV/c2] level are defined in the same way as at the reconstructed bb levelforrealdata. Inadditionwerequirematchingofthe FIG.1. Distributionofbackground-subtractedobservedevents muon and away jets at particle level with opposite-sign b priortotheunfolding(solid)andresultingparticle-levelevents quarks using truth information from simulation. after unfolding (dashed) as a function of the combination of b¯b invariant mass and rapidity difference. IV. ASYMMETRY MEASUREMENT To subtract the background, the fraction of b¯b events in data, fb¯b, is estimated in four bins of the reconstructed The integrated forward-backward asymmetry for b¯b dijetmassofmuonjetandawayjet,M . Thebackground jj pair production can be expressed using the difference of distribution is then obtained by applying the weighting 6 factor 1−fb¯b to the events in each Mjj bin. The fraction The obtained asymmetries are consistent with zero. fb¯b is obtained by determining the b fractions in muon Thecc¯eventsaredominantlyproducedviagluon-gluon and away jets using two independent template fits. To fusion. The fraction of cc¯ pairs produced by qq¯ anni- extract the b content of the muon jet, fbµJ, we use the hilation that give rise to AFB is smaller than in the b¯b distribution of the component of the momentum of the case. Therefore no asymmetry is assumed to arise from muon perpendicular to the jet axis, p , which tends to cc¯production. T,rel peak at larger values for a b-quark jet than for a c-quark In events with misidentified muons no asymmetry is ex- or light-quark jet as shown in Fig. 2. The templates for pected,asthedistributionofthetrajectoriesformisidenti- the c- and light-quark jets are nearly indistinguishable. fiedmuonsisuniformasafunctionofdetectorsolidangle. Thus we consider only two templates in the fit, b and c Therefore this background is also treated as symmetric. templates, to obtain the fraction of events with the muon A possible contribution to asymmetry can come from arising from a b-quark jet. To extract the b content of events where one of the jets is initiated by a b quark, and the away jet, fAJ, we perform a two-template fit to the the other by a c quark; however, these events are pro- b distribution of secondary vertex mass, M [30], of the duced via quark-gluon interactions, which is suppressed vtx away jet, using mass templates for b- and non-b-quark at Tevatron energies and therefore they are expected to jets. The template for the non-b-quark jets is created contribute negligibly to the asymmetry [2, 24]. by merging the templates for the c- and light-quark jets, As all sources of background are assumed to give neg- whicharequitesimilar. ThepeakoftheM distribution ligible contribution to b¯b asymmetry we treat the back- vtx is correlated with the mass of the parton initiating the groundassymmetric. Nonetheless, weconsiderapossible jet as shown in Fig. 3. Figures 4 and 5 show examples of asymmetry coming from background as a systematic un- the fits of the p and M distributions, respectively, certainty. T,rel vtx for the M bin [95,130]GeV/c2. jj Since the b fractions of the muon and away jets are obtained from independent fits, we have no information VI. UNFOLDING on their correlation in the dijet sample. However, if fµJ > fAJ we can obtain the highest (lowest) value of The measured signal distribution,(cid:126)b, after background b b the b¯b fraction by assuming that all non-b-quark muon subtraction,definedasaneight-componentvectorofevent jets corresponds to non-b-quark (b-quark) away jets, i.e., frequencies corresponding