ebook img

Measurement of heavy-flavour production as a function of multiplicity in pp and p-Pb collisions with ALICE PDF

0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of heavy-flavour production as a function of multiplicity in pp and p-Pb collisions with ALICE

Nuclear Physics A NuclearPhysicsA00(2015)1–4 Measurement of heavy-flavour production as a function of multiplicity in pp and p–Pb collisions with ALICE RiccardoRusso(fortheALICECollaboration) 5 1 DipartimentodiFisica,Universita’degliStudidiTorinoandINFN,viaPietroGiuria1,10125Torino 0 2 n a J 6 Abstract 2 ] partiIcnlethmesueltipprloiccieteydiinngpsprceosulllitssioanrespatre√sesnt=ed7fTroemVathnedmp–ePasbucreomlliesniotnosfaotpe√nsNhNea=v5y.0-fl2aTvoeVurrpercoodrudcetdiowniathstahefuAncLtIioCnEodfectehcatrogredin- x 2010and2013,respectively. D0,D+andD∗+mesonsarereconstructedfromtheirhadronicdecaychannelsinthecentralrapidity e region,andtheirproductionyieldsaremeasuredinvariousmultiplicityandp intervals. - T l Theper-eventyieldsofDmesonsinthevariousmultiplicityintervals,normalizedtotheirmultiplicity-integratedvalue,and c theirevolutionwith p aremeasuredforppandp–PbcollisionstostudythecontributionofMulti-PartonInteractions(MPIs)to u T opencharmproductioninthetwosystems. ThenuclearmodificationfactorofDmesonsinp–Pbcollisions,definedastheratio n oftheD-mesonyieldsinp–Pbandppcollisionsscaledbytheaveragenumberofbinarycollisions(cid:104)N (cid:105),isdiscussedintermsof [ coll itsdependenceontheeventactivity. Severalexperimentalestimatorsoftheeventactivityareusedinordertoassesstheroleof 1 kinematicbiases. v 5 Keywords: QGP,Heavy-flavour,Multi-PartonInteraction 2 4 1. Introduction 6 0 The measurement of heavy-flavour production as a function of the multiplicity of charged particles produced in . 1 hadroniccollisionsissensitivetotheinterplaybetweenhardandsoftcontributionstoparticleproductionandcould 0 giveinsightintotheroleofMulti-PartonInteractions(MPIs,i.e.severalhardpartonicinteractionsoccuringinasingle 5 collisionbetweentwonucleons). 1 ParticleproductionattheLHCisexpectedtohaveasubstantialcontributionfromMPIsinpp(p–Pb)collisions, : v wherethehighestmultiplicityvaluesobservedaresimilartotheonesofperipheralCu–Cu(Pb–Pb)collisionsatRHIC Xi (LHC).MeasurementsbytheCMSCollaborationofjetandunderlyingeventpropertieshaveshownbetteragreement with models including MPIs [1]. Measurements by the ALICE Collaboration of minijets point to an increase of r a MPIswithincreasingcharged-particlemultiplicity[2]. Intheheavy-flavoursectorseveralmeasurementshavebeen performed[3,4].InparticularALICEfoundanapproximatelylinearincreaseofJ/ψyieldasafunctionofmultiplicity √ inppcollisionsat s=7TeV[5]. Moreoveritisinterestingtocompareheavy-flavourproductioninp–Pbcollisionswithppresultstotestwhether the yield and the transverse momentum distributions follow a scaling with the number of binary nucleon–nucleon collisions in the p–Pb collision. This scaling is expected for particles produced in hard (high virtuality) partonic scattering processes in the absence of nuclear effects in the initial or in the final state of the p–Pb collision. This isstudiedbymeasuringthenuclearmodificationfactorR , definedastheratioofthe p -differentialcrosssection pPb T measuredinp–PbcollisionstothatmeasuredinppcollisionsscaledbythemassnumberAofthePbnucleus. The D-mesonR inminimumbiasp–Pbcollisionswasfoundconsistentwithunityforp >1GeV/cwithinuncertainties pPb T 1 Author1etal./NuclearPhysicsA00(2015)1–4 2 ofabout20%[6],showingthatColdNuclearMatter(CNM)effects(nuclearmodificationsofthepartondistribution functions (PDF), k broadening, energy loss in cold nuclear matter) do not strongly affect charm-quark production T in p–Pb