ebook img

Measurement of South Pole ice transparency with the IceCube LED calibration system PDF

1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of South Pole ice transparency with the IceCube LED calibration system

Measurement of South Pole ice transparency with the IceCube LED calibration system M.G.Aartsenb,R.Abbasiaa,Y.Abdouv,M.Ackermannao,J.Adamso,J.A.Aguilaru, M.Ahlersaa,D.Altmanni,J.Auffenbergaa,X.Baiae,1,M.Bakeraa,S.W.Barwickw,V.Baumab, R.Bayg,J.J.Beattyq,r,S.Bechetl,J.BeckerTjusj,K.-H.Beckeran,M.Bellal, M.L.Benabderrahmaneao,S.BenZviaa,J.Berdermannao,P.Berghausao,D.Berleyp, 3 E.Bernardiniao,A.Bernhardad,D.Bertrandl,D.Z.Bessony,G.Binderh,g,D.Bindigan, 1 0 M.Bissoka,E.Blaufussp,J.Blumenthala,D.J.Boersmaam,S.Bohaichukt,C.Bohmah, 2 D.Bosem,S.Bo¨serk,O.Botneram,L.Brayeurm,A.M.Browno,R.Bruijnx,J.Brunnerao, n S.Buitinkm,M.Carsonv,J.Caseye,M.Casierm,D.Chirkinaa,5,∗,B.Christyp,K.Clarkal, a F.Clevermanns,S.Cohenx,D.F.Cowenal,ak,A.H.CruzSilvaao,M.Danningerah, J J.Daughheteee,J.C.Davisq,C.DeClercqm,S.DeRidderv,P.Desiatiaa,M.deWithi, 2 T.DeYoungal,J.C.D´ıaz-Ve´lezaa,M.Dunkmanal,R.Eaganal,B.Eberhardtab,J.Eischaa, 2 R.W.Ellsworthp,S.Eulera,P.A.Evensonae,O.Fadiranaa,A.R.Fazelyf,A.Fedynitchj, J.Feintzeigaa,T.Feuselsv,K.Filimonovg,C.Finleyah,T.Fischer-Waselsan,S.Flisah, ] M A.Franckowiakk,R.Frankeao,K.Frantzens,T.Fuchss,T.K.Gaisserae,J.Gallagherz, L.Gerhardth,g,L.Gladstoneaa,T.Glu¨senkampao,A.Goldschmidth,G.Golupm, I . J.A.Goodmanp,D.Go´raao,D.Grantt,A.Großad,M.Gurtneran,C.Hah,g,A.HajIsmailv, h p A.Hallgrenam,F.Halzenaa,K.Hansonl,D.Heeremanl,P.Heimanna,D.Heinena,K.Helbingan, - R.Hellauerp,S.Hickfordo,G.C.Hillb,K.D.Hoffmanp,R.Hoffmannan,A.Homeierk, o K.Hoshinaaa,W.Huelsnitzp,2,P.O.Hulthah,K.Hultqvistah,S.Hussainae,A.Ishiharan, r t E.Jacobiao,J.Jacobsenaa,G.S.Japaridzed,K.Jeroaa,O.Jlelativ,B.Kaminskyao,A.Kappesi, s a T.Kargao,A.Karleaa,J.L.Kelleyaa,J.Kirylukai,F.Kislatao,J.Kla¨san,S.R.Kleinh,g, [ J.-H.Ko¨hnes,G.Kohnenac,H.Kolanoskii,L.Ko¨pkeab,C.Kopperaa,S.Kopperan, 1 D.J.Koskinenal,M.Kowalskik,M.Krasbergaa,G.Krollab,J.Kunnenm,N.Kurahashiaa, v T.Kuwabaraae,M.Labarem,H.Landsmanaa,M.J.Larsonaj,M.Lesiak-Bzdakai,J.Leutead, 1 J.Lu¨nemannab,J.Madsenag,R.Maruyamaaa,K.Masen,H.S.Matish,F.McNallyaa, 6 K.Meagherp,M.Merckaa,P.Me´sza´rosak,al,T.Meuresl,S.Miareckih,g,E.Middellao,N.Milkes, 3 J.Millerm,L.Mohrmannao,T.Montaruliu,3,R.Morseaa,R.Nahnhauerao,U.Naumannan, 5 H.Niederhausenai,S.C.Nowickit,D.R.Nygrenh,A.Obertackean,S.Odrowskiad,A.Olivasp, . 1 M.Olivoj,A.O’Murchadhal,L.Paula,J.A.Pepperaj,C.Pe´rezdelosHerosam,C.Pfendnerq, 0 D.Pieloths,N.Pirkao,J.Posseltan,P.B.Priceg,G.T.Przybylskih,L.Ra¨dela,K.Rawlinsc, 3 1 P.Redlp,E.Resconiad,W.Rhodes,M.Ribordyx,M.Richmanp,B.Riedelaa,J.P.Rodriguesaa, : C.Rottq,T.Ruhes,B.Ruzybayevae,D.Ryckboschv,S.M.Sabaj,T.Salamehal,H.-G.Sanderab, v M.Santanderaa,S.Sarkaraf,K.Schattoab,M.Scheela,F.Scheriaus,T.Schmidtp,M.Schmitzs, i X S.Schoenena,S.Scho¨nebergj,L.Scho¨nherra,A.Scho¨nwaldao,A.Schukrafta,L.Schultek, r O.Schulzad,D.Seckelae,S.H.Seoah,Y.Sestayoad,S.Seunarineag,C.Sherematat, a M.W.E.Smithal,M.Soirona,D.Soldinan,G.M.Spiczakag,C.Spieringao,M.Stamatikosq,4, T.Stanevae,A.Stasikk,T.Stezelbergerh,R.G.Stokstadh,A.Sto¨ßlao,E.A.Strahlerm, R.Stro¨mam,G.W.Sullivanp,H.Taavolaam,I.Taboadae,A.Tamburroae,S.Ter-Antonyanf, S.Tilavae,P.A.Toaleaj,S.Toscanoaa,M.Usnerk,D.vanderDrifth,g,N.vanEijndhovenm, A.VanOverloopv,J.vanSantenaa,M.Vehringa,M.Vogek,M.Vraeghev,C.Walckah, T.Waldenmaieri,M.Wallraffa,R.Wassermanal,Ch.Weaveraa,M.Wellonsaa,C.Wendtaa, S.Westerhoffaa,N.Whitehornaa,K.Wiebeab,C.H.Wiebuscha,D.R.Williamsaj,H.Wissingp, M.Wolfah,T.R.Woodt,C.Xuae,D.L.Xuaj,X.W.Xuf,J.P.Yanezao,G.Yodhw,S.Yoshidan, 1 P.Zarzhitskyaj,J.Ziemanns,S.Zierkea,A.Zillesa,M.Zollah aIII.PhysikalischesInstitut,RWTHAachenUniversity,D-52056Aachen,Germany bSchoolofChemistry&Physics,UniversityofAdelaide,AdelaideSA,5005Australia cDept.ofPhysicsandAstronomy,UniversityofAlaskaAnchorage,3211ProvidenceDr.,Anchorage,AK99508,USA dCTSPS,Clark-AtlantaUniversity,Atlanta,GA30314,USA eSchoolofPhysicsandCenterforRelativisticAstrophysics,GeorgiaInstituteofTechnology,Atlanta,GA30332,USA fDept.ofPhysics,SouthernUniversity,BatonRouge,LA70813,USA gDept.ofPhysics,UniversityofCalifornia,Berkeley,CA94720,USA hLawrenceBerkeleyNationalLaboratory,Berkeley,CA94720,USA iInstitutfu¨rPhysik,Humboldt-Universita¨tzuBerlin,D-12489Berlin,Germany jFakulta¨tfu¨rPhysik&Astronomie,Ruhr-Universita¨tBochum,D-44780Bochum,Germany kPhysikalischesInstitut,Universita¨tBonn,Nussallee12,D-53115Bonn,Germany lUniversite´LibredeBruxelles,ScienceFacultyCP230,B-1050Brussels,Belgium mVrijeUniversiteitBrussel,DienstELEM,B-1050Brussels,Belgium nDept.ofPhysics,ChibaUniversity,Chiba263-8522,Japan oDept.ofPhysicsandAstronomy,UniversityofCanterbury,PrivateBag4800,Christchurch,NewZealand pDept.ofPhysics,UniversityofMaryland,CollegePark,MD20742,USA qDept.ofPhysicsandCenterforCosmologyandAstro-ParticlePhysics,OhioStateUniversity,Columbus,OH43210, USA rDept.ofAstronomy,OhioStateUniversity,Columbus,OH43210,USA sDept.ofPhysics,TUDortmundUniversity,D-44221Dortmund,Germany tDept.ofPhysics,UniversityofAlberta,Edmonton,Alberta,CanadaT6G2G7 uDe´partementdephysiquenucle´aireetcorpusculaire,Universite´deGene`ve,CH-1211Gene`ve,Switzerland vDept.ofPhysicsandAstronomy,UniversityofGent,B-9000Gent,Belgium wDept.ofPhysicsandAstronomy,UniversityofCalifornia,Irvine,CA92697,USA xLaboratoryforHighEnergyPhysics,E´colePolytechniqueFe´de´rale,CH-1015Lausanne,Switzerland yDept.ofPhysicsandAstronomy,UniversityofKansas,Lawrence,KS66045,USA zDept.ofAstronomy,UniversityofWisconsin,Madison,WI53706,USA aaDept.ofPhysicsandWisconsinIceCubeParticleAstrophysicsCenter,UniversityofWisconsin,Madison,WI53706, USA abInstituteofPhysics,UniversityofMainz,StaudingerWeg7,D-55099Mainz,Germany acUniversite´deMons,7000Mons,Belgium adT.U.Munich,D-85748Garching,Germany aeBartolResearchInstituteandDepartmentofPhysicsandAstronomy,UniversityofDelaware,Newark,DE19716, USA afDept.ofPhysics,UniversityofOxford,1KebleRoad,OxfordOX13NP,UK agDept.ofPhysics,UniversityofWisconsin,RiverFalls,WI54022,USA ahOskarKleinCentreandDept.ofPhysics,StockholmUniversity,SE-10691Stockholm,Sweden aiDepartmentofPhysicsandAstronomy,StonyBrookUniversity,StonyBrook,NY11794-3800,USA ajDept.ofPhysicsandAstronomy,UniversityofAlabama,Tuscaloosa,AL35487,USA akDept.ofAstronomyandAstrophysics,PennsylvaniaStateUniversity,UniversityPark,PA16802,USA alDept.ofPhysics,PennsylvaniaStateUniversity,UniversityPark,PA16802,USA