ebook img

Measurement of the decay $B^0\toπ^-\ell^+ν$ and determination of $|V_{ub}|$ PDF

0.2 MB·English
by  H. Ha
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of the decay $B^0\toπ^-\ell^+ν$ and determination of $|V_{ub}|$

Belle Preprint 2010-22 KEK Preprint 2010-37 Measurement of the decay B0 → π−ℓ+ν and determination of |Vub| H. Ha,20 E. Won,20 I. Adachi,8 H. Aihara,48 T. Aziz,43 A. M. Bakich,42 V. Balagura,15 E. Barberio,26 A. Bay,22 K. Belous,14 V. Bhardwaj,38 B. Bhuyan,11 M. Bischofberger,28 A. Bondar,1,36 A. Bozek,32 M. Braˇcko,24,16 T. E. Browder,7 Y. Chao,31 A. Chen,29 P. Chen,31 B. G. Cheon,6 C.-C. Chiang,31 I.-S. Cho,53 K. Cho,19 K.-S. Choi,53 Y. Choi,41 J. Dalseno,25,44 M. Danilov,15 Z. Doleˇzal,2 A. Drutskoy,3 W. Dungel,13 S. Eidelman,1,36 N. Gabyshev,1,36 B. Golob,23,16 J. Haba,8 K. Hayasaka,27 H. Hayashii,28 Y. Horii,47 Y. Hoshi,46 W.-S. Hou,31 Y. B. Hsiung,31 H. J. Hyun,21 T. Iijima,27 K. Inami,27 R. Itoh,8 M. Iwabuchi,53 Y. Iwasaki,8 N. J. Joshi,43 1 T. Julius,26 J. H. Kang,53 T. Kawasaki,34 C. Kiesling,25 H. J. Kim,21 H. O. Kim,21 M. J. Kim,21 S. K. Kim,40 1 Y. J. Kim,5 K. Kinoshita,3 B. R. Ko,20 S. Korpar,24,16 P. Kriˇzan,23,16 T. Kuhr,18 T. Kumita,49 A. Kuzmin,1,36 0 Y.-J. Kwon,53 S.-H. Kyeong,53 J. S. Lange,4 M. J. Lee,40 S.-H. Lee,20 Y. Li,51 A. Limosani,26 C. Liu,39 Y. Liu,31 2 D. Liventsev,15 R. Louvot,22 S. McOnie,42 K. Miyabayashi,28 H. Miyata,34 Y. Miyazaki,27 G. B. Mohanty,43 n T. Mori,27 Y. Nagasaka,9 E. Nakano,37 M. Nakao,8 H. Nakazawa,29 Z. Natkaniec,32 S. Neubauer,18 S. Nishida,8 a J K. Nishimura,7 O. Nitoh,50 T. Nozaki,8 S. Ogawa,45 T. Ohshima,27 S. Okuno,17 S. L. Olsen,40,7 P. Pakhlov,15 8 G. Pakhlova,15 C. W. Park,41 H. Park,21 H. K. Park,21 R. Pestotnik,16 M. Petriˇc,16 L. E. Piilonen,51 M. Ro¨hrken,18 2 S. Ryu,40 H. Sahoo,7 Y. Sakai,8 O. Schneider,22 C. Schwanda,13 A. J. Schwartz,3 K. Senyo,27 M. E. Sevior,26 M. Shapkin,14 C. P. Shen,7 J.-G. Shiu,31 F. Simon,25,44 P. Smerkol,16 Y.-S. Sohn,53 A. Sokolov,14 S. Staniˇc,35 ] x M. Stariˇc,16 T. Sumiyoshi,49 Y. Teramoto,37 K. Trabelsi,8 S. Uehara,8 T. Uglov,15 Y. Unno,6 S. Uno,8 e S. E. Vahsen,7 G. Varner,7 K. E. Varvell,42 A. Vossen,10 C. H. Wang,30 M.-Z. Wang,31 P. Wang,12 M. Watanabe,34 - p Y. Watanabe,17 Y. Yamashita,33 Z. P. Zhang,39 P. Zhou,52 V. Zhulanov,1,36 T. Zivko,16 and A. Zupanc18 e h (The Belle Collaboration) [ 1Budker Institute of Nuclear Physics, Novosibirsk 4 2Faculty of Mathematics and Physics, Charles University, Prague v 3University of Cincinnati, Cincinnati, Ohio 45221 0 4Justus-Liebig-Universit¨at Gießen, Gießen 9 5The Graduate University for Advanced Studies, Hayama 0 6Hanyang University, Seoul 0 7University of Hawaii, Honolulu, Hawaii 96822 2. 8High Energy Accelerator Research Organization (KEK), Tsukuba 1 9Hiroshima Institute of Technology, Hiroshima 0 10University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 1 11Indian Institute of Technology Guwahati, Guwahati : 12Institute of High Energy Physics, Chinese Academy of Sciences, Beijing v 13Institute of High Energy Physics, Vienna i X 14Institute of High Energy Physics, Protvino 15Institute for Theoretical and Experimental Physics, Moscow r a 16J. Stefan Institute, Ljubljana 17Kanagawa University, Yokohama 18Institut fu¨r Experimentelle Kernphysik, Karlsruher Institut fu¨r Technologie, Karlsruhe 19Korea Institute of Science and Technology Information, Daejeon 20Korea University, Seoul 21Kyungpook National University, Taegu 22E´cole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne 23Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana 24University of Maribor, Maribor 25Max-Planck-Institut fu¨r Physik, Mu¨nchen 26University of Melbourne, School of Physics, Victoria 3010 27Nagoya University, Nagoya 28Nara Women’s University, Nara 29National Central University, Chung-li 30National United University, Miao Li 31Department of Physics, National Taiwan University, Taipei 32H. Niewodniczanski Institute of Nuclear Physics, Krakow 33Nippon Dental University, Niigata 2 34Niigata University, Niigata 35University of Nova Gorica, Nova Gorica 36Novosibirsk State University, Novosibirsk 37Osaka City University, Osaka 38Panjab University, Chandigarh 39University of Science and Technology of