ebook img

Measurement of B+ -> K+ tau- tau+, B -> K* l+ l- and B -> K pi+ pi- gamma decays at BABAR PDF

1.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of B+ -> K+ tau- tau+, B -> K* l+ l- and B -> K pi+ pi- gamma decays at BABAR

Measurement of B+ K+τ+τ , B K l+l and − ∗ − → → B Kπ+π γ decays at BABAR − → 7 Benjamin Oberhof∗† 1 LNFINFN,Frascati,Italy. 0 E-mail: [email protected] 2 n a We present some recent measurements of rare flavor-changing neutral current B decays, using J 2 datacollectedwiththeBABARdetectoratthePEP-IIe+e− collideratSLAC.First,wesearchfor therareprocessB+ K+τ+τ andwedonotfindevidenceforasignal.Themeasuredbranching ] → − x fraction is (1.31+00..6661(stat.)+00..3255(sys.))×10−3 with an upper limit, at the 90% confidence level, e of B(B K+τ+−τ )<2.−25 10 3. We then study the lepton forward-backward asymmetry - → − × − p A andthelongitudinalK polarizationF intheraredecaysB K l+l ,wherel+l iseither FB ∗ L ∗ − − e → h e+e− or µ+µ−. We report results for both the K∗(892)0l+l− and K∗(892)+l+l− final states, [ as well as their combination K∗l+l−, in five disjoint dilepton mass-squared bins. Finally, we 1 measurethetime-dependentCPasymmetryintheradiative-penguindecayB0 K0π π+γ. The v → S − 1 Kππ resonant structure is extracted by an amplitude analysis of the mKππ and mKπ spectra in 6 B+ K+π π+γ decays. We use these results to extract the mixing-induced CP parameters of − 3 → theprocessB0 K0ρ0γ fromthetime-dependentanalysisofB0 K0π+π γ decaysandobtain 0 → S → S − 0 S = 0.18 0.32(stat.)+0.06(syst.). 1. KS0ρ0γ − ± −0.05 0 7 1 : v i X r a XIIIInternationalConferenceonHeavyQuarksandLeptons 22-27May,2016 Blacksburg,Virginia,USA Speaker. ∗ †onbehalfoftheBABARcollaboration c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons (cid:13)Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ MeasurementofB+ K+τ+τ−,B K∗l+l−andB Kπ+π−γ decaysatBABAR BenjaminOberhof → → → 1. Introduction Flavor-changingneutralcurrent(FCNC)BdecaysoftheformB K( )X whereX =llorππγ ∗ → and l =e,µ are highly suppressed in the Standard Model (SM). The lowest-order SM processes contributing to these decays are the photon and Z penguins and theW+W box diagrams. These − decays can provide a stringent test of the SM and a fertile ground for New Physics (NP) searches as virtual particles may enter in the loop and allow us to probe new physics at large mass scales. Detailsandreferencesforeachofthedecaymodescoveredinthisworkaregiveninthefollowing sections. We use data recorded by the BABAR detector at the PEP-II asymmetric-energy e+e− storage rings operated at the SLAC National Accelerator Laboratory. The data sample consists of 424 fb 1 of e+e collisions recorded at the center-of-mass (CM) energy √s=10.58 GeV. The cross − − sectionforBB¯-pairproductionattheϒ(4S)isσBB¯ 1.1nbcorrespondingtoadatasampleofabout ∼ 471 106 BB¯-pairs[1]. AdetaileddescriptionoftheBABARdetectorisgivenelsewhere[2]. × 2. SearchforB+ K+τ+τ − → The predicted decay rate for B+ K+τ+τ in the SM is in the range 1 2 10 3 [3, 4]. − − → − × ThisdecayisthethirdfamilyequivalentofB+ K+l+l−,previouslymeasuredatBABAR[5]and → other experiments [6], which shows some tension with the SM expectations [7], and may provide additionalsensitivitytonewphysicsduetothird-generationcouplingsandthelargemassoftheτ lepton. An important potential contribution to this decay is from neutral Higgs boson couplings, wherethelepton-lepton-Higgsverticesareproportionaltothesquaredmassoftheleptonsinvolved [8]; thus,inthecaseoftheτ lepton,suchcontributionscanbesignificantandcouldalterthetotal decayrate. WeusehadronicBmesontaggingtechniques,whereoneofthetwoBmesons,referred to as the B , is reconstructed exclusively via its decay into one of several hadronic decay modes tag [9]. We consider only leptonic decays of the τ, i.e. τ+ e+ν ν and τ+ µ+ν ν , which re- e τ µ τ → → sults in three different final states with an ee , µµ or an eµ pair. Simulated Monte Carlo (MC) signal and background events, generated with EvtGen [10], are used to develop signal selection criteria and to study potential backgrounds. We select B candidates using ∆E =√s/2 E tag − B∗tag andm = s (cid:126)p 2,whereE and(cid:126)p aretheCMenergyandthree-momentumvectorofthe ES − ∗B B∗tag ∗Btag Btag respect(cid:113)ively. We require a properly reconstructed Btag to have mES consistent with the mass of a B meson and 0.12<∆E <0.12 GeV. B+ K+τ+τ signal events are required to have a − − → chargedB candidatewithm >5.27GeV/c2 andanon-zeromissingenergy,E ,givenbythe tag ES miss energy component of p . Continuum events are further suppressed using a multivariate likeli- ∗miss hoodselector,basedonsixevent-shapevariableswhichremovesmorethan75%ofthecontinuum events while retaining more than 80% of (signal and background) BB¯ MC events. Signal can- didates are then required to possess exactly three charged tracks satisfying particle identification (PID) requirements consistent with one charged K and an e+e , µ+µ , or e+µ pair. Further- − − − more, events with 3.00<m <3.19 GeV/c2 are discarded to remove backgrounds from J/Ψ l+l − resonance. TheinvariantmassofthecombinationoftheK withtheoppositelychargedleptonmust also lie outside the region of the D0 mass, i.e. m <1.80 GeV/c2 or m >1.90 GeV/c2, K l+ K l+ − − to remove events where a π coming from the D0 decay is misidentified as a muon. At this stage, 1 MeasurementofB+ K+τ+τ−,B K∗l+l−andB Kπ+π−γ decaysatBABAR BenjaminOberhof → → → remaining backgrounds are primarily BB¯ events in which a properly reconstructed B accompa- tag nied by a B D( )lν , with D( ) Kl ν which have the same detected final state particles as sig ∗ l ∗ (cid:48) l → → (cid:48) signalevents. Amulti-layerperceptron(MLP)neuralnetwork[11],witheightinputvariablesand one hidden layer, is employed to suppress this background. The MLP is trained and tested using randomlysplitdedicatedsignalMCandB+B backgroundevents, foreachofthethreechannels. − The results are shown in Fig. 1 (left) for the three modes combined. We require the output of the neuralnetworkis>0.70forthee+e andµ+µ channelsand>0.75forthee+µ channel. This − − − requirementisoptimizedtoyieldthemoststringentupperlimitintheabsenceofasignal. AB tag yieldcorrectionisdeterminedbycalculatingtheratioofdatatoB+B MCeventsbeforethefinal − MLP requirement. This correction factor is determined to be 0.913 0.020 and is applied to the ± MC reconstruction efficiency for both signal and background events (Fig. 1 (right)). The most important contributions to the systematic uncertainty include the uncertainty associated with the theoretical model which is evaluated by comparing signal MC sample based on the LCSR [12] theoreticalmodeltothatof[13]anddeterminingthedifferenceinefficiency,whichisfoundtobe 3.0%. Additional uncertainties on ε and N arise due to the modeling of PID selectors (4.8% sig bkg for e+e , 7.0% for µ+µ , and 5.0% for e+µ ) and the π0 veto (3.0%). The level of agreement − − − betweendataandMCresultsinasystematicuncertaintyof2.6%. The yields in the e+e and µ+µ channels are consistent with the expected background es- − − timate. The signal yield in the e+µ channel is about twice the expected rate, which corresponds − toanexcessof3.7σ overthebackgroundexpectation. Kinematicdistributionsinthee+µ donot − give any clear hint of signal-like behavior or of systematic problems with background modeling. When combined with the e+e and µ+µ modes, the overall significance of the B+ K+τ+τ − − − → signalislessthan2σ,andhencewedonotinterpretthisasevidenceofsignal. Nevertheless,under the assumption that the excess observed is signal, the branching fraction for the combined three modes is B(B+ K+τ+τ )=(1.31+0.66(stat.)