collisions [7]. It is interesting to measure the nuclear modification factor in p–Pb collisions in classes of theeventactivity,becausethelatterisrelatedtothecollisioncentrality(i.e. impactparameteraswellasthenumber of participating nucleons and binary collisions) of the p–Pb collisions. The measurement of the R requires to pPb estimatetheaveragenumberofbinarycollisions(cid:104)N (cid:105)fortheeventactivityintervalsusedintheanalysis. ALICE coll hasidentifiedinp–Pbcollisionsseveralsourcesthatcaninduceabiasinthecentralitydeterminationbasedonparticle multiplicitymeasurement[8,9]. Thisbiashavebeenobservedinthemeasurementofthenuclearmodificationfactor ofchargedparticlesinp–Pbcollisionsinmultiplicityclasses[9]. Thisworkinvestigateswhethersuchabiasisalso presentforDmesons. TheresultsarepresentedinformoftheD-mesonself-normalizedyieldinppandp–Pbcollisions,definedas d2ND/dydp Ymult/((cid:15)mult) T = (1) (cid:104)d2ND/dydp (cid:105) Ytot/((cid:15)tot×(cid:15)trigger) T where Ymult is the D-meson per-event yield in multiplicity intervals, Ytot the multiplicity integrated per-event yield, (cid:15) arethecorrespondingreconstructionandselectionefficienciesand(cid:15)trigger isthetriggerefficiency(onlyrelevantin pp). Furthermore,thebinaryscalingisstudiedinseveraleventactivityclassesviatheQ ratio,defiledas: pPb dNpPb/dp dNpPb/dp QV0A(p )= mult T Qmult(p )= mult T (2) pPb T (cid:104)NGlauber(cid:105)dNpp/dp pPb T (cid:104)Nmult(cid:105)dNpp/dp coll T coll T for the V0A and ZNA event activity estimators respectively, defined in the next section. These two observables represent different ways to study the multiplicity dependence of D-meson production in p–Pb collisions: the self- normalizedyieldsaremorefocusedonthestudyofMPIs,whileQ reflectsthescalingofcharmproductioninp–Pb pPb collisionsrelativetoppcollisions. 2. Datasampleandanalysisstrategy TheALICEdetectorisdescribedin[10]. Thedatasamplesanalyzedarefromthe2010pprun(300·106eventsat √ √ s=7TeV)andthe2013p–Pbrun(100·106eventsat s =5.02TeV).Detailsonthetriggerandeventselections NN canbefoundin[6,11]. Eventsaredividedineventactivityclasses. Threeeventactivityestimatorshavebeenused: • N : numberoftracksegmentsreconstructedintheSiliconPixelDetector(SPD-twoinnermostlayersof tracklets theInnerTrackingSystem-|η|<0.9); • V0A: signal amplitude of the A-side VZERO scintillator (2.8 < η < 5.1 - Pb going direction for p–Pb colli- sions); • ZNA:energyfromnuclearfragmentsintheA-sideZeroDegreeNeutronCalorimeter(112.5mfrominteraction point-Pbgoingdirectionforp–Pbcollisions). Theself-normalizedyieldsareobtainedinN intervals,whiletheQ analysisadoptsV0AandZNAmultiplicity tracklets pPb classes (0-20%, 20-40%, 40-60%, 60-100%). The analysis is based on the reconstruction of D mesons in their hadronic decay channels (D0 → K−π+, D+ → K−π+π+, D∗+ → D0π+) in the ALICE central barrel (|η| <0.9), exploitingtheexcellentvertexresolutionandparticleidentificationcapabilitiesoftheALICEdetectorasdescribedin [12]. D-mesonefficiencycorrectionsinppandp–PbcollisionsaredeterminedwithMonteCarlosimulationsbased on PYTHIA 6.4.21 and HIJING event generators. A fraction of the total D-meson yield comes from the decay of Bmesons. Forthe Q analysisthiscontributionwasestimatedbasedonFONLLpQCDcalculationsasdescribed pPb in [12], while for the self-normalized yield analysis no subtraction has been performed, assuming that the fraction of feed-down D mesons does not depend on multiplicity and cancels in the ratio of Eq. 1. A deviation from this assumption has been considered to estimate the corresponding systematic uncertainty. The pp and p–Pb corrected yieldshavebeenusedtocomputethe Q asinEq. 