China, Hefei 40Seoul National University, Seoul 41Sungkyunkwan University, Suwon 42School of Physics, University of Sydney, NSW 2006 43Tata Institute of Fundamental Research, Mumbai 44Excellence Cluster Universe, Technische Universita¨t Mu¨nchen, Garching 45Toho University, Funabashi 46Tohoku Gakuin University, Tagajo 47Tohoku University, Sendai 48Department of Physics, University of Tokyo, Tokyo 49Tokyo Metropolitan University, Tokyo 50Tokyo University of Agriculture and Technology, Tokyo 51CNP, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 52Wayne State University, Detroit, Michigan 48202 53Yonsei University, Seoul WepresentameasurementofthecharmlesssemileptonicdecayB0 →π−ℓ+ν usingadatasample containing 657×106 BB¯ events collected with the Belle detector at the KEKB asymmetric-energy e+e− collider operating near the Υ(4S) resonance. We determine the total branching fraction of thedecay,B(B0 →π−ℓ+ν)=(1.49±0.04(stat)±0.07(syst))×10−4. Wealso report anew precise measurement of the differential decay rate, and extract the Cabibbo-Kobayashi-Maskawa matrix element |Vub| using model-independent and model-dependent approaches. From a simultaneous fit tothemeasureddifferentialdecayrateandlatticeQCDresults,weobtain|Vub|=(3.43±0.33)×10−3, where theerror includes both experimental and theoretical uncertainties. PACSnumbers: 12.15.Hh,13.20.He,12.38.Qk Weak transitions among quark flavors in the standard range [8, 9], resulting in |Vub| = (3.38 ± 0.36)× 10−3 model (SM) are described by the Cabibbo-Kobayashi- using the experimental data in Ref. [10] for the decay Maskawa (CKM) matrix [1], in which |Vub| is one of the B0 → π−ℓ+ν where the error includes both theoretical least known elements. Precise measurements of the val- and experimental uncertainties. The experimental un- ues of the CKM matrix elements are necessary to probe certainty is a 6% while the theoretical contribution is thequarkmixingmechanismoftheSMandtosearchfor estimated to be an 8.5% [9]. In addition, Ref. [11] re- possible physics beyond the SM. The magnitude of the ports |Vub| = (2.95±0.31)× 10−3 by combining mea- CKMelementVub canbe determinedfromexclusiveb→ surements of B0 → π−ℓ+ν and B+ → π0ℓ+ν; here the uℓν semileptonicdecays,ofwhichB0 →π−ℓ+ν [2]yields errorcontainsa3%contributionfromthebranchingfrac- the most precise value for |Vub|. The differential rate of tion measurement, a 5% from the shape of the q2 spec- thisdecaycanbeexpressedintermsof|Vub|andtheform trum measured in data, and an 8.5% from the theoreti- factor f (q2), where q2 is the square of the momentum calnormalization. Herewedescribe astudy ofthe decay + transferred from the B meson to the outgoing leptons, B0 →π−ℓ+ν andmeasurethebranchingfractionandthe q2 = (pℓ+pν)2 [3]. The present theoretical understand- q2 spectrum. We thencomparewithotherrecentstudies ing of f (q2) is limited, which is a significant source for of this decay [10–15]. The differential branching frac- + systematicuncertaintyintheextractionof|Vub|fromthis tionis measuredin13binsofq2,and|Vub| isdetermined decay. Predictionshavebeenobtainedinunquenchedlat- usingboth model-independent andmodel-dependent ap- ticeQCD [4,5],inlightconesumrule(LCSR)theory[6] proaches. and in relativistic quark models [7]. However, these pre- dictions typically assume a specific shape for f (q2) and The Belle detector [16, 17] is a large-solid-angle mag- + provide reliable predictions only in a limited q2 range neticspectrometerthatconsistsofasiliconvertexdetec- (lattice QCD is valid near q2 maximum, while LCSR tor (SVD), a 50-layer central drift chamber (CDC), an is reliable near the minimum value of q2). Recently, it array of aerogel threshold Cherenkov counters (ACC), has been shown that a determination of |Vub| indepen- a barrel-like arrangement of time-of-flight scintillation dent of a form factor shape calculation can be achieved counters (TOF), and an electromagnetic calorimeter by simultaneously fitting the measured q2 spectrum and composed of CsI(Tl) crystals (ECL) located inside a su- lattice QCD results computed near the zero recoil of q2 perconducting solenoid coil that provides a 1.5 T mag- neticfield. Anironflux-returnlocatedoutsideofthecoil 3 is instrumented with