+0.35(sys.)) 10 3. The upper limit at the 90% → − 0.61 0.25 × − confidencelevelisB(B+ K+τ+τ )−<2.25 1−0 3. − − → × ergies greater than 50 MeV, a total CM energy greater e+e� µ+µ� e+µ� t1the0ra0ncalun1s0dt0e1r6Ms0neVoMt,eeVaxn/pcdl2i,cainatrlyeinarvesajsreoicactnieatdte.mdAawsdsidtrihtainoBgntiaanglgcdabaleuotrgwihmeteeenr- BaBar preliminary BaBar preliminary N✏Nisiboiigbk(sg⇥10�5) 419.1.4±±4025..24±±02..19 415..38±±023..924±±03.1.2 529..12±±029..228±±03.2.5 particles may originate from other low-energy particles Significance(�) 0.6 0.9 3.7 � � in background events. We therefore define Ee⇤xtra to be theenergysumofallneutralclusterswithindividualen- TABLEI:Expectedbackgroundyields,Ni ,signale�cien- bkg ergygreaterthan50 MeVthatarenotusedintheBtag cies,✏isig ,numberofobserveddataevents,Noibs,andsigned reconstruction. significance for each signal mode. Quoted uncertainties are statisticalandsystematic. Thenormalizedsquaredmassofthe⌧+⌧�pairisgiven bys =(p p )2/m2, wherep andp arethe B Bsig� K B Bsig K four-momentumvectorsofB andofthekaon,respec- sig tively,inthelaboratoryframe. Thelargemassofthe⌧ FIG.2: (coloronline)MLPoutputdistributionforthethree FIG. 3: (color online) Invariant-mass distribution of the extrapolationofthecombinatorialbackgroundfromthe lterpibtuontisonintosiglanragleevvaelnutess.kiAnemreaqtuiicraelmlyenlitmoitfssBthe>s0B.4d5isis- Fsdiiiggsnturairlbeucht1iaon:nnieMslssLhcooPwmnboi(nudetadps.uhetTdhd)eiwsBittr+hiba!urbtiiKotrn+ar⌧y(+ln⌧eo�frtm)siagflnoizaralttMiohnCe. threeKasll�isg⇡ign+naapllasicrehlienacnttihnoeneBlcsr+itce!oriamDab0r`ei+na⌫ep`dp,Dl.ie0dT,!ehxKece�pB⇡t++fosratmhepKlfie+nsaτalf+treeτr- mshEaSpesidfreobmanMd,Ca.sTbohtehreufsoeret,heoncloymobnineastyosrtiaemlbaatcickgurnoucenrd- apApltietdh.ispointintheselection, remainingbackgrounds siT(ghhanetacdhlaeMtda)C(pploudisnismtst)rEiSab-rpueetoaivokeinnrlgaisi(dssoohlnidotwlhinenee)(xbdpaaeccskthgedreodcuo)nmdwbciiotnnhattraoirbribua-iltrarynqoonurirtmehmeaelenixztpaoetncitotehnde.McToLmhPbeionduaattpotuarita(.lpT(ohhieantdtcasht)eada()rpepoliounstvse→)mraElraSe-iopdveeaorknlianitdgh−e teastinimtyatoenistheveaBlutaatgedy,ieulsdinagnadscimomulbaitneadtoMriCalsbaamcpklgerocoumnd- are primarily BB events in which a properly recon- etxiopnesc.ted combinatorial (hatched) plus mES-peaking (sol(isdolildinlien)e)bbaacckkggrroounudndconctorinbturtiibonust.ions. Invariant-mass posedofbackgroundeventswiththesameluminosityas sDs(aMttnar(d⇤utL)ecPot!pne)aednrhKtBeiiucd`tlrad0ea⌫gesl`n0iasnslaeaanstyciwdgecrono,tramhkilsupes[eav3mne4hin]pae,tvdlsowe.ybieAttydhhemBteosusiiaglgstmhuit-!pelapinydrDeeperstu(se⇤ptc)tet`hvre⌫aicd`sre,ipbfiawtabnrcilaotkelhns-- cdwiarinisnhttdteerhrirBbeeiau0dNBtaaiB0rtoaeBpnsaa=(aiprrmsip4gp7linhi1leet⇥⌥,d)a(,o14se0fsSxu6t)mchisdeeienptKchgtae−fyeotqsπo,ruta+atanlhldppenaruNfioimrdniubiancelitrsBriooet+nfhqBeuo→finBrBueDmpm+aB0beiler�+nsrtνol,nDth0wtweo→hitMMihcohKCLuc−tPosinπumosn+iuubsttllcapisntoumidnotia.nntir,gnotllytohsoeaaflmlBfionw+paBllef�ossrigeaavnfeatdnel-atrrsteaa(g-l>idlorsn9iiv.6ge%nTn)ahcalioscsrcercoeolrcerdtrciienotcing-on tettthhea↵rieeenmcdtfityiannotaeaafldsvsssoataigorcmnyiabipantellegeed1.�t.A2hwc%eciitecvhnoaacuntlyuhndeteai1nont.hfg6de%tfbhoo,arerecrtBtekhisgcteparagoelacunymtntiieoivd-ledcdeloeyslcr.troiiesmTrlraeheavtcetiateoulinuoins,nacttdeoheerdne-- ground. Theinputvariablesare: theanglebetweenthe ofdataeventspassingthesignalselectioonbs. Thesignalef- tionfactorisdeterminedtobe0.913 0.020,wherethe byreweightingthesB distributionofthededicated sig- kaon and the oppositely charged lepton, the angle be- ficiency,✏i ,andthebackgroundestimate,Ni ,arede- uncertaintyisstatisticalonly,andis±appliedtotheMC nalMCsampletotheLCSR[31]theoreticalmodeland tween the two leptons, and the momentum of the lep- terminedsfiogreachmodefromthesignalandbbakgckground 2 reconstructione�ciencyforbothsignalandbackground tothatofRef.