2. Theaveragevaluesof N inthefourV0AandZNAevent pPb coll activityclasseshavebeenevaluatedasfollows: • V0A: the (cid:104)NGlauber(cid:105) values have been obtained for each V0A multiplicity interval with the approach used for coll Pb–Pbcollisions,i.e. viaafittotheV0AmultiplicitydistributionbasedontheGlaubermodelforthecollision geometryandatwo-componentmodelforparticleproduction[13]. 2 Author1etal./NuclearPhysicsA00(2015)1–4 3 • ZNA: the (cid:104)Nmult(cid:105) values have been calculated by scaling the (cid:104)N (cid:105) in minimum-bias p–Pb collisions by the part part ratiobetweentheaveragemultiplicitydensitymeasuredatmid-rapidityforagivenZNenergyeventclassand theonemeasuredinminimumbiascollisions. (cid:104)Nmult(cid:105)isobtainedas(cid:104)Nmult(cid:105)=(cid:104)Nmult(cid:105)-1. coll coll part p(cid:156)T14 ALICE Preliminary p(cid:156)T14 ALICE Preliminary D/dyd 12 D0 mppe, sos n=, 7|y Tlaeb|V<0.5 /dydN 12 p-PbA vesrNaNg e= D 50.,0 D2+ ,T De*V+ meson 2Nd) / (cid:157)T180 22p<<-PppbTT,<< 44s GGNNee =VV //5cc.02 TeV 2d) / p(cid:157)T180 JJ|y//(cid:115)(cid:115)lab |(cid:65)(cid:65)<0 .µµ5++,µµ 2--,,< -2p4.T5.0<<<4yy Glalabeb<<V4-/.20c.,5 p, Tp>T0>0 p d d y y 6 d 6 d / D/ N N 4 2d 4 2d ( ( 2 +7%/-3% (3.1%) in pp (p-Pb) 2 normalization unc. not shown 6% (3%) unc. in pp (p-Pb) ±3.1% normalization unc. not shown on dN/d(cid:100) / < dN/d(cid:100) > not shown ± 3% unc. on dN/d(cid:100) / < dN/d(cid:100) > not shown n unc. 00..42 B fraction hypothesis in pp and p-Pb: × 1/2 (2) at low (high) multiplicity n unc. 00..42 B fraction hypothesis: × 1/2 (2) at low (high) multiplicity ow 0 ow 0 d d d- -0.2 d- -0.2 ee -0.4 ee -0.4 B f 0 1 2 3 4 5 6 B f 0 1 2 3 4 5 6 dN /d(cid:100) / (cid:157)dN /d(cid:100)(cid:156) dN /d(cid:100) / (cid:157)dN /d(cid:100)(cid:156) ALI−PREL−76733 ch ch ALI−PREL−76649 ch ch Figure1.Left:self-normalizedD0yieldsfor2<pT<4GeV/casafunctionofmultiplicityforppandp–Pbcollisions.Right:averageD0,D+and D∗+self-normalizedyieldscomparedtoJ/ψintherapidityintervals2.5<ylab<4.0and−4.0<ylab<−2.5forp–Pbcollisions 3. Results Theself-normalizedyieldshavebeenmeasuredforpromptD0,D+ andD∗+ mesons. Theyareshownincharged- particle multiplicity (dN /dη) intervals (Fig.1), since a simulation study has shown that N /(cid:104)N (cid:105) equals ch tracklets tracklets dN /dη/(cid:104)dN /dη(cid:105). ForalltheD-mesonspecies,theyieldincreaseswithcharged-particlemultiplicity. No p depen- ch ch T denceofthistrendhasbeenobserved. TheleftpanelofFig.1showsD0self-normalizedyieldsforppandp–Pbcollisions.Bothsystemsshowanincrease oftheyield withcharged-particlemultiplicity. Thetrendforppcollisions canbeinterpretedasbeing duetostrong hadronicactivityconnectedwithcharmproductionandtothepresenceofMPIsaffectingthehardmomentumscale relevantforheavy-quarkproduction. Inthep–Pbcase,itshouldbeconsideredthathigh-multiplicityeventscanalso originate from a higher number of nucleon-nucleon collisions in the nuclear interaction. The right panel of Fig.1 shows the average values of self-normalized yields for D0, D+ and D∗+ and J/ψ in p–Pb collisions. J/ψ yields have been measured in 2.5< y <4.0 (p-going direction) and −4.0 < y < −2.5 (Pb-going direction) and they show lab lab anincreasewithcharged-particlemultiplicity. HoweveraquantitativecomparisonofJ/ψandD-mesonyieldshasto takeintoaccounttherapiditydependenceofcoldnuclearmattereffectssuchasgluonshadowing,thatdependsonthe Bjorkenxvalueofthepartoninvolvedintheprocessproducingcharm,andenergylossincoldnuclearmatter[14]. The average value of Q for prompt D0 and D∗+ mesons is shown in the left panels of Figs. 2 and 3 for the pPb V0AandZNAestimators,respectively. AbiascanbeobservedintheV0Ameasurement,wherethelow-multiplicity Q is below unity in all six p bins, while the ZNA