resistive plate chambers to detect that of the missing energy. To select events compati- K0 mesons and to identify muons (KLM). ble with the signal decay mode, we require |Q | ≤ L total Thedatasamplecorrespondstoanintegratedluminos- 3, where Qtotal is the net charge of the event, and ity of 605 fb−1 taken at a center-of-mass (c.m.) energy E > 0 GeV. We denote the combined system of miss neartheΥ(4S)resonance,containing657×106BB¯ pairs. the signal pion and lepton as Y. The kinematics of For the first sample of 152×106 BB¯ events, an inner de- the decay constrain the cosine of the angle between tector configuration with a 2.0 cm beampipe and a 3- the B and Y directions in the c.m. frame, defined by layer SVD was used, while a 1.5 cm beampipe, a 4-layer cosθBY = (2EbeamEY −m2B −MY2)/(2|p~B||p~Y|), where SVD and a small-cell inner drift chamber were used to mB and|pB|=pEb2eam−m2B refertothemassandmo- record the remaining 505×106 BB¯ pairs [18]. Another mentum of the B meson, and EY, MY, and pY refer to 68 fb−1 data sample taken at a c.m. energy 60 MeV be- the energy, mass, and momentum of the reconstructed low the resonance is used to study the continuum back- Y. Background, on the other hand, is not similarly con- ground, e+e− → qq¯, where q = u,d,s,c. Monte Carlo strained. In what follows we require |cosθBY| ≤ 1. (MC) [19, 20] simulated events equivalent to at least ten Signal candidates are classified by their beam-energy- times the integratedluminosity weregeneratedto model constrainedmass,Mbc =pEb2eam−|p~π +~pℓ+~pν|2,and thesignal. Samplesequivalenttotentimesandsixtimes energy difference, ∆E =Ebeam−(Eπ +Eℓ+Eν). Can- the integratedluminosity weregeneratedtosimulate the didates outside of the signal region, defined by the re- two largest background components, b → c decays and quirements M > 5.19 GeV/c2 and |∆E| < 1 GeV, bc continuum, respectively. To simulate rare b→u decays, are rejected. To suppress background from the contin- samples equivalent to twenty times the integrated lumi- uum, the ratio of second to zeroth Fox-Wolfram mo- nosity were generated. Final state radiation (FSR) from ments [25] is required to be less than 0.35. Background charged particles in the final state is modeled using the from J/ψ → µ+µ− decays with one muon misidentified PHOTOS package [21]. as a pion is rejected by vetoing events with a Y mass The decay B0 → π−ℓ+ν is reconstructed from pairs between 3.07 GeV/c2 and 3.13 GeV/c2. The sample of of oppositely chargedleptons and pions. Electroncandi- signal candidates is divided into 13 bins of q2 from 0 to datesareidentifiedusingtheratiooftheenergydetected in the ECL to the track momentum, the ECL shower shape, position matching between the track and ECL 0 < q2 < 16 GeV2/c2 q2 > 16 GeV2/c2 cluster, the energy loss in the CDC, and the response MeVMeV44000000 (a) B0 fi p l n (b) oftheACCcounters[22]. Bremsstrahlungphotonsemit- 5 5 B fi Xu l n 22000000 121233000000 B fi Xc l n tuesdedcltoosecotroretchtetehleecetlreocntrdoinremctoiomnenatruemrec[2o3n]s.trMucutoendsaanrde vents / vents / 22000000 ConDtaintauum 11550000 identifiedbasedontheirpenetrationrangeandtransverse EE 11000000 scattering in the KLM detector [24]. In the momentum 11000000 550000 regionrelevanttothisanalysis,chargedleptonsareiden- tifiedwithanefficiencyofabout90%whilethe probabil- 00--11 --00..55 00 00..55 11 00--11 --00..55 00 00..55 11 ity to misidentify a pion as an electron (muon) is 0.25% DD EE ((GGeeVV)) DD EE ((GGeeVV)) (1.4%). Pion candidates are selected with an efficiency obfas8e5d%onantdhearkesapoonnmseissiodfenthtiefiCcaDtiCon, ApCroCbaabnidlitTyOoFf 1s9u%b-, 22MeV/cMeV/c44000000 (c) 22000000 (d) detectors. All chargedparticles are requiredto originate 25 25 33000000 6.6. 11550000 from the interaction point (IP) and to have associated s / s / hits in the SVD. The pion and lepton candidates are fit- entent22000000 11000000 vv tedtoacommonvertexandtheconfidencelevelofthefit EE 11000000 550000 isrequiredtobegreaterthan1.0%. Theelectron(muon) isrequiredtohavealaboratoryframemomentumgreater 00 55..22 55..2222 55..2244 55..2266 55..2288 00 55..22 55..2222 55..2244 55..2266 55..2288 than 0.8 GeV/c (1.1 GeV/c). MM ((GGeeVV//cc22)) MM ((GGeeVV//cc22)) bbcc bbcc The missing energy and momentum in the c.m. frame are defined as Emiss ≡ 2Ebeam − PiEi and p~miss ≡ FIG.1: Fitprojections(a,b)in∆EwithMbc>5.27GeV/c2, −Pi~pi,respectively,whereEbeam isthebeamenergyin atinodns(c(,a,cd)) ainndM(bbc,dw)itshhow|∆Eth|e<reg0i.o1n2s5qG2eV<. 