[36]anddeterminingthedi↵erenceinsig- ton with charge opposite to the K, all in the ⌧+⌧� MCyieldsafterallselectionrequirements. events. nale�ciency,whichiscalculatedtobe3.0%. Additional rgtthoelesnet,baafenrntagwdmleeteehn,beewttihwnheviecaeBhrnisaiigtsnhtaecnmadKlcaustshlaaenotfdeodtpthphaeoessKilpto+eBwl`syi-�gmc�hpoaamprirKge,ne;adtultllmheienptlateohpnne--, bBpaetFacagkkogsrraoaneuatdnchtdthheemuvsoBendpterms,oadtNshusabc,ktegahancadovdneicssoiatsmrtipsbbruioontpfaioetntrowlryioianlreccbmoomaEncpSkstogrnrwuoechuntintecshdd: Duresq0iTn`u+hgire⌫tin`hB,geDtsoaagn0me!yetiersalKidcgk�nias⇡tlo+asselscaloeotcnistctfirryooonslpsdis-oacinshmceuipcnsklsseete,eddawdauhbsioiconfhvgleei,spabtsoueBntle+wcPtiI!etDhd uiaonnfngdcaegor5rft.ea0ePi%mnItDeifenosrtseoebln+eectµt✏w�oseirg)esnaa(nn4ddd.a8tt%Nahebafkon⇡grd0aervM+iestCeeo�di,(su37e.e0.v0%ta%ol)u.tafhotTeerhdmµeu+olsedµiven�elg-l, CneMurafrlanmeet.woFrukrtahreermEoe⇤xrter,atahnedfinthaelirnepsuidtuvaalreianbelregsy,toEtrehse, erevceonntsstcroumctpedoseBdofccoanntdiinduautmesawnhdicBhBdoevneonttspwroitdhumceisa- a1.n9d0rGeveeVr/scin2g. tThheesDe0crvietteor,iasuacrhe athlsaota1p.8p0lie<d tmoKt�h⇡e+fu<ll tahnedBaf+te!r thDe0`M+L⌫`P,Dre0q!uireKm�e⇡nt+. coCnotmroplasraismonpleofbebfootrhe wwppre⌧Kohistntihcaehfnntrtdhahmeope⌧fr⌧`e+e+po`⌧�⌧rifse�staihedrp↵ueeaaeliBtcrhts=iaeivgnfe,doplKyu⌧Birss,t-igmhcaae�noldcmmupel⌧Klieanspstt�ietanodgvnpae⌧`esc+pnt`ato�eihrrr,esgiyweninnhatetehsrhrsgeeeoyce⌧pivc+a⌧Boet⌧snmeig�td-,, pMcrreioeadLmalukPbpciarneiocgstkuehgtsep8rtord4uuu%etcpntderuoenfriqtdesatuegheinirxnecetemtrtoaohetpnenaotlMlm,aNCtEpebSedksagimsdkifiiguornnerlgaacattliblloylranetcfg,hrkitorgohemrneeo.uctmhonAmeodfdybteeeiiesnvr.leadtntThootoes-f bsrtMhaiaslCectknMmigesratLfowioPnuoulnrrynkdedoqMifuisnpiCrteaeramlaalknineitdnhnegetdt,hBdgteio+osrBtoecrdsli�aubasluetgsvtiirnfieeoygnentmasssas,eomnwbftpathhcbliekceehgitiswrntofhpeoueeuunntMndvdd.LaatrPBtoiaaencbfaooelnnuerdes-- ta2hthhn.a6eevd%eoao.vsubesOteurpeatmnuhlltpeiyrtvniiapveorleondistastetbinhagletsaaittarweelcdesshlu,olaluiatrnrsgscceitlenduhsdeaoaifndnsysgidsysttstnrethiemeboumusatetartiaitoacilncsusBsuononccfciecaarettnthreatdedaiiniidnntwaytptiitueeohsstf rntoeaslptheeevctehinvitgeslhyte.hraEnnereugsterhnianesro,icminBulgBteipnaleinrcaditly,c.ohniAgthinneueruuvrmaalluenevesetnwfotosrrkdsiugies- d5.a2t6aGeveVen/tcs2)i,natfhteermtEhSe“fusildlesbigannadl”serelegcitoinon(5..T20he<ymieEldSo<f oitnhfeFtnhiger.uBn3+tfohr!rotuhDgeh0m`t+hKe⌫�`M⇡,+DLdP0is!nteruibKrua�tlin⇡oen+t.wsToarmhkepsalenessd,aamasdpelsethasoiawlernde assuerlepepcptrrieoosnsdiuoccnrei,tdBeratiaatg,epaqunurdaitlayr,reatrtaaelscl,kimtmhpuellitcciioptnllyitciinatuyc,cuoEmumniltsieskdealnifhodorsoiBnd sidebanddataeventsisscaledtothecorrectnormaliza- trainedandtestedusingrandomlysplitdedicatedsignal tion of the combinatorial background in the m signal comparisonoftheMLPoutputandtheinputvariables, the Btag yield correction uncertainty. Correlations be- MCandB+B� backgroundevents,foreachofthethree region. ES afterthefullsignalselection,isperformed. tweenthesignale�ciencyandthebackgroundestimate citnhheaFnsingige.nl2sa:floesr+eetleh�ce,tiµtoh+nrµeie�s,mtaoondrdeeqesu+ciµorem�.bthiTnahetdet.rheTesuholeutstlapasurtetssothefoptwhinne baTckhgeropuenadkinMgCb,awckhgirleoudnadtaisindettheremfiinneadl suigsinnagl Bre+gBio�n tfroeTqduheeteenrrtemisstuinlatepspBfro(orBae+cahc!hbysKifignn+da⌧il+ncg⌧h�tah)n.enveTlahlauirseeiotsfhdeontnhceoamutsmbiniangxeida- dfforuauecntdtioontcoroehmsaumvletosn.asnyesgtleimgiabtleicee↵rercotrsonarethiencfilundaledb,rabnucthainrge neural network is >0.70 for the e+e� and µ+µ� chan- iosfktehpetlabrlgineduedncteortaaivnotiideseoxnpetrhimeebnrtaanlicshtinbgiafsr.acBtieocnasusoef mizestheproductofthePoissonlikelihoodsBofobserving Thefinalsignale�ciencies,backgroundestimatesand nelsand>0.75forthee+µ� channel. Thisrequirement manyoftheB decaymodesaswellastheirassociated Noibs in each of the signal channels. Branching fraction observed yields of each signal mode are shown in Ta- is optimized to yield the most stringent upper limit in tag uncertaintiesandlimitsaredeterminedusingthemethod bleI,withtheassociatedbranchingfractionsignificance. reconstructione↵ects,thereisadiscrepancyintheB theabsenceofasignal. yieldofapproximately10%betweenMCanddata,indtaeg- describedinRef.