to each of the histogram eight fmax =fAJ and fmin =fAJ −(1−fµJ). We apply an bins shown in Fig. 1, is related to the underlying particle- b¯b b b¯b b b analogousestimatetothecasewhenfµJ <fAJ. Wethen level distribution, (cid:126)x, by the relation b b estimate the b¯b fraction in each M bin as the average jj of the upper and lower extremes in the bin, and set the (cid:126)b=SA(cid:126)x, (5) corresponding uncertainty to the semidifference between the extremes. The results are shown in Fig. 6. The whereAisadiagonalmatrixthatdescribestheacceptance systematic uncertainties related to the procedure used to in each bin of the measured distribution, and the non- determine fb¯b in data, coming from the fit strategy and diagonal smearing matrix S describes the migration of template shapes, are summarized in Table II. events between bins due to the finite resolution of the CDF II detector and the reconstruction technique. The binned data are multiplied by the inverse matrices TABLE II. Systematic and statistical uncertainties related to the procedure used to determine the b¯b fraction in data. to recover the true particle-level distribution from the background-subtracted one, Absolute uncertainty of fb¯b[%] M [GeV/c2] Source jj 40 – 75 75 – 95 95 – 130 >130 (cid:126)x=A−1S−1(cid:126)b. (6) Fit strategy 1.6 0.8 2.2 1.3 Template shape 3.5 3.3 6.4 8.7 Before applying the acceptance correction, we first re- Sample size 1.5 2.6 4.1 6.0 Total uncertainty 4.1 4.3 7.9 10.7 movethesmearingeffectsoftheresolution. Tounfoldthe distributionusingtheSmatrix,analgorithmbasedonthe singular-value decomposition (SVD) method is used [38]. The SVD algorithm decomposes the non-diagonal smear- ing matrix S as V. BACKGROUND S=UΣVT , (7) Three sources of background events are considered, ordered by relevance: events with at least one light-quark where U and V are orthogonal matrices (UTU = jet, cc¯events, and events with a misidentified muon. VTV = 1), and Σ = diag{s ,s ,...,s } is a diagonal 1 2 n The asymmetry contribution from events with at least matrix of rank n containing only non-negative entries, onelightjetmistaggedasab-jetischeckedusingdata[37]. called singular values of S, in decreasing order. The 7 M ˛ [75, 95] GeV/c2 0.35 M ˛ [75, 95] GeV/c2 M ˛ [75, 95] GeV/c2 jj jj jj 0.20 M ˛ [95, 130] GeV/c2 M ˛ [95, 130] GeV/c2 0.30 M ˛ [95, 130] GeV/c2 )c jj )c 0.30 jj )c jj V/ M ˛ [130, ¥ ] GeV/c2 V/ M ˛ [130, ¥ ] GeV/c2 V/ M ˛ [130, ¥ ] GeV/c2 e jj e jj e 0.25 jj G G 0.25 G 5 0.15 5 5 n / (0.2 inMituiaotne dje bty n / (0.2 0.20 inMituiaotned j ebty n / (0.2 0.20 inMituiaotne dje bty ctio 0.10 b-quark ctio 0.15 c-quark ctio 0.15 non-b, non-c a a a nt fr nt fr 0.10 nt fr 0.10 e 0.05 e e v v v E E 0.05 E 0.05 0.00 0.00 0.00 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 Muon p [GeV/c] Muon p [GeV/c] Muon p [GeV/c] T,rel T,rel T,rel FIG. 2. Distributions of p for simulated b-tagged jets on the muon-jet side, initiated by a b quark (left), a c quark (center), T,rel and a light quark or a gluon (right), which are used as templates in the fit of the signal fraction. Dashed, solid, and dotted lines correspond to different ranges in dijet mass. M ˛ [75, 95] GeV/c2 M ˛ [75, 95] GeV/c2 0.40 M ˛ [75, 95] GeV/c2 2)cV/ 0.20 MMjjjj ˛˛ [[9153,0 1, ¥30] ]G GeeVV/c/c22 2)cV/ 0.30 MMjjjj ˛˛ [[9153,0 1, ¥30] ]G GeeVV/c/c22 2)cV/ 0.35 MMjjjj ˛˛ [[9153,0 1, ¥30] ]G GeeVV/c/c22 e jj e 0.25 jj e jj G G G 0.30 5 0.15 5 5 on / (0.2 0.10 inAbi-twqiauatayer dkj ebty on / (0.2 00..2105 inAci-twqiauatayer dkje bty on / (0.2 00..2205 ninoAintw-iabat,ye n