ebook img

Measurement of Electron Neutrino Appearance with the MINOS Experiment PDF

343 Pages·2009·4.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of Electron Neutrino Appearance with the MINOS Experiment

FER MIL AB-T HESIS-2009-17 A Meas ure me nt of Electr o n Ne utri no A p peara nce wit h t he MI N O S Ex peri me nt A dissertation presented by Joshua Ada m Alpern Boeh m to The Depart ment of Physics in partial fulfill ment ofthe require ments forthe degree of Doctor of Philosophy inthe subject of Physics Harvard University Ca mbridge, Massachusetts May 2009 c 2009 - Joshua Ada m Alpern Boeh m All rights reserved. Thesis advisor Author Prof .Gary Feld man Joshua Ada m Alpern Boeh m A Meas ure me nt of Electro n Ne utri no Ap peara nce wit h t he MI N O S Ex peri me nt A bstr act MI N OS is a long-baseline t wo-detector neutrino oscillation experi ment that uses a high intensity muon neutrino bea mtoinvestigatethe pheno menon of neutrino oscillations. By measuringthe neu- trinointeractionsin a detector nearthe neutrino source and again 735 k m a wayfro mthe production site, itis possible to probethe para meters governing neutrino oscillations. The majority ofthe ν µ oscillateto ν but a s mallfraction may oscillateinsteadto ν . Thisthesis presents a measure ment of τ e theν appearancerateinthe MI N OSfar detector usingthe firstt wo years of exposure. Methodsfor e constrainingthe far detector backgrounds usingthe near detector measure ments are discussed and atechnique for esti matingthe uncertainty onthe background and signal selection are developed. A 1.5σ excess overthe expected background rateis found providing a hint of ν appearance. e iii C o nt e nts T itle Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv Ackno wledg ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi 1 Introduction 1 2 Neutrino Physics 4 2.1 History ofthe Neutrino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 The Weak Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 The S U (2) Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Mass Ter ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Fer mion Representationin S U (2) . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 Glasho w- Weingberg-Sala m Theory . . . . . . . . . . . . . . . . . . . . . 13 2.2.5 Flavor Changing Interactions. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.6 Neutrino Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Ti me Evolution ofthe Neutrino . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Conversionto Flavor Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 Three Flavor Neutrino Mixing . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.4 Matter Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.5 Neutrino Oscillation Analysis Probabilities . . . . . . . . . . . . . . . . . 27 2.4 Evidence for Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.1 Solar Neutrino Oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.2 At mospheric Neutrino Oscillations. . . . . . . . . . . . . . . . . . . . . . 31 2.4.3 Measure ments of θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 13 3 The MI N OS Experi ment 36 3.1 Nu MI Bea m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The MI N OS Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 iv Contents v 3.2.2 Scintillator Asse mbly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.3 Detector Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.4 Triggering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Detector Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 MI N OS Monte Carlo Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.1 Si mulation ofthe Bea m . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.2 Si mulation of Neutrino Interactions . . . . . . . . . . . . . . . . . . . . . 58 3.4.3 Detector Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.4 Lo w Pulse Height Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.5 Hadronic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5 Current Status ofthe Experi ment . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4 Electron Event Selection 70 4.1 Event Topologyin MI N OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2 Event Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1 Track Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.2 Sho wer Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.3 Reconstructed Event Energy . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3 Data Quality Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Bea m Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Detector Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Event Quality Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.1 Fiducial Volu me Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.2 Mini mu m Activity Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.3 Spill Ti ming Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.4 Cos mic Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.5 Largest Event Cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.6 Co mparison of Data and Si mulation . . . . . . . . . . . . . . . . . . . . . 88 4.5 Preselection Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.5.1 Event Based Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5.2 Track Based Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.5.3 Energy Based Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5.4 Su m mary of Preselection Cuts . . . . . . . . . . . . . . . . . . . . . . . . 93 4.6 Topological Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.6.1 Longitudinal Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.6.2 Transverse Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6.3 Sho wer Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.7 Electron Identification Algorith ms . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.7.1 A N N Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.7.2 L E M Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.8 Perfor mance ofthe Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.9 Identification of ν C C Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . 105 µ Contents vi 5 Near Detector Data 109 5.1 Uncertaintiesin Near Detector Si mulation . . . . . . . . . . . . . . . . . . . . . . 110 5.2 Co mparison Bet ween Near Data and Si mulation . . . . . . . . . . . . . . . . . . . 110 5.2.1 Preselection Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.2 Topological Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.2.3 Near Detector Electron Event Candidates . . . . . . . . . . . . . . . . . . 115 5.2.4 Data and Si mulation Agree mentinthe ν C C Selection. . . . . . . . . . . 119 µ 5.3 Horn On and Horn Off Data Separation Method . . . . . . . . . . . . . . . . . . . 121 5.3.1 The Horn On/ Off Method . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.3.2 Syste matics Uncertaintiesinthe Horn On/ Off Method . . . . . . . . . . . 124 5.3.3 The Horn On/ Off Event Type Separation . . . . . . . . . . . . . . . . . . 126 5.4 Muon Re moval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.4.1 Description ofthe Muon Re moval Algorith m . . . . . . . . . . . . . . . . 129 5.4.2 Muon Re moval Data Separation Technique . . . . . . . . . . . . . . . . . 133 5.4.3 I mple mentation ofthe Muon Re moval Separation Method . . . . . . . . . 139 5.4.4 Syste matic Uncertaintiesinthe Muon Re moval Separation . . . . . . . . . 141 5.4.5 Separation of Near Data Usingthe M R C C Technique . . . . . . . . . . . . 143 5.5 Co mparison ofthe Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6 Esti mation of the Signal Efficiency 146 6.1 Muon Re moval and Electron Addition Algorith m . . . . . . . . . . . . . . . . . . 147 6.2 Analysis Using M R E Sa mples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.2.1 Muon Re moval with Electron Quality Cuts . . . . . . . . . . . . . . . . . 151 6.3 Co mparison of M R E data and Si mulation . . . . . . . . . . . . . . . . . . . . . . 153 6.3.1 Original Event Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.3.2 Track Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.3.3 Sho wer Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3.4 Topological Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.3.5 ν Selection Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 e 6.3.6 Su m mary of M R E data and Si mulation . . . . . . . . . . . . . . . . . . . 164 6.4 Deter mination ofthe ν Signal Selection Efficiency . . . . . . . . . . . . . . . . . 166 e 6.4.1 Efficiencies as Deter mined bythe M R E Sa mples . . . . . . . . . . . . . . 166 6.4.2 Efficienciesinthe Standard Monte Carlo . . . . . . . . . . . . . . . . . . 167 6.4.3 Predicted ν C C Signal Data Efficiency . . . . . . . . . . . . . . . . . . . 