amDept.ofPhysicsandAstronomy,UppsalaUniversity,Box516,S-75120Uppsala,Sweden anDept.ofPhysics,UniversityofWuppertal,D-42119Wuppertal,Germany aoDESY,D-15735Zeuthen,Germany Abstract The IceCube Neutrino Observatory, approximately 1 km3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing throughor created in the ice. To realize the full potential of the de- tector, the properties of light propagation in the ice in and around the detector must be well understood. Thisreportpresentsa new methodoffitting the modelof lightpropagationin the 2 icetoadatasetofin-situlightsourceeventscollectedwithIceCube.Theresultingsetofderived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presentedandacomparisonofIceCubedatawithsimulationsbasedonthenewmodelisshown. 1. Introduction IceCubeisacubic-kilometer-scalehigh-energyneutrinoobservatorybuiltatthegeographic SouthPole[1](seeFig.1).AprimarygoalofIceCubeistoelucidatethemechanismsforproduc- tionofhigh-energycosmicraysbydetectinghigh-energyneutrinosfromastrophysicalsources. IceCube uses the 2.8 km thick glacial ice sheet as a medium for producing Cherenkov light emittedbychargedparticlescreatedwhenneutrinosinteractintheiceornearbyrock. Neutrino interactionscancreatehigh-energymuons,electronsortauleptons,whichmustbedistinguished fromabackgroundofdowngoingatmosphericmuonsbasedonthepatternofemittedCherenkov light. Thislightisdetectedbyanembeddedarrayof5160opticalsensors(digitalopticalmod- ules, orDOMs forshort), 4680of which are deployedat depths of 1450- 2450m andspaced 17mapartalong78verticalcables(strings).Thestringsarearrangedinatriangularlatticewith ahorizontalspacingofapproximately125m.Theremaining480sensorsaredeployedinamore compactgeometryformingthe centerof the DeepCorearray [2]. The IceCubeopticalsensors areremotely-controlledautonomousdetectionunitswhichdigitizethedata. Theyincludelight- emittingdiodes(LEDs)whichmaybeusedasartificialin-situlightsources. AlsoshowninFig. 1 is the location of the AMANDA-II neutrino telescope. AMANDA-II was the precursor for IceCubeandwascomposedof677opticalsensorsorganizedalong19strings,withmostofthe sensors located at depthsof 1500to 2000m. It operatedas a part of the IceCube observatory untilitwasdecommissionedinMay2009. Cherenkovphotonsareemittedwith a characteristicwavelengthdependenceof1/λ2 in the wavelength range of 300-600 nm, which includes the relevant sensitivity region of the photo- sensors. Photonsareemittedinaconearoundthedirectionofparticlemotionwithanopening angle,determinedbythespeedoftheparticleandrefractiveindexoftheice[3],ofabout41 for ◦ relativisticparticles. Asthephotonspropagatefromthepointofemissiontothereceivingsen- sor,theyareaffectedbyabsorptionandscatteringintheice. Thesepropagationeffectsmustbe consideredforbothsimulationandreconstructionofIceCubedataandthusneedtobecarefully modeled.Theimportantparameterstodescribephotonpropagationinatransparentmediumare: theaveragedistancetoabsorption,theaveragedistancebetweensuccessivescattersofphotons, andtheangulardistributionofthenewdirectionofaphotonateachgivenscatteringpoint. This workpresentsanew,global-fitapproachwhichachievesanimproveddescriptionofexperimental data. To determine the ice parameters, dedicated