djoe bnty-c cti cti cti 0.15 nt fra 0.05 nt fra 0.10 nt fra 0.10 Eve Eve 0.05 Eve 0.05 0.00 0.00 0.00 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 M [GeV/c2] M [GeV/c2] M [GeV/c2] vtx vtx vtx FIG. 3. Distributions of M for simulated b-tagged jets on the away-jet side, initiated by b quark (left), c quark (center), vtx and light quark or gluon (right), which are used as templates in the fit of the signal fraction. Dashed, solid, and dotted lines correspond to different ranges in dijet mass. unfolding procedure is then reduced to the inversion of The smearing and acceptance matrices are modeled the diagonal matrix Σ. To avoid amplifying fluctuations using the pythia Monte Carlo sample together with the caused by small elements of Σ, we use an a priori model of Z/γ∗ production of b¯b events. Figure 7 shows chosen regularization condition, C, defined in Eq. (8), the smearing matrix, which expresses the probability of which maximizes the “smoothness” of the unfolded observing a mass mreco for a b¯b pair produced originally b¯b distribution by minimizing the second derivative [38]. with mass mb¯b. Hence, theexpressionweminimizetoobtaintheunfolded The smearing matrix is mostly diagonal with small distribution x(cid:126)(cid:48), which approximates the true distribution contributions in the antidiagonal terms. We hypothesize (cid:126)x, is that the antidiagonal terms originate from events where the sign of the muon charge changes due to B0 −B0 (s) (s) mixing or cascade b→c→µ decays. In both these cases (Sx(cid:126)(cid:48)−(cid:126)b)TB−1(Sx(cid:126)(cid:48)−(cid:126)b)+τ(Cx(cid:126)(cid:48))T(Cx(cid:126)(cid:48)), the sign of muon charge is opposite to that of decaying b quark, i.e., the muon incorrectly determines the sign of whereBisthecovariancematrixof(cid:126)bandτ istheoptimal b (¯b) quark. To support this hypothesis, we present in regularization strength, which is related to the singular Fig.8thesmearingmatrixforeventswherenoB0 −B0 value of the smearing matrix S. As the singular values (s) (s) mixing or cascade b→c→µ decays occurred. s are listed by decreasing absolute value, some index k, i called the regularization parameter, exists such that the In the unfolded distribution, the mb¯b bins optimal τ is given by τ =s2. [40; 70]GeV/c2 and [130; ∞]GeV/c2 are consid- k 8 1600 M ˛ [95, 130] GeV/c2 M ˛ [95, 130] GeV/c2 1400 jj jj Data 1400 Data 1200 Fit Fit V/)c 1000 BCohtatromm 2)cV/ 1200 BNootnt-obm Ge Ge 1000 Events / (0.125 468000000 Events / (0.125 468000000 200 200 0 0 a a at 0.4 at 0.4 d d a)/ 0.2 a)/ 0.2 at 0.0 at 0.0 d d (fit- -0.20.0 0.5 1.0 1.5 2.0 2.5 3.0 (fit- -0.20.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Muon p [GeV/c] M [GeV/c2] T,rel vtx FIG.4. Distributionofp withtwo-componentfitresults FIG. 5. Distribution of M with two-component fit results T,rel vtx overlaidforeventsrestrictedinM of[95,130]GeV/c2. The overlaidforeventsrestrictedinM of[95,130]GeV/c2. The jj jj last bin contains overflow entries. The lower panel compares last bin contains overflow entries. The lower panel compares the fit result with the data. the fit result with the data. 100 [130,¥ ] L = 6.9 fb-1 (D yb>0) 0.18 0.09 0.01 0.00 0.00 0.03 00..2266 00..4433 0.7 95 [95,130] (D y>0) 0.00 0.12 0.10 0.02 0.06 00..3322 00..3377 0.01 0.6 90 2] b c [75,95] 85 V/ (D y>0) 0.00 0.01 0.11 0.10 00..3377 00..3388 0.03 0.00 0.5 [%]fbb 78670055 [Gemarticle-jet bb([([([DDD744500yyy,,,bbbb977<<>555000]]]))) 000...000000 000...000300 0000....30308481 00000.....3723775075 0000....12770044 000...010411 000...000001 000...000000 