[35],takingintoaccountthestatistical The yields in the e+e� and µ+µ� channels show con- Thebranchingfractionforeachofthesignalmodes,i, pendentofthesignalselection. AB yieldcorrectionis andsystematicuncertaintiesonNbkg and✏sig. sistency with the expected background estimate. The iscalculatedas: thereforedeterminedbycalculatingtatgheratioof datato Systematic uncertainties associated with the level of signalyieldinthee+µ� channelisaroundtwicethatof data-MCagreementaredeterminedformostofthevari- theothertwochannels,sinceitalsoincludesthecharge Bi= No✏ibis�NNbikg, (2) Bdlaar+tgBae�sbaaMmckCpgleerovauefntnetdrsctbhoenifsotrrreiebqtuuhtieiroefinmnaaelfntMtercLotPnhteraesiqnusirareesqmuue�inrectmi.enTetnhltye, aobfltehseuBsetdaginyietlhdecsoirgrneacltisoenleicstiaonnt.i-cTorhreeladteetdermwiitnhattiohne caonndju5g2aete�µd+ecaeyvewntitsharee�oµb+serinvetdheinfitnhailsscthaatne.ne4l0,we+hµic�h sig BB B 6 5 MeasurementofB+ K+τ+τ−,B K∗l+l−andB Kπ+π−γ decaysatBABAR BenjaminOberhof → → → 3. AngularanalysisofB K l+l ∗ − → The amplitudes for the decays B K (892)l+l , where K Kπ are expressed in terms of ∗ − ∗ → → hadronic form factors and perturbatively-calculable effective Wilson coefficients, Ceff , Ceff and 7 9 Ceff,whichrepresenttheelectromagneticpenguindiagram,andthevectorpartandtheaxial-vector 10 part of the linear combination of the Z penguin andW+W box diagrams, respectively [14, 15]. − Non-SMphysicsmayaddnewpenguinand/orboxdiagrams,aswellaspossiblecontributionsfrom newscalar,pseudoscalar,and/ortensorcurrents,whichcancontributeatthesameorderastheSM diagrams,modifyingtheeffectiveWilsoncoefficientsfromtheirSMexpectations[16,17]. The angular distributions in B K l+l decays, as function of squared di-lepton mass q2 = ∗ − → m2 , are sensitive to many new physics models, with several measurements presented over the l+l − past few years [18]-[22]. For a given q2 value, the kinematic distribution of the decay products can be expressed as a triply differential cross-section in three angles: θ , the angle between the K K and the B directions in the K rest frame; θ , the angle between the l+ and the B direction in ∗ l the l+l rest frame; and φ, the angle between the l+l and Kπ decay planes in the B rest frame. − − From the distribution of the angle θ obtained after integrating over φ and θ , we determine the K l K longitudinalpolarizationfractionF usingafittocosθ oftheform ∗ L K 1 dΓ 3 3 = F (q2)cosθ + (1 F (q2))(1 cos2θ ) (3.1) Γ(q2)d(cosθ ) 2 L K 4 − L − K K while, integrating over φ and θ we extract the forward-backward asymmetry A from a fit to K FB cosθ l 1 dΓ 3 3 = F (q2)(1 cos2θ )+ (1 F (q2))(1+cos2θ )+A (q2)cosθ . (3.2) Γ(q2)d(cosθ ) 4 L − l 8 − L l FB l l We determine F and A in the five disjoint bins of q2 (Fig. 2). We also present results in a L FB q2 range 1.0 < q2 < 6.0 GeV2/c4, the perturbative window away from the q2 0 photon pole 0 → and the cc¯ resonances at higher q2, where theory uncertainties are considered to be under good control. We reconstruct signal events in 5 different final states: B+ K +( K0π+)µ+µ , → ∗ → S − B0 K 0( K+π )µ+µ , B+ K +( K+π0)e+e , B+ K +( K0π+)e+e and B0 → ∗ → − − → ∗ → − → ∗ → S − → K 0( K+π )e+e ;wedonotincludeothermodesastheirsignal/backgroundratioisseentobe ∗ − − → very poor. We require K candidates to have an invariant mass 0.72<m <1.10 GeV/c2. We ∗ Kπ reconstruct K0 candidates in the π+π final state, requiring an invariant mass consistent with the S − nominalK0mass,andaflightdistancefromthee+e interactionpointthatismorethanthreetimes − theflightdistanceuncertainty. NeutralpioncandidatesareformedfromtwophotonswithE >50 γ MeV,andaninvariantmassbetween115and155MeV/c2. Ineachfinalstate,weusethekinematic variablesm and∆E