ebook img

Measurement of D-meson azimuthal anisotropy in Au+Au 200 GeV collisions at RHIC PDF

0.27 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of D-meson azimuthal anisotropy in Au+Au 200 GeV collisions at RHIC

Nuclear Physics A NuclearPhysicsA00(2016)1–4 www.elsevier.com/locate/procedia + Measurement of D-meson azimuthal anisotropy in Au Au 200 GeV collisions at RHIC Michael Lomnitz, for the STAR collaboration 6 LawrenceBerkeleyNationalLaboratory,OneCyclotronRoad,MS70R0319,BerkeleyCA,94720 1 0 KentStateUniversity,PhysicsDepartment,800E.SummitSt.,Kent,OH44240 2 n a J 5 Abstract ] x Heavyquarksareproducedthroughinitialhardscatteringsandtheyareaffectedbythehotanddensemediumcreatedin e heavy-ioncollisionsthroughoutitswholeevolution. Duetotheirheavymass,charmquarksareexpectedtothermalize - p muchmoreslowlythanlightflavorquarks. Thecharmquarkflowisauniquetooltostudytheextentofthermalization e ofthebulkmediumdominatedbylightquarksandgluons.Athighp ,Dmesonazimuthalanisotropyissensitivetothe T h pathlengthdependenceofcharmquarkenergylossinthemedium,whichoffersnewinsightsintoheavyquarkenergy [ lossmechanisms-gluonradiationvs.collisionalprocesses. √ WepresenttheSTARmeasurementofellipticflow(v )ofD0andD±mesonsinAu+Aucollisionsat s =200GeV, 1 2 NN v forawidetransversemomentumrange.Theseresultsareobtainedfromthedatatakeninthefirstyearofphysicsrunning 3 ofthenewSTARHeavyFlavorTrackerdetector,whichgreatlyimprovesopenheavyflavorhadronmeasurementsbythe 4 topologicalreconstructionofsecondarydecayvertices. TheDmesonv2isfinitefor pT >2GeV/c2andsystematically 7 belowthemeasurementoflightparticlespeciesatthesameenergy.Comparisontoaseriesofmodelcalculationsfavors 0 scenarioswherecharmflowswiththemediumandisusedtoinferarangeforthecharmdiffusioncoefficient2πTD . s 0 . Keywords: Quark-gluonplasma,ellipticflow,HeavyFlavorTracker 1 0 6 1. Introduction 1 : Heavy flavor quarks are suggested to be an excellent probe to study the strongly coupled quark-gluon v i plasma (sQGP) as they are produced early in heavy-ion collisions through hard scattering processes and X experience the full evolution of the system, while their large masses are mostly unaffected by the QCD r medium. Furthermore,drawingananalogytoBrownianmotiontheheavyquarkspropagatingthroughthe a medium are sensitive to the sQGP transport properties, for example 2πTD , which is given in term of the s temperatureT andthecharmdiffusioncoefficientD [1]. s Recent measurements at RHIC and LHC show that high p charmed hadron yields in central collisions T are considerably suppressed suggesting strong interactions, while the elliptic flow v measured at LHC is 2 comparabletothatoflighthadrons[2,3,4]. AtRHIC,theenhancementinthenuclearmodificationfactor atintermediate p issuggestiveofbothcharmflowandproductionviacoalescence. However,charmflow T inferredfrommeasurementsofsemi-leptonicdecayssufferfromlargeuncertainties.Aprecisemeasurement 2 /NuclearPhysicsA00(2016)1–4 ofv overabroadp range,andinparticularatlowmomenta,willprovideusefulinsightsintotheproperties 2 T ofsQGPmedium. 