measurementsare performedwith the IceCube detector. PhotonsareemittedbytheLEDsinDOMsandrecordedbyotherDOMs,assketched Correspondingauthor ∗ 1PhysicsDepartment,SouthDakotaSchoolofMinesandTechnology,RapidCity,SD57701,USA 2LosAlamosNationalLaboratory,LosAlamos,NM87545,USA 3alsoSezioneINFN,DipartimentodiFisica,I-70126,Bari,Italy 4NASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA [email protected] PreprinttobesubmittedtoNuclearInst.andMethodsinPhysicsResearch,A January24,2013 Figure1: TheIceCubeNeutrinoObservatory,finalconfiguration. AlsoshownistheAMANDAarray,pre- cursortoIceCube,whichendedoperationin2009. 30 122 m s bin25 s n 0 20 5 n s i15 n 217 m (x10) o ectr10 el o hot 5 p 0 1000 2000 3000 4000 5000 time from the flasher event [ ns ] Figure2: Left(a): simplifiedschematics oftheexperimental setup: theflashingsensorontheleftemits photons,whichpropagatethroughiceandaredetectedbyareceivingsensorontheright.Right(b):example photonarrivaltimedistributionsatasensorononeoftheneareststrings(122maway)andononeofthe next-to-neareststrings(217maway;histogramvaluesaremultipliedbyafactorof10forclarity). Dashed linesshowdataandsolidlinesshowsimulationbasedonthemodelofthiswork(withbestfitparameters). Thegoalofthisworkistofindthebest-fiticeparametersthatdescribethesedistributionsasobservedindata simultaneouslyforallpairsofemittersandreceivers. inFig.2a. Therecordeddataincludethetotalcharge(correspondingtothenumberofarriving photons)andphotonarrivaltimes, shownin Fig. 2b. A data set thatcoversall detectordepths wasproduced. Aglobalfitofthesedatawasperformed,andtheresultisasetofscatteringand absorptionparametersthat best describesthe fulldata set. The AMANDA Collaborationused an analysis based on separate fits to data for individual pairs of emitters and receivers [4] to 4 measuretheopticalpropertiesoftheice. Thesefits useddatatakenatverylowlightlevels, to avoidmulti-photonpileupdetectoreffects. The relevantdetectorinstrumentationis describedin Section 2 of this paper. Section 3 in- troduces the data set. The parameterization for modeling the ice surrounding the detector is describedin Section4, while Section5 discussesthe simulation. Thelikelihoodfunctionused tocomparedataandsimulationisdiscussedinSections6and7,andSection8explainshowthe searchforthebestsolutionwasperformed. Section9comparestheresultwithanindependent probeofthedustconcentrationinice[5]. Finally,Section 10discussestheuncertaintiesofthe measurement,Section11presentsdata-simulationcomparisons,andSection12summarizesthe result. 2. Instrumentation Thedataforthisanalysiswereobtainedin2008whenIceCubeconsistedof40strings,each with 60 DOMs, as shownin Fig. 3. Each of the DOMs consists of a 10” photomultipliertube (PMT)[6]facingdownwardsandseveralelectronicsboardsenclosedinaglasspressuresphere [1]. ThemainboardoftheelectronicsincludestwotypesofdigitizersforrecordingPMTwave- formsaswellastimestamping,controlandcommunications[7]. Thefirst427nsofeachwave- formisdigitizedat300megasamplespersecondbyfastATWDchips(analogtransientwaveform digitizer,see[7]),andlongerdurationsignalsarerecordedat25megasamplespersecondbythe fast ADC(fastanalog-to-digitalconverter,orfADCforshort)chips. Thesystem is capableof