1T6heGepVro2j/ecc2- the c.m. frame, and the sums include all charged and and q2 > 16 GeV2/c2, respectively. The points with er- neutral particle candidates in the event. A threshold ror bars are Υ(4S) data, the histograms are (from top to energy of 50 (100) MeV is required for photon candi- bottom) B0 → π−ℓ+ν signal (open), B → Xuℓν (cross- dates in the central (side) region of the ECL. The neu- hatched), B → Xcℓν (hatched) and continuum background trino 4-momentum is taken to be pν = (|p~miss|, p~miss), (black-filled). Thesmallererrorbarsarestatisticalonlywhile since the determination of ~p is more accurate than thelarger ones include systematic uncertainties. miss 4 26.4 GeV2/c2 (the bin width is 2 GeV2/c2, except for The partial branching fractions ∆B are calculated us- the last bin). The value of q2 is calculated as the square ing the signal efficiencies obtained from MC simulation. ofthe difference between the 4-momentaof the B meson The total branching fraction B is the sum of partial andthatofthepion. AstheB directionisonlykinemati- branchingfractionstakingintoaccountcorrelationswhen callyconstrainedtolieonaconearoundtheY direction, calculating the errors. We find B(B0 → π−ℓ+ν) = we take a weighted average over four different possible (1.49±0.04(stat)±0.07(syst))×10−4,wherethe firster- configurationsoftheB direction[26]. Backgroundisfur- roris statisticaland the seconderroris systematic. This ther suppressed by applying selection criteria as a func- resultissignificantlymoreprecisethanourpreviousmea- tion of q2 to the following quantities: the angle between surement[13]withB →D(∗)ℓ+ν tagsona253fb−1 data the thrust axis of the Y system and the thrust axis of sample. therestoftheevent;theangleofthemissingmomentum To estimate the systematic uncertainties on ∆B, we with respect to the beam axis; the helicity angle of the include the following contributions: the uncertainties in ℓνsystem[27];andthemissingmasssquaredoftheevent, lepton and pion identification, the charged particle re- M2 =E2 −p~ 2 . Thehelicityangleistheanglebe- miss miss miss construction,the photondetection efficiency,andthe re- tween the lepton direction and the direction opposite to quirement on the χ2 probability of the vertex fit, which the B meson in the ℓν rest frame. These selections are is estimated by comparing results with and without this optimizedseparatelyineachbinofq2 bymaximizingthe requirement. The results are summarized as detector ef- figure-of-meritS/p(S+B),whereS (B)istheexpected fects in Table I. They depend weakly on q2 and amount number of signal (background) events. to 3.4% for the entire q2 range. We vary the branching The fraction of events that have multiple candidates fractions of the decays contributing to the b → uℓν and is 66%. To remove multiple signal candidates in a single b → cℓν backgrounds within ±1 standard deviation of event,thecandidatewiththesmallestℓν helicityangleis theirworld-averagevalues [31]andassignanuncertainty selected. After imposing all selections described above, of 0.6% to the total yield. We further consider form fac- the reconstruction efficiency for signal ranges from 7.7% tor uncertainties in the decays B0 →π−ℓ+ν [14], B0 → to 15.0% over the entire q2 range. The fraction of the ρ−ℓ+ν [6, 32], B0 → D−ℓ+ν and B0 → D∗−ℓ+ν [33], self-cross-feed component, in which one or more of the and uncertainties in the shape function parameters of signal tracks are not correctly reconstructed, is 3.5%. the inclusive b → uℓν model [34]. These uncertainties The signal yield is determined by performing a two- dimensional, binned maximum likelihood fit to the (M ,∆E) plane in 13 bins of q2 [28]. Background con- bc tributions from b → uℓν, b → cℓν and non-BB¯ con- · 10-6 tinuum are considered in the fit. Probability density 2 c20 functions (PDFs) corresponding to these fit components 2/ V are obtained from MC simulations. To reduce the num- e18 G ber of free parameters, the q2 bins of