000...234 P [95,130] 60 (D y<0) 0.01 00..3377 00..3322 0.06 0.02 0.10 0.12 0.00 b 0.1 [130,¥ ] 40 75 95 130 (D y<0) 00..4433 00..2277 0.02 0.00 0.00 0.01 0.09 0.18 Mjj [GeV/c2] b [130,¥ ][95,130][75,95] [40,75] [40,75] [75,95][95,130][130,¥ ] 0.0 (D y<0)(D y<0)(D y<0)(D y<0)(D y>0)(D y>0)(D y>0)(D y>0) b b b b b b b b FIG. 6. Distribution of b¯b fraction observed in data as a Detector-jet mreco [GeV/c2] bb function of dijet invariant mass M . The total uncertainties jj (outerbars)includethestatistical(innerbars)andsystematic FIG.7. Smearingmatrixdeterminedusingsimulatedb¯bevents uncertainties. and used in the unfolding of the final results. Shading illus- trates diagonalness of the smearing matrix and represents the level of probability that a given mreco bin will be projected ered as the “edge” bins. Therefore the corresponding b¯b into a given mb¯b bin. elements of C are −1 rather than −2: −1 1 0 0 0 0 0 0  1 −2 1 0 0 0 0 0 Weusetheunfoldingalgorithm roounfold [39]with    0 1 −2 1 0 0 0 0  the regularization parameter k as input. For large k,    0 0 1 −1 0 0 0 0  close to the rank of the Σ matrix, SVD unfolding is C =  . (8)  0 0 0 0 −1 1 0 0  equivalent to pure matrix inversion. For small k (k ≈    0 0 0 0 1 −2 1 0  1), the regularization condition is strongly enforced. To    0 0 0 0 0 1 −2 1  determinethebestvalueoftheregularizationparameterk, 0 0 0 0 0 0 1 −1 weintroduceanasymmetryintothe pythia MonteCarlo sample by reweighting the selected events. For each mb¯b 9 [130,¥ ] 0.9 VIII. RESULTS (D y>0) 0.01 0.01 0.00 0.00 0.00 0.04 00..3366 00..5588 b 0.8 [95,130] (D y>0) 0.00 0.01 0.01 0.00 0.08 00..4422 00..4488 0.01 In this analysis we measure three asymmetries, the 2]c [75b,95] 0.7 raw observed asymmetry, which include effects from back- [GeV/mbb([(DD40yy,bb7>>500])) 00..0000 00..0000 00..0002 00..0032 0000....94942525 000...044577 00..0004 00..0000 00..56 gtisiroocnuo;nrtrdheceatsbeydamcfkmogrreoatrusiynemsd,-msaunebtdrtirdeasecttieencddtuorracewadcbcb¯beypatsbayanmcckmegreaotnrudyn,drwesshobilcuuht- article-jet ([([DD7450yy,,bb97<<5500]])) 00..0000 00..0030 000...404757 0000....49495252 00..0023 00..0020 00..0000 00..0000 00..34 nabnoatcdkftgohrreoeupffnaedcrttaiscnlddeu-ledeevttoeelcdateostyremcetffmoerectatrscy.c,eTpwhthaeincfichresitsantcwdororreeascsotyleumdtimfooner-; P [95,130] 0.2 triesareshowntodemonstratetheeffectoftheperformed (D y<0) 0.01 00..4477 00..4411 0.08 0.00 0.01 0.01 0.00 b corrections. The results are summarized in Table IV, [130,¥ ] 0.1 (D y<0) 00..5588 00..3366 0.03 0.00 0.00 0.00 0.01 0.01 where the AFB dependence on mb¯b and the integrated b [130,¥ ][95,130][75,95] [40,75] [40,75] [75,95][95,130][130,¥ ] 0.0 asymmetry are presented. The final results, with statisti- (D y<0)(D y<0)(D y<0)(D y<0)(D y>0)(D y>0)(D y>0)(D y>0) cal and systematic uncertainties added in quadrature, are b b b b b b b b Detector-jet mreco [GeV/c2] summarized in the last column. The significant difference bb between the raw A and the particle level A comes FB FB FIG.8. Smearingmatrixdeterminedusingsimulatedb¯bevents from the interplay of the unfolding procedure and the wherenocascadedecaysandnoB(0s)−B0(s) mixingoccursand small number of events in the highest mb¯b bin. used as a consistency check. Shading illustrates diagonalness of the smearing matrix and represents the level of probability that a given mrbe¯bco bin will be projected into a given mb¯b bin. Tb¯bAiBnvLaEriaIVnt.mReassus.ltsTohfetihneteAgrFaBl vmaeluaessurfeomreenactshabsinfuanrcetisohnoswonf. A [%] FB bin, several asymmetry