asdefinedintheprevioussection. Werejecteventswithm <5.2GeV/c2. ES ES Random combinations of leptons from semileptonic B and D decays are the predominant sourceofbackgrounds; thesecombinatorialbackgroundsoccurinbothBB¯ eventsande+e qq¯ − → continuum events (where q = u,d,s,c), and are suppressed using eight bagged decision trees (BDTs)[23]dependingonthebackgroundclass,finalstate(eeorµµ),andq2 region. WeextracttheangularobservablesF andA fromthedatausingaseriesoflikelihood(LH) L FB fitswhichproceedinseveralsteps: 3 MeasurementofB+ K+τ+τ−,B K∗l+l−andB Kπ+π−γ decaysatBABAR BenjaminOberhof → → → In each q2 bin, for each of the five signal modes separately and using the full m > 5.2 ES • GeV/c2 dataset,aninitialunbinnedmaximumLHfitofm ,m andalikelihoodratiothat ES Kπ discriminates against random combinatorial BB¯ backgrounds is performed. After this first fit,allnormalizationsandtheprobabilitydensityfunction(pdf)shapesarefixed. Second, in each q2 bin and for each of the five signal modes, m , m and LR pdfs and ES Kπ • normalizationsaredefinedform >5.27GeV/c2events(the“m angularfitregion”)using ES ES the results of the prior three-dimensional fits. Only m angular fit region events and pdfs ES aresubsequentlyusedinthefitsforF andA . L FB Next, cosθ is added as fourth dimension to the likelihood function, and four-dimensional K • likelihoods with F as the only free parameter are defined for m angular fit region events. L ES Each q2 bin and each of the five signal modes has its own separate LH function. Thus, it becomespossibletoextractF andA forarbitrarycombinationsofthefivefinalstates. In L FB particular, we quote results using three different sets of our five signal modes: the charged modeB+ K +l+l ,theneutralmodeB0 K 0l+l ,andtheinclusivemode. ∗ − ∗ − → → Inthefinalstep, weusethefittedvalueofF fromthepreviousfitstepasinputtoasimilar L • 4-dfitforA ,inwhichcosθ replacescosθ asthefourthdimensionintheLHfunction. FB l K 15 Belle FFLL1 CLCAHDMTCLFSAbS Babar K* 0.8 Babar K*0 Babar K*+ 0.6 0.4 0.2 0 -0.2 -0.4 0 2 4 6 8 10 12 14 16 18 q2 (a)FL. Belle AFBFBA1 CLCAHDMTCLFSAbS Babar K* 0.8 Babar K*0 Babar K*+ 0.6 0.4 0.2 0 -0.2 -0.4 0 2 4 6 8 10 12 14 16 18 q2 (b)AFB. Figure2: FF(bIlGu(e.to7d:apFs)hLead(tnolipdn)esaA,ndwhAicFhB(ab(lbsooottdttoeomfimn)er)etshureletessxiutnelndttissojofiinneatcdqh2iisbnijdnoisv,iinadluotanlqgq2w2itbbhiintn)h:sos(,ebaloaflcokotnfihleglredewxsptieatrrhi)mBetnehltlsoeas[n1ed9],toh(feblSaoMctkhefixelplreedcetcaxitripcolnees)rimentsand CLDF[20],(blackopenFsBquare)LHCb[21],(blackopencircle)CMS[22],(blackopenstar)ATLAS[23],(bluefilledsquare)BABAR theSMexpeBBcA→BtaARKti∗oqℓ52n+rℓse−s,u((lbtrselduarfieelldedrdaawdsonhwienn-dpthoelini1tni4ne<gst,qr2iwa<ngh1le6i)cGBheV0a2→/lcs4Kor∗e0gdℓi+oenℓfi−,hn,o(ewmetavhgeere,ntteahexfiyltlaeedrneutvpa-olpidfoifneotraintcghhetreiinantnigdrelei)qv2Bi>d+u1→4aGlKeqV∗+22/ℓ+cb4ℓ−irne.g)Tio:hne.(blackfilled star) Belle [18], (black filled circle)∼CDF [19], (black open square) [20], (black∼open circle) CMS [21], (blackopenstar)BaAbaTr K*L+ AS[22], (bluefilledsquare)BABBAabRar KB*+ K∗l+l−, (redfilleddown-pointingtriangle) → B0 →K∗0l+l− ,B(ambar aK*g0 enta filled up-pointing triangle) BBa+bar K→*0 K∗+l+l−. The BABAR q25 results are drawn in the14<q2<16BabGar Ke*0V,+ 2/c4region,however,theyarevaBlaibdar Kf*0o,+rtheentireq2>14GeV2/c4region. Belle K*0,+ Belle K*0,+ CDF K*0 CDF K*0 LHCb K*0 4 LHCb K*0 CMS K*0 CMS K*0 ATLAS K*0 ATLAS K*0 0 0.2 0.4 0.6 0.8 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 FL AFB (a)FL. (b)AFB. FlinIGes.)8[:1–q502,F7]L.(left)andAFB(right)results,alongwiththoseofotherexperiments[19–23]andtheSMexpectation(vertical MeasurementofB+ K+τ+τ−,B K∗l+l−andB Kπ+π−γ decaysatBABAR BenjaminOberhof → → → Fig. 2 graphically shows our F and A results [24] in disjoint q2 bins alongside other pub- L FB lished results and the SM theory expectations, the latter of which typically have 5-10% theory uncertainties(absolute)intheregionsbelowandabovethecharmoniumresonances. 