the background 2 components are grouped into coarser bins: four bins for ) / 16 2q b → uℓν, and three bins for b → cℓν. The choice of the B(14 binning was chosenfrom the total statisticalerror,num- D 12 ber of parameters to fit, and the complexity of the fits. Theq2 distributionofthe continuumMC[29]simulation 10 is reweighted to match the corresponding distribution in 8 ISGW2 off-resonancedata. For this procedure,a continuumMC sample about 60 times the integrated luminosity of the 6 HPQCD off-resonance data is used. The continuum normaliza- FNAL 4 tionisfixedtothescalednumberofoff-resonanceevents, LCSR 52928events. Includingsignalyieldsineachq2 bin,there 2 Data are 20 free parameters in the fit. 0 0 5 10 15 20 25 We obtain 21486 ± 548 signal events, 52543 ± 1148 Unfolded q2 (GeV2/c2) b → uℓν events, and 161829±976 b → cℓν background events. These yields agree well with the expectations FIG. 2: Distribution of the partial branching fraction as from MC simulation studies. The χ2/n.d.f. of the fit is a function of q2 after unfolding (closed circles). The er- 2962/3308. The projections of the fit result in ∆E and ror bars show the statistical and the total uncertainty on Mbc areshowninFig.1forthe regionsq2 <16GeV2/c2 the data. The curve is the result of a fit of the BK form and q2 > 16 GeV2/c2. Bin-to-bin migrations due to factor parameterization [35] to our data. The four his- q2 resolutionarecorrectedbyapplyingtheinversedetec- tograms (dashed:ISGW2; plain:HPQCD; dotted:FNAL; dot- dashed:LCSR) show various form factor predictions. tor response matrix [30] to the measured partial yields. 5 TABLEI:Valuesof∆B(q2)andrelativeuncertainties(%). TheuncertaintiesinMCinputparametersaregivenseparatelyfor branchingfractions (BF) and form factors (FF). q2(GeV2/c2) 0 - 6 6 - 12 12 - 18 18 - 26.4 0 - 16 16 - 26.4 Total ∆B (× 107) 391.19 434.25 389.47 279.18 1096.34 397.75 1494.09 Detectoreffects 3.4 3.5 3.5 3.5 3.4 3.5 3.4 Physics parameters (BF) 0.8 0.7 0.6 0.7 0.6 0.6 0.6 Physics parameters (FF) 1.9 1.7 1.9 1.8 1.3 1.8 1.1 Continuum correction 4.4 2.3 3.4 2.3 2.1 2.6 1.8 Othersources 2.1 2.5 2.4 2.4 2.1 2.3 2.0 Total statistical error 5.3 3.9 4.8 6.1 3.0 5.3 2.6 Total error 8.2 6.5 7.5 8.1 5.7 7.5 5.2 correspond to a 1.1% error on B(B0 → π−ℓ+ν). The product of the form factor f (q2) and the functions P + + ∞ i uncertainty in the correction of the continuum MC is andφ+ hasthesimpleform,Pi=0aiz . Wefitthelattice estimated by varying its weights by their statistical un- QCD results and experimental data with a third-order certainties. The other sources of systematic uncertainty polynomial where the free parameters of the fit are the in Table I include the uncertainty in the Υ(4S)→B0B¯0 coefficientsaiandtherelativenormalizationbetweenlat- branching fraction [31], limited MC statistics, the effect ticeQCDresultsandexperimentalresults,whichis|Vub|. of final state radiation,which is estimated by investigat- Theresultingexperimentaldata(whicharescaledbythe ing MC samples with and without bremsstrahlung cor- fitted |Vub| value) andthe lattice QCDresults areshown rections calculated using the PHOTOSpackage,and the in Fig. 3. We obtain |Vub| = (3.43±0.33)×10−3, a0 = uncertainty in the number of BB¯ pairs in the data sam- 0.022±0.002, a =−0.032±0.004, a =−0.080±0.020 1 2 ple. For values of∆B in individual q2 bins, a breakdown and a = 0.081±0.066, where the χ2/n.d.f. of the fit is 3 of the systematic uncertainties is presented in Table V approximately12/20. Statistically,wefindnosignificant andthestatisticalandsystematiccorrelationsisgivenin difference in the fitted value of |Vub| using second- and Table III and Table IV. fourth-orderpolynomialfits. Note that the errorin|Vub| We fit the ∆B distribution using the two-parameter includesbothexperimentalandtheoreticaluncertainties. BK parameterization [35] of f (q2), taking into account We find that the error includes a 3% contribution from + statistical and systematic correlations. The result is thebranchingfractionmeasurement,a4%fromq2 shape shown in Fig. 2. Although this parameterization has beencriticized[36],wepresentthefitresultinordertodi- rectlycomparewithotherexistingresults[10]. Weobtain |Vub|f+(0)=(9.24±0.18(stat)±0.21(syst))×10−4 and 0.04 + α = 0.60±0.03(stat)±0.02(syst), where α is a positive f + MILC lattice points coofntshteanfitttihsa6t2%sc.alWesewailtshomcaBlcu[3la5t].e tThheeχχ22prporboabbaibliitliiteys f P+0.035 Belle data scaled by |Vub| from fit Simultaneous fit of different theoretical form factor predictions with our 0.03 binned data. We obtain probabilities of 42% and 43% for the HPQCD [4] and the FNAL [5] lattice QCD cal- 0.025 culations,respectively,and49%fortheLCSRtheory[6]. TheISGW2quarkmodel[7],forwhichthe probabilityis 0.02 2.3×10−6, is incompatible with the experimental data. 0.015 AsdescribedinRef.