2. Experimentalsetup The data used in this analysis were recorded in year 2014 by the STAR experiment at the Relativistic HeavyionCollider(RHIC)inBrookhavenNationalLaboratory,USA.TheSTARexperimentpossessesfull azimuthalcoverageatmid-rapidityusingtheTimeProjectionChamber(TPC)toreconstructtracksinside a uniform 0.5 T magnetic field. The entire Heavy Flavor Tracker (HFT) micro-vertexing detector was in- cludedforthefirsttimein2014andgreatlyimprovedSTAR’strackingresolution,providingtrackpointing resolutionoflessthan50µmforkaonswith p =750MeV/c. √ T About 780 million Au+Au collisions at s = 200 GeV events recorded with a Minimum Bias (MB) NN triggerin2014wereanalyzedtoreconstructcharmedhadrons. Acutonthereconstructedcollisionposition alongthebeamline(|primaryvertex|<6cm)isappliedtoensuregooddetectoracceptance. D-mesonsarereconstructedinthehadronicchannels: D0(D0)→ K∓π±,cτ∼120µmB.R.3.9% D± → K∓2π±,cτ∼300µmB.R.9.1% Daughtertracksarerequiredtohaveaminimumof20hitsintheTPCandhitsinallthreelayersofthe HFT, p > 0.6 GeV/c and pseudorapidity |η| < 1. Particle identification is done using energy loss dE/dx T fromtheTPC,selectingcandidateswithin2to3standarddeviationsfromtheexpectedvalueandisfurther enhancedbyuseoftheTimeofFlightdetector(TOF)whenavailable. 1/βisestimatedfromthemomentum andtimingfromTOF,andisrequiredtobelessthan0.03fromtheexpectedvalue. Once daughter candidates have been identified, the decay vertex can be reconstructed, which is displaced fromtheprimaryvertexofcollision. Inthecaseoftwobodydecaysthedecayisreconstructedatthemid pointontheirdistanceofclosestapproach(DCA).Forthreebodydecays,suchasD±,theaveragebetween themidpointsofpairwiseDCA’sistakenasthedecayposition. Thecombinatorialbackgroundcanbegreatlysuppressedbycuttingonthefollowingtopologicalvariables: decaylength(distancebetweenprimaryanddecayvertices),DCAbetweendaughtertracks,DCAbetween reconstructedparentandtheprimaryvertex(PV),DCAbetweendaughtertracksandthePV;andinthecase ofD±thedistancesbetweenthemidpointsfromeachpairwisecombination. 3. Azimuthalanisotropy OnceD-mesoncandidateshavebeenselected,thesecondorderazimuthalanisotropy,v ,isstudiedus- 2 ingtwodifferentmethods: theeventplanemethodandthetwoparticlecorrelationmethod, whichwillbe discussedbrieflyinthefollowingparagraphs. Intheeventplanemethodthesecondordereventplane,Ψ,isreconstructedfromTPCtracksandcorrected forthenon-uniformdetectorefficiency[5]. Inordertoreducethenon-flowcontributionsfromothertwoor multi-body correlations, a relative pseudorapidity gap |∆η| ≤ 0.15 around D0 candidates is excluded from theeventplanereconstruction.TheazimuthaldistributionofDmesonswithrespecttotheeventplaneφ−Ψ isthenobtainedandweightedby1/(cid:15)/R,theinverseoftheD0reconstructionefficiency(cid:15)andtheeventplane resolutionR[6]foreachcentrality. Ineachφ−Ψbinthemixed-eventbackgroundisscaledtothelike-signbackgroundandsubtractedfromthe unlike-signinvariantmassspectrum. The D0 yieldisobtainedbyeitherthefitorsidebandmethod: atlow p theinvariantmassspectrumisfittedwithaGaussian,representingthesignal,andafirstorderpolynomial T describingthecorrelatedbackground;forthelast p bin(5-10GeV/c)thefitislimitedbylowbackground T statistics,andtheD0yieldisobtainedbysubtractingscaledcountsintwoinvariantmassregionsaroundthe signalregion. Theobservedvobsisthenobtainedbyfittingtheyieldversusφ−ΨwiththefunctionalformA(1+2v