measurement is compatible with unity within systematic and pPb T statisticaluncertaintiesatbothlowandhigheventactivity. These Q resultsarecomparedwiththeonesobtained pPb for charged particles, shown in the right panels of Figs. 2 and 3. These comparisons demonstrate that the Q of pPb high p (>8GeV/c)chargedparticlesfeatureasimilarpatternastheoneofDmesons, confirmingthepresenceof T abiasintheV0A-baseddeterminationof(cid:104)NGlauber(cid:105)thatisreducedusingtheZNAestimator. Thisindicatesthatthe coll determinationof(cid:104)N (cid:105)dependsontherapidityregioninwhichtheeventactivitymeasurementisperformed. With coll theleastbiasedestimator(ZNA)weobserveQ beingcompatiblewithunityforallmultiplicitesand p . Detailson pPb T theN biashavebeenpresentedatthisconferenceandtheyaredescribedin[9]. coll In conclusion, the D-meson self-normalized yields show an increasing trend with increasing charged-particle multiplicity.Thetrendsobservedforppandp–Pbcollisionsarecompatiblewithinuncertaintes.TheQ resultsforD pPb mesonsarequalitativelysimilartotheonesobtainedforhighp chargedparticles.InparticulartheZNAmeasurement T shows no multiplicity dependence of the D-meson production in p–Pb collisions relative to binary scaling of pp productioncrosssectionswhileV0Aresultsshowasimilarbiasasobservedforhigh-p chargedparticles. 3 T Author1etal./NuclearPhysicsA00(2015)1–4 4 References [1] V.Khachatryanetal.[TheCMSCollaboration],Eur.Phys.J.C73(2013)2674 [2] A.Abelevetal.[ALICECollaboration],JHEP09(2013)049 [3] MAguilar-Benitez[NA27Collaboration],Z.Phys.C41(1988)191 [4] R.Aaijetal.[LHCbCollaboration],J.HighEnergyPhys.,06(2012)141 [5] A.Abelevetal.[ALICECollaboration],Phys.LettB712(2012)165-175 [6] A.Abelevetal.[ALICECollaboration],arXiv:1405.3452 [7] S.LifortheALICECollaboration,theseproceedings [8] A.MorschfortheALICECollaboration,arXiv:1309.5525 [9] A.ToiafortheALICECollaboration,theseproceedings [10] A.Abelevetal.[ALICECollaboration],JINST3(2008)S08002 [11] A.Abelevetal.[ALICECollaboration],JHEP1207(2012)191 [12] R.RussofortheALICECollaboration,arXiv:1305.3435 [13] A.Abelevetal.[ALICECollaboration],Phys.Rev.C88(2013)044909 [14] J.MartinBlancofortheALICECollaboration,theseproceedings 4 Author1etal./NuclearPhysicsA00(2015)1–4 5 pt D 3 ALICE Preliminary V0A Multiplicity V0AQpPb2.5 Vp0-APb AsLNINC E= 5P.R02E LTIeMVINARY 50--150%% 4600--6800%% V0A promQpPb2.5 Avper-aPgbe, D 0s, NDN* += - 05.9.06 2< TyecmVs <0.04Event Cla06s-02s-e01s%0 (0P%b-side) 2 SSyysstt.. oonn n(cid:157) oTrpmA a(cid:156)liz ation 1200--2400%% 80-100% 2 1.5 1.5 1 1 0.5 0.5 Filled markers : pp rescaled reference Open markers: pp p-extrapolated reference T 0 5 10 15 20 25 30 0 0 5 10 15 20 25 30 p (GeV/c) p (GeV/c) ALI−PREL−79740 T ALI−PREL−79671 T Figure2. Left:averagepTdifferentialQpPbofD0andD∗+mesonsinthe0-20%and60-100%V0Aeventactivityclasses. Right: pTdifferential QpPbofchargedhadronsinsevenV0Aeventactivityclasses. prompt D2.35 p-APLbI,C Es NPNr e=l i5m.0in2a rTyeV ZN Ener0gy-2 E0v%ent Class multQpPb 111...468 Cph aPrAbgL e IdC EZsp NNaPNr R+t i= EcN lL5emcI.Mso0ul ll2I tN| TAηeR| V<Y 0.3 12 5000 1245000%%%% 846000 1680000%%% mult QpPb Average D0, D*+ -0.96 < ycms <0.04 60-100% 1.2 2 1 0.8 1.5 0.6 0.4 Syst. on 〈 T 〉 pA 1 0.2 Syst. on normalization Syst. on dN/dp T 1.15 0.5 1.1 1.05 Filled markers : pp rescaled reference 1 Open markers: pp pT-extrapolated reference 0.95 0 0.9 0 5 10 15 20 25 30 0.85 p (GeV/c) 0 5 10 15 20 25 30 ALI−PREL−79715 T ALI−PREL−80855 pT (GeV/c) Figure3. Left: averagepTdifferentialQpPbofD0andD∗+mesonsinthe0-20%and60-100%ZNAeventactivityclasses. Right: pTdifferential QpPbofchargedhadronsinsevenZNAeventactivityclasses. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.