variations around the predicted Observed Background Particle values are tested by running 1000 pseudoexperiments for mb¯b [GeV/c2] raw asymmetry subtracted level each regularization parameter k. After unfolding, the (statistical uncertainty only) (stat+syst) measured asymmetry is compared with the generated 40 – 75 0.47±0.49 0.50±0.54 0.83±0.83 75 – 95 0.55±0.61 0.60±0.70 1.54±0.73 asymmetry. Minimizing the bias from the comparison, 95 – 130 0.70±0.71 0.83±0.90 0.92±0.87 k =4waschosenastheoptimalregularizationparameter. >130 0.32±0.91 0.43±1.33 2.08±1.10 Integrated 0.52±0.32 0.58±0.37 1.17±0.71 VII. SYSTEMATIC UNCERTAINTIES The sources of systematic uncertainties considered in L = 6.9 fb-1 6 this analysis come from modeling of the geometric and Data kinematic acceptance, estimation of the background, and 5 NLO SM (PRD 92 054003) possible asymmetry of the background. Modeling of the geometric and kinematic acceptance includes effects of %] 4 [ initial- and final-state radiation (ISR and FSR), and jet- ) b 3 energy scale (JES). These are estimated by varying ISR, b(B F FSR,andtheJESinthesimulation. Theuncertaintydue A 2 to the amount of background is estimated by varying the b¯b fraction within its uncertainty. The systematic uncer- 1 tainty due to a possible asymmetry of the background is 0 estimated by simulating ±1% asymmetries in the back- ground distributions. The total systematic uncertainties 40 75 95 130 for different mb¯b bins are summarized in Table III. Particle-level mbb [GeV/c2] FIG. 9. Measured A (b¯b) as a function of particle-level FB TABLE III. Absolute systematic uncertainties of A in per- centage. FB mb¯b. ThedataarecomparedwiththeNLOtheoreticalpredic- tion [27]. SystematicuncertaintyofAFB(b¯b)[%] 40–75 75m–b¯b9[5GeV9/5c–2]130 >130 Integrated Figure 9 shows the comparison of the results with the ISR/FSR 0.09 0.07 0.06 0.12 0.05 theoretical prediction [27], which is calculated at the par- JES 0.24 0.15 0.02 0.10 0.10 ton level using a different lower threshold for the lowest fb¯b uncert. 0.06 0.06 0.04 0.01 0.04 BackgroundAFB 0.11 0.17 0.27 0.34 0.17 mb¯b bin. However, the parton-to-particle corrections of Total 0.29 0.24 0.28 0.37 0.22 the theory predictions are expected to be small compared 10 to the experimental uncertainties. An indication of an in- results is consistent with SM expectations and extends crease as a function of mb¯b is visible in AFB(b¯b) measured previous findings [17] to mb¯b values down to 40GeV/c2. at particle level, with an enhancement around the Z-pole mass similar to that predicted theoretically. The mea- sured integrated asymmetry of (1.2±0.7)% is consistent ACKNOWLEDGEMENTS with the SM prediction. The measurement is compared with the SM and non-SM predictions in Ref. [27], where We thank the Fermilab staff and the technical staffs of the models with a 100GeV/c2 axigluon are disfavored. the participating institutions for their vital contributions. This work was supported by the U.S. Department of En- ergyandNationalScienceFoundation;theItalianIstituto Nazionale di Fisica Nucleare; the Ministry of Education, IX. CONCLUSIONS Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of We present a measurement of the forward-backward Canada; the National Science Council of the Republic asymmetry in the production of b¯b pairs in proton- of China; the Swiss National Science Foundation; the √ antiproton collisions at s = 1.96 TeV using a sample A.P. Sloan Foundation; the Bundesministerium fu¨r Bil- from 6.9 fb−1 of integrated luminosity collected by the dung und