[9],theCKMmatrixelement|Vub| canbeextractedfromasimultaneousfittoexperimental 0.01 andlatticeQCDresults(fromtheFNAL/MILCCollabo- -0.3 -0.2 -0.1 0 0.1 0.2 z ration[9]),takingintoaccountstatisticalandsystematic correlations. To this end, the q2 variable is transformed FIG. 3: |Vub| extraction from a simultaneous fit of exper- toadimensionlessvariablez [8,36]. Inaddition,thetwo imental (closed circles) and FNAL/MILC lattice QCD re- functions, P+ andφ+ aretakenfromRef.[37],whereP+ sults (open circles) [9]. The error for each experimental data is a function that accounts for the pole at q2 =m2 and pointisthetotalexperimentaluncertainty. Thesmallererror B∗ φ is an analyticfunction that controlsthe values ofthe bars of the lattice QCD results are statistical only while the + ai series coefficients. In terms of the new variable z, the larger ones also includesystematic uncertainties. 6 TABLEII:Valuesextractedfor|Vub|usingdifferentformfac- tor predictions. The first error on |Vub| is the experimental error including statistical, systematic uncertainties and the [1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, uncertainty in the B0 lifetime [31], the last asymmetric er- 652(1973);N.Cabibbo,Phys.Rev.Lett.10,531(1963). rors arise from theuncertainty in ∆ζ. [2] Throughout this paper, the inclusion of the charge- conjugatedecaymodeisimpliedunlessotherwisestated. f+(q2) q2 (GeV2/c2) ∆ζ (ps−1) |Vub| (10−3) [3] M. Neubert,Phys.Rept. 245, 259 (1994). HPQCD [4] >16 2.07±0.57 3.55±0.13+−00..6421 [4] E. Dalgic, A. Gray, M. Wingate, C. T. H. Davies, FNAL [5] >16 1.83±0.50 3.78±0.14+0.65 G.P.LepageandJ.Shigemitsu,Phys.Rev.D73,074502 −0.43 (2006). [Erratum-ibid. D 75, 119906 (2007)]. LCSR [6] <16 5.44±1.43 3.64±0.11+−00..6400 [5] M. Okamoto et al., Nucl. Phys. Proc. Suppl. 140, 461 (2005). [6] P. Ball and R.Zwicky,Phys. Rev.D 71, 014015 (2005). [7] D. Scora and N.Isgur, Phys. Rev.D 52, 2783 (1995). [8] C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. measured in data, and an 8% uncertainty from theoreti- Lett. 74, 4603 (1995); C. G. Boyd and M. J. Savage, calnormalization. Theexperimentalandthetotalerrors Phys. Rev.D 56, 303 (1997). are compatible with the previous results in Ref. [9, 11]. [9] J. A.Bailey et al.(Fermilab Latticeand MILCCollabo- ration), Phys.Rev. D 79, 054507 (2009). Alternatively, |Vub| can be determined from the mea- [10] B.Aubertetal.(BaBarCollaboration),Phys.Rev.Lett. 98, 091801 (2007). suredpartialbranchingfractionusingtherelation|Vub|= [11] arXiv:1005.3288v2 [hep-ex], submitted to Phys. Rev. D. p∆B/(τB0∆ζ), where τB0 is the B0 lifetime [31] and P. del Amo Sanchezet al. (BaBar Collaboration). ∆ζ is the normalized partial decay width derived in dif- [12] S. B. Athar et al. (CLEO Collaboration), Phys. Rev. D ferent theoretical approaches [4–6]. These calculations 68, 072003 (2003). typically assume a specific parameterization of the form [13] T. Hokuue et al. (Belle Collaboration), Phys. Lett. B factorshape.Valuesof|Vub|fordifferentformfactorpre- 648, 139 (2007). dictions are given in Table II. [14] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 72, 051102 (2005). In summary, using 657×106 BB¯ events of Belle [15] B.Aubertetal.