4. StudyofB Kπ+π γ decays − → The V-A structure of the SM weak interaction implies that the circular polarization of the photon emitted in b sγ transitions is predominantly left-handed, with contamination by right- → handed photons suppressed by a factor m /m . Thus, B0 mesons decay mostly to right-handed s b photons while decays of B¯0 mesons produce mainly left-handed photons. Therefore, the mixing- inducedCPasymmetryinB f γ decays,where f isaCPeigenstate,isexpectedtobesmall. CP CP → Thispredictionmaybealteredbynew-physics(NP)processesinwhichoppositehelicityphotons areinvolved. Especially,insomeNPmodels[25],theright-handedcomponentmaybecomparable in magnitude to the left-handed component, without affecting the SM prediction for the inclusive radiativedecayrate. Ourgoalconsistsofmeasuringthemixing-inducedCPasymmetryparameter, S ,intheradiativeBdecaytotheCPeigenstateK0ρ0γ,whichissensitivetoright-handedpho- K0ρ0γ S S tons. Because of the irreducible background from B0 K0π+π γ, which is not a CP eigenstate, → S − we have to measure first the time-dependent CP asymmetry parameters S andC which K0ππγ K0ππγ are related to S by S =S /D where the dilution factor D depends on the K0ρ0γ K0ρ0γ K0ππγ K0ρ0γ K0ρ0γ S S S S amplitudesofthetwo-bodydecaysK0ρ(770)0,K (892)+π and(Kπ)+π andcanbecalculated S ∗ − 0 − as shown in [26]. Because of the much higher signal yield for B+ K+π+π γ, compared to the − → neutralmode,inourworkthedilutionfactorD isdeterminedfromastudyofthechargedmode K0ρ0γ S B+ K+π+π γ, which is related to the neutral mode by isospin symmetry. Using an extended − → unbinned maximum likelihood fit to m , ∆E and the Fisher discriminant F [27], we extract the ES signal yield for B+ K+π+π γ for m <1.8 GeV/c2. Using the sPlot technique [28], we ex- − Kππ → tractthem ,m andm invariant-massspectra. Wemodelthem invariant-massspectrum Kππ Kπ ππ Kππ ascoherentsumoffiveresonances(Fig.3),eachparameterizedbyarelativisticBreit-Wignerline shapeandfromamaximumlikelihoodfittothem spectrumwederivethebranchingfractions Kππ oftheindividualkaonicresonancesshowninTable4. WemeasuretheB+ K+π+π γ branching − → fractiontobeB(B+ K+π+π γ)=(27.2 1.0 1.2) 10 6 [29]. − − → ± ± × We then perform a further maximum likelihood fit to the m spectrum in which we include Kπ ρ(770)0, K (892)0 and a (K+π ) non-resonant S-wave contribution. We model the K (892)0 ∗ − 0 ∗ witharelativisticBreit-Wignerlineshape,theρ(770)0 withaGounaris-Sakurailineshapeandthe (K+π ) withtheLASSparameterization[31]. Table4liststhebranchingfractionofthedifferent − 0 resonancesdecayingtoK+π andπ+π . ThisisthefirstobservationofthedecayB+ K+ρ0γ − − → andtheB+ (Kπ) 0π+γ S-wavecontribution. Fromthemeasuredtwo-bodyamplitudesweobtain → ∗0 adilutionfactorofD = 0.78+0.19withmassconstraintsm <1.8GeV/c2,0.6<m <0.9 GeV/c2,m <0.84K5S0GργeV/−c2 and−m0.17 >0.945GeV/c2. Kππ ππ Kπ Kπ FinallyforB0 K0π+π γ weuseaselectionsimilartoB+ K+π+π γ andbymeansofa → S − → − maximumlikelihoodfitweextractsignalyieldB(B0 K0π+π γ)=(24.0 2.4+1.7) 10 6 and → − ± 1.8 × − CPasymmetryparametersS =0.14 0.25 0.03andC = 0.39−0.20+0.03 from whichwefinallygetS =KS0π+0π.−1γ8 0.32±+0.06 in±agreementwKiS0tπh+tπh−eγSM−. ± −0.02 KS0ρ0γ − ± −0.05 5 MeasurementofB+ K+τ+τ−,B K∗l+l−andB Kπ+π−γ decaysatBABAR BenjaminOberhof → → → Table1: BranchingfractionsofthedifferentK+π π+ resonancesextractedfromthefittothem spec- − Kππ trum. Tocorrectforthesecondarybranchingfractions,weusethevaluesinPDG[30]. Thefirstuncertainty is statistical, the second is systematic, and the third, when present, is due to the uncertainties on the sec- ondary branching fractions. “n/a” indicates that the corresponding branching fraction was not previously reported. B(B+ Mode) Previousworld Mode → × B(B+ Mode) 10 6 B(K K+π+π ) 10 6 → × − average( 10 6) res − − − → × × B+ K+π+π γ ... 