168 e 6.5 Uncertaintyinthe Signal Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.5.1 Syste matic Uncertaintiesinthe M R E Esti mation . . . . . . . . . . . . . . 171 6.5.2 Syste matic Uncertaintyinthe Electron Si mulation . . . . . . . . . . . . . 175 6.5.3 Su m mary of Syste matic Uncertainties . . . . . . . . . . . . . . . . . . . . 176 6.6 Analysis of Far M R E Sa mples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.7 Validation of Far Detector M R E Sa mples . . . . . . . . . . . . . . . . . . . . . . 178 6.8 Far Detector M R E ν Signal Selection Efficiency . . . . . . . . . . . . . . . . . . 178 e 6.8.1 Far Detector Based Predicted ν C C Signal Data Efficiency. . . . . . . . . 180 e 6.9 Su m mary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Contents vii 7 Prediction of Far Detector Rates 182 7.1 Far/ Near Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.1.1 Prediction fro m Near Detector Backgrounds. . . . . . . . . . . . . . . . . 183 7.1.2 Prediction of ν and Oscillated ν Event Rates . . . . . . . . . . . . . . . 188 τ e 7.2 Inputstothe Extrapolation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.3 Predicted Far Detector Event Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8 Uncertainties on the Far Detector Prediction 198 8.1 Uncertaintiesinthe Physics Si mulation . . . . . . . . . . . . . . . . . . . . . . . 200 8.1.1 Bea m Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 8.1.2 Cross Section Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.1.3 Hadronization Model Uncertainties . . . . . . . . . . . . . . . . . . . . . 202 8.1.4 Averaged Particle Multiplicities and Dispersion . . . . . . . . . . . . . . . 206 8.1.5 Intranuke Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 8.1.6 Single Particle Interaction Uncertainties . . . . . . . . . . . . . . . . . . . 209 8.2 Uncertaintiesinthe Energy Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 8.2.1 Absolute Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . . . 210 8.2.2 Relative Energy Calibration Uncertainty . . . . . . . . . . . . . . . . . . . 211 8.2.3 Hadronic/ E M Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . 212 8.2.4 Additional Uncertaintiesinthe Calibration Chain . . . . . . . . . . . . . . 213 8.3 Uncertaintiesinthe Detector Model . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.3.1 Relative Event Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.3.2 Effects fro m Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 8.3.3 Lo w Pulse Height Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 217 8.3.4 Uncertaintiesinthe Crosstalk Model. . . . . . . . . . . . . . . . . . . . . 218 8.4 Syste matics Associated with ν and Signal ν Events . . . . . . . . . . . . . . . . 219 τ e 8.4.1 ν C C Selection Syste matics . . . . . . . . . . . . . . . . . . . . . . . . . 219 µ 8.4.2 M R E Signal ν Efficiency Error . . . . . . . . . . . . . . . . . . . . . . . 220 e 8.4.3 ν Selection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 τ 8.5 Syste matic Uncertainty ofthe Predicted Rates . . . . . . . . . . . . . . . . . . . . 220 8.5.1 Calculation of Syste matic Errors fro m Extrapolation . . . . . . . . . . . . 235 8.5.2 Calculation of Syste matic Errors fro m Input Data . . . . . . . . . . . . . . 237 8.5.3 Calculation ofthe Total Syste matic Error . . . . . . . . . . . . . . . . . . 238 9 Far Detector Data 242 9.1 The Far Detector Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 9.2 Far Detector Data Sidebands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 9.2.1 Anti-PI D Sideband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 9.2.2 M R C C Sideband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 9.2.3 M R E Sideband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 9.2.4 Near-PI D Sideband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 9.3 Far Data ν Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 e 9.4 ν → ν Oscillation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 µ e 9.4.1 Unified Analysis (Feld man- Cousins) Based Contours . . . . . . . . . . . . 263 9.5 Results ofthe ν Appearance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 269 e Contents viii 9.5.1 I mpact of Other Oscillation Para meters . . . . . . . . . . . . . . . . . . . 272 9.5.2 Potential Future Li mits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 9.5.3 Possible I mprove ments for Future Analysis . . . . . . . . . . . . . . . . . 