(BaBarCollaboration),Phys.Rev.Lett. 97, 211801 (2006). Υ(4S) data we measure the partial branching fractions of the decay B0 → π−ℓ+ν in 13 bins of q2. The to- [16] A. Abashian et al., Nucl. Instrum. Meth. A 479, 117 (2002). tal branching fractionis found to be (1.49±0.04(stat)± [17] S.Kurokawa,Nucl.Instrum.Meth.A499,1(2003),and 0.07(syst))×10−4. A combined fit of experimental and other papers included in this volume. FNAL/MILC lattice QCD results [9], yields a new pre- [18] Z. Natkaniec et al., Nucl. Instrum. Meth. A 560 1, cise determination of |Vub| from this decay, |Vub| = (2006). (3.43±0.33)×10−3. Determinations using only a frac- [19] D. J. Lange, Nucl. Instrum.Meth. A 462, 152 (2001). [20] R. Brun et al., “GEANT3.21,” CERN Report No. tion of the phase space lead to less precise but sta- DD/EE/84-1, 1987. tistically compatible numbers for |Vub|: using a LCSR [21] E. Barberio and Z. Was, Comput. Phys. Commun. 79, calculation for the region q2 < 16 GeV2/c2 [6] yields 291 (1994). (3.64±0.06(stat)±0.09(syst)+−00..6400(FF))×10−3. Assum- [22] K. Hanagaki, H. Kakuno, H. Ikeda, T. Iijima and ing the HPQCD [5] and the FNAL [4] lattice QCD cal- T.Tsukamoto, Nucl.Instrum.Meth.A485,490(2002). culations, sensitive to the region q2 > 16 GeV2/c2, we [23] C. Schwanda et al. (Belle Collaboration), Phys. Rev. D obtain (3.55±0.09(stat)±0.09(syst)+0.62(FF))×10−3 75, 032005 (2007). and (3.78±0.10(stat)±0.10(syst)+0.6−5(0F.4F1))×10−3, re- [24] A. Abashian et al., Nucl. Instrum. Meth. A 491, 69 −0.43 (2002). spectively. [25] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). We thank the KEKB group for excellent operation [26] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D of the accelerator, the KEK cryogenics group for effi- 74, 092004 (2006). cient solenoid operations, and the KEK computer group [27] D. Cote, S. Brunet, P. Taras and B. Viaud, Eur. Phys. and the NII for valuable computing and SINET3 net- J. C 38, 105 (2004). work support. We acknowledge support from MEXT, [28] R. J. Barlow and C. Beeston, Comput. Phys. Commun. 77, 219 (1993). JSPS and Nagoya’s TLPRC (Japan); ARC and DIISR [29] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994). (Australia); NSFC (China); MSMT (Czechia); DST (In- [30] G. Cowan, Statistical Data Analysis (Oxford University, dia); MEST, NRF, NSDC of KISTI, and WCU (Korea); Oxford, UK,1998), Chap. 11. MNiSW (Poland); MES and RFAAE (Russia); ARRS [31] C. Amsler et al. [Particle Data Group], Phys. Lett. B (Slovenia); SNSF (Switzerland); NSC and MOE (Tai- 667, 1 (2008). wan); and DOE (USA). E. Won acknowledges support [32] P. Ball and R.Zwicky,Phys. Rev.D 71, 014029 (2005). by NRF Grant No. 2009-0071072. [33] D. Asneret al. (TheHeavy Flavor Averaging Group), 7 TABLE III:Correlation coefficients of the∆B(B0 →π−ℓ+ν) statistical errors. q2(GeV2/c2) 0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26.4 0-2 1.000 -0.275 0.109 0.036 0.021 0.020 0.031 -0.005 -0.001 -0.002 -0.003 -0.004 -0.007 2-4 -0.275 1.000 -0.292 0.168 -0.008 0.026 0.029 -0.005 -0.001 -0.002 -0.004 -0.003 -0.004 4-6 0.109 -0.292 1.000 -0.229 0.156 0.049 0.101 -0.014 -0.003 -0.005 -0.004 -0.004 -0.002 6-8 0.036 0.168 -0.229 1.000 -0.255 0.123 0.064 -0.009 -0.003 -0.004 -0.003 -0.002 -0.003 8-10 0.021 -0.008 0.156 -0.255 1.000 -0.156 0.225 -0.032 -0.001 -0.004 -0.004 -0.004 -0.006 10-12 0.020 0.026 0.049 0.123 -0.156 1.000 -0.054 0.023 -0.007 -0.002 -0.006 -0.007 -0.009 12-14 0.031 0.029 0.101 0.064 0.225 -0.054 1.000 -0.239 0.007 -0.028 -0.007 -0.011 -0.013 14-16 -0.005 -0.005 -0.014 -0.009 -0.032 0.023 -0.239 1.000 -0.013 0.144 -0.030 -0.006 -0.010 16-18 -0.001 -0.001 -0.003 -0.003 -0.001 -0.007 0.007 -0.013 1.000 0.101 -0.028 -0.002 -0.004 18-20 -0.002 -0.002 -0.005 -0.004 -0.004 -0.002 -0.028 0.144 0.101 1.000 -0.167 -0.025 -0.040 20-22 -0.003 -0.004 -0.004 -0.003 -0.004 -0.006 -0.007 -0.030 -0.028 -0.167 1.000 -0.036 0.006 22-24 -0.004 -0.003 -0.004 -0.002 -0.004 -0.007 -0.011 -0.006 -0.002 -0.025 -0.036 1.000 -0.111 24-26.4 -0.007 -0.004 -0.002 -0.003 -0.006 -0.009 -0.013 -0.010 -0.004 -0.040 0.006 -0.111 1.000 TABLE IV:Correlation coefficients of the ∆B(B0 →π−ℓ+ν) systematic errors. q2(GeV2/c2) 0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26.4 0-2 1.000 -0.256 0.187 -0.162 0.297 0.181 0.224 0.114 0.104 0.112 0.084 0.020 0.069 2-4 -0.256 1.000 0.142 0.570 0.075 0.163 0.162 0.193 0.202 0.210 0.244 0.303 0.282 4-6 0.187 0.142 1.000 0.202 0.459 0.451 0.469 0.212 0.368 0.329 0.332 0.322 0.336 6-8 -0.162 0.570 0.202 1.000 -0.017 0.240 0.202 0.280 0.256 0.284 0.312 0.333 0.272 8-10 0.297 0.075 0.459 -0.017 1.000 0.375 0.633 0.156 0.321 0.290 0.258 0.244 0.231 10-12 0.181 