resolvingchargeofupto300photoelectronsper25nswithprecisionlimitedonlybytheprop- ertiesofthePMTs(i.e.,1photoelectronisresolvedwith 25%uncertaintyincharge).Boththe ∼ ATWDandfADCuse10bitsforamplitudedigitization.However,theATWDusesthreeparallel channelswithdifferentgains(withafactorofabout8between)andhasa finertimeresolution thanthefADC(roughly3.3vs.25nsbinwidth). ThemainboardcontainstwoATWDchipson eachDOM,ensuringthatawaveformcanberecordedwithonechipwhiletheotheroneisread out,thusreducingthesensordeadtime. Each DOM includes12 LEDs on a “flasherboard”that producepulsed light detectableby otherDOMslocatedupto 0.5kmaway. Theprimarypurposeofthemeasurementswith these flashersiscalibrationofthedetector. Thesecalibrationstudiesincludedeterminingthedetector geometry,verifyingthecalibrationoftimeoffsetsandthetimeresolution,verifyingthelinearity of photonintensity measurement, and extracting the opticalpropertiesof the detectorice (this paper). Dependingon the intended application, flasher pulses can be programmedwith rates from 1.2Hzto610Hz,durationsofupto70ns,andLEDcurrentsupto240mA.Thecorresponding total output from each LED ranges from below 106 to about 1010 photons. The programmed current pulse is applied to each individualLED througha high-speed MOSFET (metal-oxide- semiconductorfield-effecttransistor)driverwithaseriesresistor. Thevoltageacrosstheresistor isrecordedbytheDOM’swaveformdigitizertopreciselydefinetheonsetofeachpulse.Figure4 showslaboratorymeasurementsoftheopticaloutputtime profilesfromshortandwidepulses. Pulsesexhibitacharacteristicrise timeof3–4nsanda smallafterglow,decayingwith a 12ns timeconstant. Thenarrowestpulsesachievablehaveafullwidthathalfmaximum(FWHM)of 6ns. The wavelength spectrum has been measured for the LED light exiting the glass pressure sphere and was found to be centered at 399 nm with a FWHM of 14 nm (see Fig. 5). This wavelength was chosen to approximatethe typical wavelengthof detected Cherenkovphotons 5 600 N []y m 123450000000000 606857256169573662474057476347515758644765266457735764678458674W9594S050E z, m ---211086000000 0 38 39 -100 29 30 -2200 2010 2009 -200 21 -2400 -300 -400 -200 0 200 400 600 500 500 x [ m ] 250 0 0 run 111741 event 1407319 Figure3:Left:TopviewlayoutofIceCubeinthe40-stringconfigurationin2008. String63,forwhichthe DOMsemittedflashinglightinthestudypresentedhere,isshowninblack.Thenearest6stringsareshown inbrown. Thedashedlinesandnumbers2009and2010intheleftfigureindicatetheapproximatelocation ofthedetectorpartsdeployedduringthoseyears.Right:atypicalDOMflasherevent,DOM46onstring63 flashing.ThelargercirclesrepresentDOMsthatrecordedlargernumbersofphotons.Thearrivaltimeofthe earliestphotonineachDOMisindicatedwithcolor: earlytimesareshowninredwhilelatetimestrendto blue. Figure4: Flasherlight outputtimeprofileforpulses ofminimumandmaximumwidth. Therelative height ofthe shortpulsehasbeenscaledsotheleadingedgesarecomparable. ThismeasurementwasperformedusingasmallPMT (HamamatsuR1450)afteropticalattenuationofthepulsestofacilitatecountingofindividualphotons. (as discussed and shown in Fig. 8 below). To supplement data from the standard flashers, 16 specialDOMswereconstructedanddeployedwithLEDsthatemitat340nm,370nm,450nm, and500nm. Datafromthesespecialflasherswerenotusedintheanalysisofthispaperbutwill