Forschung, Germany; the Korean World Class CDF II detector. The measured value of the integrated University Program, the National Research Foundation asymmetry is A (b¯b) = (1.2±0.7)%. In addition, the of Korea; the Science and Technology Facilities Council FB dependence of the asymmetry A on b¯b-pair invariant and the Royal Society, UK; the Russian Foundation for FB mass, mb¯b, is measured. A tendency to an increase of Basic Research; the Ministerio de Ciencia e Innovaci´on, AFB(b¯b) with mb¯b invariant mass is observed. The experi- and Programa Consolider-Ingenio 2010, Spain; the Slovak mentalvalueofA (b¯b)aroundtheZ bosonmassfollows R&D Agency; the Academy of Finland; the Australian FB the theoretical expectation that predicts a local increase Research Council (ARC); and the EU community Marie duetothecontributionofelectroweakprocesses[27]. This Curie Fellowship contract 302103. [1] J. H. Ku¨hn and G. Rodrigo, Phys. Rev. Lett. 81, 49 [13] G. Aad et al. (ATLAS Collaboration), (2015), (1998). arXiv:1509.02358 [hep-ex]. [2] J. H. Ku¨hn and G. Rodrigo, Phys. Rev. D 59, 054017 [14] G. Aad et al. (ATLAS Collaboration), J. High Energy (1999). Phys. 05 (2015) 061. [3] W. Bernreuther et al., Nucl. Phys. B750, 83 (2006). [15] V. Khachatryan et al. (CMS Collaboration), (2015), [4] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D arXiv:1508.03862 [hep-ex]. 83, 112003 (2011). [16] V. Khachatryan et al. (CMS Collaboration), (2015), [5] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D arXiv:1507.03119 [hep-ex]. 87, 092002 (2013). [17] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D [6] Q.-H. Cao, D. McKeen, J. L. Rosner, G. Shaughnessy, 92, 032006 (2015). and C. E. M. Wagner, Phys. Rev. D 81, 114004 (2010); [18] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. M. I. Gresham, I.-W. Kim, and K. M. Zurek, Phys. Rev. 114, 051803 (2015). D83,114027(2011); S.Jung,A.Pierce,andJ.D.Wells, [19] S. Frixione and B. R. Webber, J. High Energy Phys. 06 Phys. Rev. D 83, 114039 (2011); J. F. Kamenik, J. Shu, (2002) 029. and J. Zupan, Eur. Phys. J. C 72, 2102 (2012). [20] G. Corcella, I. Knowles, G. Marchesini, S. Moretti, [7] J. Aguilar-Saavedra and M. Perez-Victoria, Phys. Lett. K. Odagiri, P. Richardson, M. H. Seymour, and B. R. B 705, 228 (2011); C. Gross, G. Marques Tavares, Webber, J. High Energy Phys. 01 (2001) 010. M.Schmaltz,andC.Spethmann,Phys.Rev.D87,014004 [21] R.Aaijetal.(LHCbcollaboration),Phys.Rev.Lett.113, (2013); A. Carmona, M. Chala, A. Falkowski, S. Khatibi, 082003 (2014). M. M. Najafabadi, G. Perez, and J. Santiago, J. High [22] Byjetweunderstandanassemblyofassociatednarrowly- Energy Phys. 07 (2014) 005; S. Ipek, Phys. Rev. D 87, clustered particles. 116010 (2013). [23] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D [8] M. Czakon, P. Fiedler, and A. Mitov, Phys. Rev. Lett. 78, 052006 (2008). 115, 052001 (2015). [24] O.Antun˜ano, J.H.Ku¨hn, andG.Rodrigo,Phys. Rev.D [9] N. Kidonakis, Phys. Rev. D 91, 071502(R) (2015). 77, 014003 (2008). [10] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D [25] B. Grinstein and C. W. Murphy, Phys. Rev. Lett. 111, 90, 072011 (2014). 062003 (2013). [11] T.Aaltonenet al.(CDFCollaboration),CDFNote11161 [26] A. V. Manohar and M. Trott, Phys. Lett. B 711, 313 (2015). (2012). [12] G. Aad et al. (ATLAS Collaboration), (2015), [27] C. W. Murphy, Phys. Rev. D 92, 054003 (2015). arXiv:1512.06092 [hep-ex]. [28] A cylindrical coordinate system with the z axis directed along the proton beam is used. The polar angle θ is

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.