0.163 0.451 0.240 0.375 1.000 0.433 0.214 0.328 0.332 0.252 0.284 0.230 12-14 0.224 0.162 0.469 0.202 0.633 0.433 1.000 -0.013 0.337 0.278 0.291 0.245 0.246 14-16 0.114 0.193 0.212 0.280 0.156 0.214 -0.013 1.000 0.334 0.500 0.287 0.337 0.322 16-18 0.104 0.202 0.368 0.256 0.321 0.328 0.337 0.334 1.000 0.452 0.334 0.356 0.344 18-20 0.112 0.210 0.329 0.284 0.290 0.332 0.278 0.500 0.452 1.000 0.208 0.430 0.333 20-22 0.084 0.244 0.332 0.312 0.258 0.252 0.291 0.287 0.334 0.208 1.000 0.222 0.402 22-24 0.020 0.303 0.322 0.333 0.244 0.284 0.245 0.337 0.356 0.430 0.222 1.000 0.220 24-26.4 0.069 0.282 0.336 0.272 0.231 0.230 0.246 0.322 0.344 0.333 0.402 0.220 1.000 arXiv:1010.1589v1 [hep-ex] and online update at [36] T. Becher and R. J. Hill, Phys.Lett. B 633, 61 (2006). http://www.slac.stanford.edu/xorg/hfag/. [37] M. C. Arnesen, B. Grinstein, I. Z. Rothstein, and [34] F. DeFazio and M. Neubert, JHEP 9906, 017 (1999). I. W. Stewart, Phys. Rev.Lett. 95, 071802 (2005). [35] D.BecirevicandA.B.Kaidalov,Phys.Lett.B478,417 (2000). TABLE V:The raw, unfolded yields, signal efficiencies and thepartial branchingfractions and theirrelative errors (%) from various sources in 13 binsof q2. q2(GeV2/c2) 0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26.4 0-16 16-26.4 Total Raw yields 1225.80 1788.46 1756.48 2074.77 2100.64 2136.45 2139.00 1951.65 1537.95 1070.35 1422.80 1369.84 912.27 15173.25 6313.21 21486.46 Unfolded yields 1179.95 1873.57 1662.57 2141.65 2107.29 2192.33 2243.97 2066.70 1609.10 1011.85 1452.82 1323.35 621.30 15468.02 6018.44 21486.46 Efficiencies (%) 7.66 9.35 10.44 11.13 10.89 11.89 11.78 12.50 10.33 10.47 11.74 12.63 14.98 ∆B (× 107) 117.33 152.58 121.28 146.54 147.32 140.39 145.00 125.90 118.57 73.59 94.21 79.80 31.59 1096.34 397.75 1494.09 Lepton ID 2.35 2.41 2.39 2.41 2.38 2.38 2.43 2.47 2.47 2.49 2.45 2.44 2.56 2.40 2.49 2.44 Pion ID 1.32 1.37 1.43 1.49 1.41 1.36 1.32 1.24 1.11 0.97 0.85 1.12 1.38 1.37 1.08 1.26 Tracking efficiency 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.01 2.45 2.00 2.09 2.04 γ efficiency 0.21 0.41 0.14 0.25 0.32 0.45 0.94 0.24 0.81 0.80 0.23 0.26 0.49 0.37 0.51 0.42 Vertexχ2 probability 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 B→ρℓν BF 0.58 0.60 0.59 0.46 0.74 0.60 0.41 0.57 0.48 0.47 0.41 0.41 0.33 0.44 0.42 0.43 B→ωℓν BF 0.28 0.16 0.14 0.12 0.13 0.11 0.16 0.08 0.09 0.12 0.30 0.52 1.19 0.11 0.31 0.16 B→b1ℓν BF 0.30 0.16 0.14 0.12 0.13 0.12 0.13 0.09 0.11 0.12 0.11 0.14 0.59 0.14 0.14 0.14 Vub + otherXuℓν BF 4.43 1.55 0.96 0.87 0.45 0.35 0.45 0.61 0.13 0.13 0.12 0.17 0.77 0.19 0.15 0.15 ∗ B→D ℓν BF 0.42 0.40 0.15 0.67 0.09 0.12 0.20 0.09 0.16 0.12 0.12 0.14 0.27 0.18 0.13 0.16 B→Dℓν BF 0.27 0.14 0.14 0.12 0.12 0.09 0.07 0.12 0.09 0.14 0.14 0.18 0.61 0.07 0.14 0.08 ∗∗ B→D ℓν BF 0.20 0.16 0.16 0.14 0.14 0.12 0.11 0.11 0.42 0.15 0.14 0.20 0.11 0.11 0.22 0.13 OtherXcℓν BF 0.13 0.09 0.13 0.09 0.18 0.12 0.13 0.09 0.14 0.14 0.14 0.20 0.12 0.06 0.13 0.06 B0 →π−ℓ+ν FF 3.58 1.64 1.26 1.27 1.44 1.57 1.67 1.70 1.78 1.97 1.61 1.92 4.03 0.63 0.86 0.53 B0 →ρ−ℓ+ν FF 3.59 1.73 1.51 1.47 1.64 1.82 2.04 1.89 2.01 2.30 1.99 2.50 4.98 0.72 0.95 0.60 SFparameter 1.44 0.63 1.59 1.07 2.10 2.80 2.52 2.42 2.24 4.02 2.12 3.15 4.66 0.71 1.17 0.63 B0 →D∗−ℓ+ν FF 0.51 0.64 0.60 0.89 1.54 1.77 2.51 0.81 1.18 0.56 0.51 0.42 0.98 0.48 0.34 0.36 B0 →D−ℓ+ν FF 0.33 0.09 0.20 0.30 0.24 0.12 0.26 0.20 0.20 0.09 0.16 0.11 0.11 0.10 0.08 0.08 Υ(4S)→B0B¯0 BF 2.11 1.39 2.41 3.28 3.68 3.90 3.67 2.76 2.83 4.58 3.62 5.21 2.28 1.56 1.72 1.40 Signal MC stat. error 0.48 0.15 0.23 0.27 0.30 0.24 0.28 0.28 0.38 0.52 0.58 0.74 1.97 0.12 0.39 0.15 FSR 0.31 0.58 1.03 0.88 0.93 1.24 1.18 1.43 1.01 1.23 1.15 0.78 0.66 0.45 0.56 0.37 B counting 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 Continuum q2 13.33 3.64 3.01 4.35 4.91 6.62 6.04 7.42 6.22 6.60 4.67 7.13 5.90 2.14 2.62 1.80 Total systematic error 15.63 6.23 6.14 7.19 8.04 9.56 9.27 9.60 8.71 10.30 7.80 10.63 11.23 4.78 5.26 4.54 Total statistical error 15.35 8.27 8.50 7.24 7.27 7.91 8.32 9.19 9.67 16.68 10.54 11.12 18.98 3.03 5.31 2.63 Total error 21.90 10.35 10.48 10.20 10.84 12.41 12.46 13.29 13.01 19.60 13.12 15.39 22.08 5.66 7.47 5.24 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.