cos(2(φ− 2 2 Ψ))). Finally,theobservedvobsiscorrectedfortheaverageevenplaneresolution<1/R>toobtainthetrue 2 /NuclearPhysicsA00(2016)1–4 3 0.3 850 a) A3u <+ Apu <2 040 GGeeVV/,c 0-80% 0.01 b) Au+Au 200GeV, 0-80% 0.25c) AuD+0A EuP 200GeV, 0-80% Non-flow est. d800 vo2bTs = 0.080 – 0.023 FBoarcekggrroouunndd 0.2 DD0– vE2P{2} el750 > Weighted yi675000 fD<cos(2) v20.01.51 0.05 600 0 0 550STAR preliminary STAR preliminary STAR preliminary -0.05 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1 2 3 4 5 6 0 1 2 3 4 5 6 7 f -Y Transverse Momentum p (GeV/c) Transverse Momentum p (GeV/c) T T Fig.1: a)WeightedD0yieldvs. φ−Ψfor0-80%centralcollisionsand p ∈[3,4]GeV/c. b)<cos(2∆φ)> T between(un)like-signpairsandchargedparticlesasafunctionof p . c)Comparisonbetweenv fromevent T 2 planeandtwoparticlecorrelationmethods. valueofv . Figure1ashowstheweightedyieldasafunctionoftheanglerelativetotheeventplaneφ−Ψ 2 forD0candidateswith3< p <4GeV/c. T Inthetwoparticlecorrelationmethod,theaverageD0-hadroncorrelationiscalculatedVD−h ≡<cos(2φ − 2 D 2φ ) >. Assuming that the D0 and hadron have no correlation other than with the event plane, it can be h shownthatVD−h =vDvh. Finally,togetherwiththehadron-hadroncorrelation,Vh1−h2 =(vh)2,theD-meson 2 2 2 2 2 vD =< cos(2φ −2φ ) > /(< cos(2φ −2φ ) >)1/2 canbeobtained. D0 backgroundisestimatedbythe 2 D h h1 h2 averageofthesidebands(bothlike-signandunlike-sign)aswellastheD0like-signinvariantmassspectrum in the signal range. Figure 1b shows V for D0 candidates and background (within the D0 invariant mass 2 range)asafunctionoftransversemomentum. Asinthecaseoftheeventplanemethod,thecontributionfromnon-flowissuppressedbyintroducingagap |∆η|>0.2inthemeasurementofD−hcorrelations,andparticlesinoppositesidesoftheTPC(h ∈η<0 1 andh ∈η>0)areusedforthehadron-hadroncorrelation. 2 Due to limited statistics, D± yield is obtained in and out-of plane and the v is obtained following the 2 eventplanemethod. Figure1cshowstheazimuthalanisotropyparameterforboth D0 and D± aswellasa comparisonbetweenbothmethods. Theeventplaneandtwoparticlecorrelationresultsshowgoodoverall agreementwithinsystematicuncertainties,andtheD± v isconsistent,withinlargeuncertainties,withthat 2 ofD0. Theremainingcontributionofnon-floweffectstothemeasuredv isestimatedbyscalingthenon-flowin 2 p+pcollisionstoAu+Au[7].Inthiscasethenon-flowcontributioncanbewrittenas(cid:104)(cid:80) cos(2(φ −φ ))(cid:105)/Mv , i D0 h 2 wherethesumiisdoneovernearsidechargedhadronsinp+p, M andv aretheaveragemultiplicityand 2 chargedhadronv inAu+Au. 2 Figure 2a shows the v for D-mesons compared with other particle species. The D0 azimuthal anisotropy 2 is significantly different from zero for p > 2 GeV/c and is systematically lower than that of the lighter T hadrons[8]intherangefor1 < p < 4GeV/c,buttheextentofheavyflavorthermalizationisstillunder T investigation. In figure 2b the results for D0 are compared to four theoretical models. The calculation by theSUBATECHgroup[9]employspQCDwithHardThermalLoopapproximationforsoftcollisionsand agrees with the measurement over the whole p range. The TAMU model [10] uses a non-perturbative T T-matrixapproachassumingthetwo-bodyinteractionscanbedescribedbyapotentialasafunctionofthe