276 9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 A Three Neutrinosin Matter 289 A.1 Properties ofthe Oscillation Probabilities . . . . . . . . . . . . . . . . . . . . . . 291 A.2 Expansions Used forthe ν Appearance Result . . . . . . . . . . . . . . . . . . . 293 e A.2.1 Expansionto First Orderin α . . . . . . . . . . . . . . . . . . . . . . . . 295 A.2.2 Expansionto First Orderin sinθ . . . . . . . . . . . . . . . . . . . . . . 303 13 A.2.3 Neutrino oscillation for mulato second orderin α and sinθ . . . . . . . . 310 13 A.3 Analysis Neutrino Appearance Probabilities . . . . . . . . . . . . . . . . . . . . . 311 A.4 Accuracy ofthe approxi mations . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 B Validation of Far M R E Sa mples 316 B.1 Variables Relatedtothe M R E Process . . . . . . . . . . . . . . . . . . . . . . . . 316 B.2 Reconstruction Quantities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 B.2.1 Track Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 B.2.2 Sho wer Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 B.3 PI D Input Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 B.4 PI D Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 B.5 Su m mary of Far M R E Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 C Alternative Oscillation Analysis Approaches 324 C.1 Si mple χ 2 Derived Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 C.2 Feld man- Cousins Analysis with Pseudo-experi ments . . . . . . . . . . . . . . . . 327 C.2.1 Pseudo- Experi ment Method A . . . . . . . . . . . . . . . . . . . . . . . . 331 C.2.2 Pseudo- Experi ment Method B . . . . . . . . . . . . . . . . . . . . . . . . 332 C.2.3 Pseudo- Experi ment Method C . . . . . . . . . . . . . . . . . . . . . . . . 332 List of Fi g u r es 2.1 The possible weakinteractions ofthe neutrino. . . . . . . . . . . . . . . . . . . . 8 2.2 Exa mple of a standard neutrinointeraction with a nucleon. . . . . . . . . . . . . . 18 2.3 The possible neutrino mass ordering. . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 The flux of 8B solar neutrinos measuredin S N O. . . . . . . . . . . . . . . . . . . 31 2.5 The zenith angle distribution for Super K events. . . . . . . . . . . . . . . . . . . . 32 2.6 Contours forthe best fit values ofthe at mospheric oscillation para meters. . . . . . 33 2.7 90 % exclusion contours forthe C H O O Z experi ment. . . . . . . . . . . . . . . . . 34 3.1 Thelayout ofthe Nu MI bea mline . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Calculated rate of ν - C Cinteractionsinthe near detector. . . . . . . . . . . . . . . 39 µ 3.3 Distribution of parent hadronstothe bea m ν content. . . . . . . . . . . . . . . . . 41 e 3.4 The MI N OS far detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5 The MI N OS near detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6 A single scintillator strip sho wnin cuta way. . . . . . . . . . . . . . . . . . . . . . 47 3.7 The far detector scintillator configuration forthe U direction. . . . . . . . . . . . . 47 3.8 The four different scintillator configurations usedinthe near detector. . . . . . . . 48 3.9 The stopping po wer of muonsinthe MI N OS calibration detector.. . . . . . . . . . 54 3.10 The response ofthe calibration detectorto pions and electrons. . . . . . . . . . . . 55 3.11 Co mparison of near detector datato original and fit Monte Carlo. . . . . . . . . . . 57 3.12 The near detector distribution of strip energies. . . . . . . . . . . . . . . . . . . . 60 3.13 The pixelto plane mapping for a M64 and M16 P M T. . . . . . . . . . . . . . . . . 62 3.14 Data/ M C co mparison of non-track hits associated with a cos mictrack. . . . . . . . 62 3.15 Results of near detector crosstalktuning . . . . . . . . . . . . . . . . . . . . . . . 63 3.16 Results of far detector crosstalktuning . . . . . . . . . . . . . . . . . . . . . . . 64 3.17 K N O scaling distributions for νp and ν n interactions. . . . . . . . . . . . . . . . . 67 3.18 Nucleon p2 and nucleon x distribution data. . . . . . . . . . . . . . . . . . . . . 68 T F 3.19 The perfor mance ofthe Nu MI bea m since May 2005. . . . . . . . . . . . . . . . . 69 4.1 A charged current and neutral currentinteraction. . . . . . . . . . . . . . . . . . . 71 4.2 A si mulated quasi-elastic ν C Cinteractioninthe far detector.. . . . . . . . . . . . 72 e 4.3 T wo candidate ν C Cinteractionsinthe far detector. . . . . . . . . . . . . . . . . 73 µ 4.4 Event display of si mulated N Cinteractionsinthe far detector . . . . . . . . . . . . 