beusedinfutureanalysesofwavelength-dependenteffects. The12LEDsineachDOMareaimedinsixdifferentazimuthangles(with60 spacing)and ◦ alongtwodifferentzenithangles. Aftercorrectingforrefractionatinterfacesbetweenair,glass and ice, the angular emission profiles peak along the horizontal direction for the 6 horizontal LEDsand48 abovethehorizontalforthe6tiltedLEDs. Theangularspreadisreducedbythe ◦ refractionandismodeledusinga2-DGaussianprofilewithσ=10 aroundeachpeakdirection. ◦ DuringtheDOMdeploymentandfreeze-inwithintheglacialicesheet,theazimuthalorientations 6 LE(cid:6)(cid:7)(cid:8)t(cid:9)(cid:8)t(cid:10)(cid:9)(cid:0)(cid:11)t(cid:12)(cid:8)matM(cid:13)t(cid:0)m(cid:9)(cid:0)(cid:12)at(cid:8)(cid:12)(cid:0)Ð15¡C e 0.06 P(cid:0)ak399nm (cid:5)s u p r e p 0.04 s (cid:4) (cid:2)o o (cid:3) p d 0.02 (cid:2)e c (cid:2)e e D 0.00 360 380 400 420 440 Wav(cid:0)l(cid:0)ngth(nm(cid:1) Figure5: WavelengthspectrumoflightemittedforaDOMoperatingatamainboard(MB)temperatureof 15 C.The − ◦ y-axisshowstheaveragenumberofphotonsdetectedperpulseoftheLEDlight. of the DOMsare notcontrolledandare initiallyunknown. The orientationof each DOM,and therefore the initial direction of emitted light from each LED, is determined to a precision of about10 by flashing individualhorizontalLEDs and studying the light arrivaltime at the six ◦ surroundingstrings. Hereonereliesondirectlightfroman LEDfacingatargetarrivingsooner thanscatteredlightfromonefacingaway. 3. Flasherdataset The data set used in this paperincludes at least 250 flashes from each DOM on string 63. DOMswereflashedat1.2Hzinasequence,usinga70nspulsewidthandmaximumbrightness. ThesixhorizontalLEDsoneachflasherboardwereoperatedsimultaneously,creatingapattern of light with approximate azimuthal symmetry around the flasher string. Flash sequences for DOMsatdifferentdepthswereoverlappingbutweresufficientlydisplacedintimethatpulsesof observedlightwereunambiguouslyassignedtoindividualflashers. AsseeninFig.6,thereisasubstantialvariationamongthechargescollectedinDOMsatap- proximatelythesamedepthastheemitteronthesixsurroundingstrings.Someofthevariationis duetorelativedifferencesinlightyieldbetweenLEDs,andsomeisduetodifferencesindistance to,anddepthof,thesixsurroundingstrings. Otherreasonsmayincludenon-homogeneityofthe ice. The pulses corresponding to the arriving photons were extracted from the digitized wave- formsandbinnedin25nsbins,from0to5000nsfromthestartoftheflasherpulse(extracted fromthespecial-purposeATWDchanneloftheflashingDOM).Toreducethecontributionfrom saturatedDOMs(mostofwhichwereneartheflashingDOMonstring63)[6],andtominimize the effects of the systematic uncertaintyin the simulated angular sensitivity modelof a DOM, thephotondatacollectedonstring63werenotusedinthefit. ADOMbecomessaturatedwhen itishitbysomanyphotonsthatthechargeinitsdigitizedoutputisnolongerproportionaltothe numberofincidentphotons. Theangularsensitivitymodelspecifiesafractionofphotonsthataredetectedatagivenangle withrespecttothePMTaxis. ItaccountsforthenominalDOMsensitivitymeasuredinthelab, modified by the scattering in the column of re-frozenice (see Fig. 7 and furtherdiscussion in 7 3 10 ] . e . p [s 10 2 g