transfered4-momentum. TwocurvesfromTAMUareshown: thescenarioincludingcharmdiffusion(blue) agreeswiththedatawhilethepredictionswithoutcharmdiffusion(magenta)areconsistentlylower. Inthe model developed by the Duke university group [11] the diffusion coefficient 2πTD is a free parameter s which, in the case of the red curve shown, has been constrained using the R measured at LHC with a AA value of roughly 7, and under-predicts the v observed in our data. Figure 2c shows the value obtained 2 forthediffusioncoefficientfromdifferentmodelcalculationscomparedtotheyellowbandonthefarright showingtherangeofinferredvaluesthatarecompatiblewiththemeasurementfromSTAR. 4 /NuclearPhysicsA00(2016)1–4 0.3 0.3 0.02.52(a) ADKfus0+ EAPu 200GeV, 0-80% Non-flow est. 0.02.52(b) ADSDTTuAAU0u+ kMMEBAePAuUU T 2wwE0 /C0c0G Hdcei fdVf.if,f .0-80% Non-flow est. D ×T2π3400 (c)LLaattttiiccee QQCCDD:: BDainnge erjet ea l.et al. pQCD LO 3400 STAR In 3400 v20.15 v20.15 T-Matrix F-pot. ferred 0.1 0.1 20 20 20 0.05 0.05 10 HRG T-Matrix U-pot.10 10 0 0 STAR preliminary STAR preliminary pQCD+HTL -0.050 1 2 3 4 5 6 7 -0.050 1 2 3 4 5 6 7 0 0 0 0.5 1 1.5 Transverse Momentum p (GeV/c) Transverse Momentum p (GeV/c) T T T/Tc Fig. 2: a) Measured v for D0 compared to that of light hadrons. b) Comparison for measured D0 v and 2 2 modelcalculations. c)DiffusioncoefficientfrommodelcalculationsandinferredrangefromSTARresults. 4. Summary STAR has carried out the first heavy flavor measurements in heavy ion collisions using the newly in- stalled,stateoftheartvertexingdetector,theHFT.Themeasuredcharmedmesonv inAu+Aucollisionsis 2 foundtobefinite,thoughsystematicallybelowv oflighthadrons. Comparisontoaseriesofmodelsshows 2 thattheyareabletodescribethedata,favoringthescenariowherecharmquarksflowwiththemedium. The modelsinferarangeofcompatiblevaluesforthecharmdiffusioncoefficient2πTD between2or10. s AspartofSTAR’scontinuingheavyflavorprogram,2billionAu+Auminimumbiaseventswillberecorded in 2016 with full aluminum cables in the innermost silicon layer of the HFT. An expected 2-3 factor im- provementintheD0 significanceat p = 1GeV/c2 willallowthestudyofthecentralitydependenceofv T 2 inheavyioncollisions. 5. Acknowledgements ThismaterialisbaseduponworksupportedbytheU.S.DepartmentofEnergy, OfficeofScience, Of- fice of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR)program. TheSCGSRprogramisadministeredbytheOakRidgeInstituteforScienceandEdu- cationfortheDOEundercontractnumberDE-AC05-06OR23100. References [1] L.M.Abreu,D.Cabrera,F.J.Llanes-Estrada,J.M.Torres-Rincon,AnnalsofPhysics326(10)(2011)2737–2772. [2] L.Adamczyk,et.al.,Phys.Rev.Lett.113(2014)142301. [3] B.Abelev,et.al.,Phys.Rev.Lett.111(2013)102301. [4] J.Adam,et.al.,arXiv:1509.06888. [5] A.M.Pozkanzer,S.A.Voloshin,Phys.Rev.C58(1671). [6] J.Masui,A.Schmah,arXiv:1212.3650. [7] J.Adams,et.al.,Phys.Rev.Lett.93(2004)252301. [8] B.I.Abelev,et.al.,Phys.Rev.C77(2008)054901. [9] M.Nahrgang,J.Aichelin,S.Bass,P.B.Gossiaux,K.Werner,Phys.Rev.C91(2015)014904. [10] M.He,R.J.Fries,R.Rapp,Phys.Rev.C86(2012)014903. [11] S.Cao,G.-Y.Qin,S.A.Bass,Phys.Rev.C88(2013)044907.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.