73 4.5 Event display of a si mulated ν -like N Cinteractioninthe far detector. . . . . . . . 74 e ix List of Figur es x 4.6 An ev ent display sho wing an event containing both atrack and a sho wer. . . . . . . 76 4.7 Reconstructed energy as a function ofthetrue hadronic and E M energy . . . . . . 80 4.8 Diagra m ofthe fiducial volu me regions . . . . . . . . . . . . . . . . . . . . . . . 83 4.9 Far detector energy spectra before and afterthe mini mu m activity cut . . . . . . . 85 4.10 Far detector spillti me before and afterthe mini mu m activity cut . . . . . . . . . . 87 4.11 Reconstructed vertex distributions forthe near and far detectors. . . . . . . . . . . 90 4.12 Contiguous planes with greaterthan 0.5 M E U per planeinthe far detector . . . . . 91 4.13 Length oftrackin planesinthe far detector . . . . . . . . . . . . . . . . . . . . . 92 4.14 Nu mber oftracklike planesinthe far detector . . . . . . . . . . . . . . . . . . . . 92 4.15 Reconstructed andtrue energy distribution of preselected far det. M C events . . . . 95 4.16 Sho wer rise and fall fit para meters distributions of far detector M C events . . . . . 96 4.17 Fraction of event energy containedin a windo w of 2, 4 or 6 planes . . . . . . . . . 97 4.18 Sho wer radius co mputed fro m sho wer width and 90 % contain ment . . . . . . . . . 98 4.19 Fraction of event energyinthe sho wer core andlongitudinal energy . . . . . . . . 99 4.20 Sho wer dispersion para meter and fraction of energyinthe 8 hottest strips . . . . . 99 4.21 Distribution ofthe A N N discri mination variable . . . . . . . . . . . . . . . . . . . 101 4.22 Thethreeinput variablestothe L E M PI D . . . . . . . . . . . . . . . . . . . . . . 102 4.23 Distribution ofthe L E M discri mination variable . . . . . . . . . . . . . . . . . . . 103 4.24 The F O M and SF O M calculated as a function of a cutin PI D . . . . . . . . . . . . 105 4.25 The fourinput variablestothe k N N algorith m.. . . . . . . . . . . . . . . . . . . . 107 4.26 Distribution ofthe k N N discri mination variable . . . . . . . . . . . . . . . . . . . 108 4.27 Purity and efficiency ofthe k N N selection . . . . . . . . . . . . . . . . . . . . . . 108 5.1 The fractional syste matic uncertainty onthe A N N and L E M distributions . . . . . 111 5.2 Data and M C co mparison ofthe preselection variables . . . . . . . . . . . . . . . 112 5.3 The ratio of datato M C forthe preselection variables . . . . . . . . . . . . . . . . 113 5.4 The reconstructed energy spectru m ofthe preselected event sa mple . . . . . . . . . 114 5.5 Data and M C co mparison ofthe fraction energyin a narro w road . . . . . . . . . . 116 5.6 Data and M C co mparison ofthe sho wer radius. . . . . . . . . . . . . . . . . . . . 116 5.7 Data and M C co mparison ofthe sho wer dispersion variable . . . . . . . . . . . . . 117 5.8 Data and M C co mparison ofthe sho wer fall fit para meter . . . . . . . . . . . . . . 117 5.9 Data and M C co mparison ofthe fraction of ν events matches . . . . . . . . . . . 118 e 5.10 Data and M C co mparison ofthe mean y of matched events . . . . . . . . . . . . . 118 5.11 Data and M C co mparison ofthe mean matched charge . . . . . . . . . . . . . . . 119 5.12 The near detector data and M C distribution of A N N and L E M . . . . . . . . . . . 120 5.13 The near detector energy distribution for A N N and L E M selected events . . . . . . 121 5.14 Reconstructed energy distribution for events selected as ν C C candidates . . . . . 121 µ 5.15 Thetrue neutrino energy of eventsinthe Horn On and Horn Off data . . . . . . . . 122 5.16 The reconstructed energy of eventsinthe Horn On and Horn Off data . . . . . . . 123 5.17 Horn On/ Off ratios for ν C C and N C events . . . . . . . . . . . . . . . . . . . . 125 µ 5.18 Horn On/ Off ratios after successive cutlevels . . . . . . . . . . . . . . . . . . . . 127 5.19 Horn On/ Off separated spectra forthe A N N and L E M selections . . . . . . . . . . 128 5.20 Purity and co mpleteness forthe muon re moved events. . . . . . . . . . . . . . . . 132 5.21 An event before and after muon re moval which si mulated an N C event . . . . . . . 132 5.22 An event before and after muon re moval which si mulated an ν event . . . . . . . 133 e

Description:
experiment which utilizes a beam of neutrinos generated at the Fermilab accelerator complex. A de- In pseudo-code this would be performed as:.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.