n ri t s r a 10 f d n a r a 1 e n n o e -1 g10 r a h c -2 10 0 10 20 30 40 50 60 DOM number on string 63 Figure6: ChargecollectedbyDOMsonthesixneareststrings(121.8 126.6maway,triangles)andsix − next-to-neareststrings(211.4 217.9maway,circles),observedwhenflashingatthesamepositiononstring − 63. section5). VariationsintheangularsensitivitymodelhavealargeimpactonthesimulatedDOM responsetothephotonsarrivingalongthePMTaxis(straightintothePMTorintothebackofa DOM),whiletheresponsetophotonsarrivingfromthesidesofthePMTismuchlessaffected. 4. Six-parametericemodel This section overviews the ice parameterization introduced in [4], which in this paper is referredto as the six-parameterice model. The ice is described by a table of depth-dependent parametersb (400)anda (400)relatedtoscatteringandabsorptionatawavelengthof400nm, e dust bythe depth-dependentrelativetemperatureδτ, andbythesix globalparameters(measuredin [4]): α, κ, A, B, D, and E, which are described below. The thickness of the ice layers was somewhatarbitrarilychosento be10m. Thescatteringandabsorptioncoefficientsofeachice layerare bestinterpretedasthe averageof theirtrue valuesoverthe thicknessof the ice layer. Thechosenthicknessof10misthesameasthevaluechosenin[4]butsmallerthanthevertical DOM spacingof17m. Due tosmalldepthoffsetsbetweentheDOMsondifferentstrings, we retainatleast1receivingDOMperlayer. Thegeometricalscatteringcoefficientbdeterminestheaveragedistancebetweensuccessive scatters (as 1/b). It is often more convenientto quote the effective scattering coefficient, b = e 8 b (1 cosθ ), where θ is the deflection angle at each scatter. The absorption coefficient a · − h i determinestheaveragedistancetraveledbyaphotonbeforeitisabsorbed(as1/a). Thewavelengthdependenceofthescatteringandabsorptioncoefficientsisgivenbythefol- lowingexpressions(forwavelengthλinnm). Thepowerlawdependenceispredictedbytheo- reticalmodelsoflightscatteringindustyice. Thepowerlawdependenceonphotonwavelength was verifiedin the AMANDAstudy, usinglightsourceswith severaldifferentfrequencies[4]. Theeffectivescatteringcoefficient,withtheglobalfitparameterα,is λ α b (λ)=b (400) − . e e ·(cid:18)400(cid:19) The totalabsorptioncoefficientisthe sum of two components,onedueto dustand theothera temperaturedependentcomponentforpureice[4]: λ κ a(λ)=a (λ)+Ae B/λ (1+0.01 δτ), with a (λ)=a (400) − . dust − dust dust · · ·(cid:18)400(cid:19) Theparameterδτaboveisthetemperaturedifferencerelativetothedepthof1730m(center ofAMANDA): δτ(d)=T(d) T(1730m). − ThetemperatureT(K)vs.depthd(m)isparameterizedin[8]as: T =221.5 0.00045319 d+5.822 10 6 d2. − − · · · Thetworemainingglobalparameters, Dand E, weredefinedin[4]inarelationshipestab- lishingacorrelationbetweenabsorptionandscattering: a (400) 400κ D b (400)+E,but dust e · ≈ · arenotusedinthispaper. Thisworkpresentsthemeasurementofthevaluesofb (400)anda(400)basedondatataken e atawavelengthof400nmandreliesonthesix-parametericemodeldescribedabovetoextrap- olatescatteringandabsorptionforwavelengthsotherthan400nm. 5. Simulation Thedetectorresponsetoflashingeachofthe 60DOMsonstring 63generateda largedata set that required very fast simulations such that many different sets of the coefficients b (400) e anda (400)couldbecomparedefficientlywiththedata. AprogramcalledPPC(photonprop- dust agationcode,seeAppendix A),waswrittenforthispurpose. PPCpropagatesphotonsthrough icedescribedbyaselectedsetofparametervaluesfor b (400)anda (400)untiltheyreacha e dust DOMorareabsorbed.WhenusingPPC,nospecialweightingschemewasemployedexceptthat thesphericalDOMswerescaledupinradiusbyafactorof5to16, dependingontherequired timingprecision6,andthenumberofemittedphotonswasscaleddownbyafactorof52 to162, correspondingtotheincreasedareaoftheDOM. 6 Special care was taken to minimize any bias onphoton arrival times byoversizing DOMs. First, weoversize DOMsinthedirectionperpendiculartothephotondirection inordertoavoidanartificiallyreducedpropagationpath beforereachingthereceiver. Still,intheworstcase,anincreaseinsizebyafactorof16abovetothenominalDOM dimensionsmayintroduceamaximumbiasof(16 1) 16.51cm/22cm/ns=11.3nstowardsearlierarrivaltimes(for − · aDOMwithradius 16.51cmandforspeedoflightiniceof22cm/ns). However, onaveragethis errorissmaller. Anadditionalconsiderationistheoverestimatedlossofphotonsiftheywouldgetabsorbedwhenenteringanoversized DOM.ThereforeweallowthephotonstocontinuepropagatingevenafterhittinganoversizedDOM. 9 1 sitivity10-1 n e s e v -2 ati10 el r IceCube "hole ice" IceCube nominal -3 10 -1 -0.8 -0.6 -0.4-0.2 -0 0.2 0.4 0.6 0.8 1 cos(h ) Figure7: Angularsensitivity ofanIceCubeDOMwhereηisthephotonarrivalanglewithrespecttothe PMTaxis. Thenominalmodel,basedonalabmeasurement,isnormalizedto1.0atcosη = 1. Thearea underbothcurvesisthesame. 16 0.12 14 0.1 ]m 12 nce0.08 er n 10 accepta00..0046 [hotons p 68 p 4 0.02 2 0 0 250 300 350 400 450 500 550 600 650 250 300 350 400 450 500 550 600 650 wavelength [ nm ] wavelength [ nm ] Figure8:Left:opticalmoduleacceptance: fractionofphotonsarrivingfromadirectionparalleltothePMT axis(atcosη = 1)thatarerecorded. Notethattheacceptance hereismeanttoincludetheglassandgel transmission and the PMTquantum and collection efficiencies. Theacceptance is substantially lower at thepeakthantheroughly20-25%quantumefficiencyofthePMTalonebecauseitisgivenwithrespectto thephotonsincidentonacross-sectionofaDOM,whichislargerthanthatofaPMT.Right: numberof Cherenkovphotonsemittedbyonemeterofthesimulated baremuontrack(i.e.,muonwithoutsecondary cascades),convolvedwiththeopticalmoduleacceptance. Theintegralunderthecurveis2450photons. The relative angular sensitivity of the IceCube DOM was modeled according to the “hole ice”descriptionof[9],whichisshowninFig.7. The“holeice,”acolumnoficeapproximately 30cminradiusimmediatelysurroundingtheIceCubestring,isdescribedbytakingintoaccount an increased amount of scattering (with effective scattering length of 50 cm) via an empirical modificationtotheeffectiveangularsensitivitycurveofthereceivingDOM. TheDOMacceptanceisdefinedasthefractionofphotonsincidentontothecross-sectionofa DOMthatcauseasignalinthePMT.Thisfractionaccountsforthelossesduetotheglassandgel transmission,andincludesPMTquantumandcollectionefficiencies.Itwascalculatedaccording to[6]foraDOMofradius16.51cm. At400nmtheDOMacceptanceforthephotonsarriving atthePMTalongitsaxisis13.15%. Thiscorrespondstothenominalangularsensitivitycurve 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.