24.5 0.9 1.2 27.6 2.2 − → ± ± ± K (1270)+γ 14.5+2.1+1.2 44.1+6.3+3.6 4.6 43 13 1 1.4 1.2 4.4 3.6± ± K (1400)+γ 4.1+−1.9+−1.2 9.7+−4.6+−2.8 0.6 <15at90%CL 1 1.2 1.0 2.9 2.3± K (1410)+γ 11.0−+2.2−+2.1 27.1−+5.4−+5.2 2.7 n/a ∗ 2.0 1.1 4.8 2.6± K (1430)+γ 1.2+−1.0+−1.2 8.7+−7.0+−8.7 0.4 14 4 2∗ 0.7 1.5 5.3 10.4± ± K (1680)+γ 15.9−+2.2−+3.2 66.7−+9.3−+13.3 5.4 <1900at90%CL ∗ 1.9 2 7.8 10.0± − − − − 15 18 120 1200 2)V/c100 2)eV/c 1800000 e 80 G 013 G 60 0109 460000 Events/(0. 2400 Events/(0. -2200000 0 Norm.Residual-4040.8 1 1.2 1.4 1.6 1.8 Norm.Residual -404 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 mKππ (GeV/c2) mKπ (GeV/c2) FlpeiakeIcGrehfloi.hrb4omi.noeDddairfisdettirrsitehbocoutmwtlyinoEntSto,ho�tefhFemErixseiK,smgtia⇡drn⇡uKuad⇡afrco⇡lFsert,d.ecni3oPsdort:orrrmieifnbcTartutsllothiyizwo-meernidetchmtioonmenKreserxtraoπrtrruxroπacrbictaumte(rdnltsiheuBtgesfim.+vtceTo)!nthaltheriKenikpbs+daueu⇡rtmlaim�oill⇡nhoeKs+flosf�dπroWoostmd(ietgriengdkifihagaltaotshenn.vditteTc)onfhruteseslslmpo(blsnilenPuFlt⇢taiwocee(knIlt7sGeootcas7l,terlim.o0P)hsPla6),-o∆ia0.wdDdeorfDxaadekFEcvnctoiufiesradtfitartrhytcrvca(eiiotpKbenctomnreuogo⇡oidmptnsdji)toeoer⇤0Efotcnn0rrShtaeoFK,ieeonc�onmoftndc+rsnm.eE,tt⇡ttsThriK,lwu.u�ieebhy⇡alo.⇡uetsnm-ft+tdsosioihrmaotrn.feFaenxcatBngsiK.olchm,ldre-eP⇤rodrlaue(eooarfic8msnwisPdtpn9thl2tesyesc)-dt0trwlirervacieouetnodlhndytc,.smetttrhtreTerueeodhcdri⇢cteue(bmhd7Bda7a-rBnd0ss+)ha+ig0seq,ihd!v→ae-euddnKtodeghtr+teKt.eeh⇡esde�nu+Pmgd⇡ara+nπoasod�yhfi−edsncsdiouWg-πttrtntvesraeiie+pdglhlewcemtγvo-serda.rinogsettTtesshtinpheg(todesanPneblcdilulgrsaourhrtetvlt)ooe,sbseoetrlxlchuviotdeerbrearcciencnauusttrrpeertvvdrosseefnefccdrroooetrnrmorrceeettsshhppbeeooennKmtdwda⇤sse(xett8inoom92tttu)hhhm0eee, deviationlevels,respectively. EinSterferencebetweenthe(K⇡)⇤00andsthe⇢(770)0.BelowthemK⇡spectrum,wealsoshowtheresidualsnormalizedinunitsof give the sum of sWeights. The blue solid custravndeardsdheoviawtiosns,twhheerefithteptoaraltlehledotmtedandfulsllpineescmtarrukmtheoanenadndtthwoestatnodtaardldePviDatioFnlefivetls,respectively. Kππ projection to m , respectively. The small-dashed red, medium-dashed green and dotted magenta curves TsfJ112oe�++APrcoBbnLodtESihinsutVJmsey.PrfsRoet=freeeKmfis1nutr+acKKKKKleettfsrisa211⇤⇤⇤cKan(((((oc(11111drfts24e464iest70o1831cctBi9tBa5eh00n000�hshoonSe))0)))s.e0eeerrrdofic%lerrt.so→dCbleeoIftwVenaouIssscaospnppDeltnohhleKcnootr1eceoaen)vlnns.cci∗ocdnfieoanddT0lhrrn-derhedsultfeMtecrs+0120bdcMoeotas....iutele7312o1ilpmnnlasrauiyn2609n.tt0ngc−w-olrct±±±±hserndeuKa(h(earJiJeinficeGtct-0000arπroetPauxoPta....dkei1120erinedvhlVKnn=n0689=diodseee/tL+�+�+�+�nttes.)i,cdtvr∗↵1ieh-100000000h2nutts....�....+wb()u12200121eeeeecoo207986618-tB::ardnlspeweo{h{f9.dctKpaKelhn2→nppsWkier⇤1eieeg)g((eeKwtrn110phneh2ar4a1a,l71tla(Kfcreni100hasρobre2m))dmPr∗7da––rl(ele0bluWomKKvtit7)st+wea23ete1Pae⇤i7ri..od(91ntsse(dohl1fo10000tcw74dyam4−dh6...umnu000±±s)0K8smee(a0K00.r(((tGe00t⇤)te�)fififil⇡vha..}(}hesaxxx11m⇡an1V(en72eeeeR,6.resn/ddd+�+�a8dtcnecTu)))00d00d0fieh2fi....a).hoot)1010r)se1224rrewrn(errusyd8888888888888888888888888888ifiKrmt1111111122222222223333333333dda2345678901234567890123456789trewltsdiiftBb(tgBdgfiptftwyuitsolmltAhπsssssnurroatr3ihhrhoipitreansseaaesoviuue+ste⇡.erpaobecWortbhtlcfiul3dccsiel)eemn⇡awlainaioadedivtuFtt4rxnenmcueeoarydr∗0emarncePsfiizt+�ta↵e!-ecooetaashsiittcaibiBidolnrineceea00nneutzohnignao-infs[ocs..ooctrtnefigcna.m3nart65edlt9dwtndreotwtdbtmleog24c4naroiRKi0aatirbtthie+c�yreetvcth]sthydi0hnbapiete,aoomeftshtian10eii0ntiSerhanlewuoshfMlrhwl.r.(e��onacat(.t,h6tei8fevtnerer1ttmeFneyn1ht42cs1hbtoinaacefise00000100oi[r2eitcetch1)tFetee01VoiattoonueutF........7nnehaiiinlieh⇥.lteii0761440633nloxns/esdrgn0a0wotblehcsosefein%]n17205550ncacptseeg+�trccfi)neeh1.iuioeisich2t+�+�+�+�+�+�+�+�tnaul+vhterncxt0to11nstloibnesifpoeecraehoc.ih.00000000.cedt00000000via�vIr(dhta45neelttssafbftert........nn........oc!amietyistr00000110T2na+�s00000111tiitairtlrooerrsiFdorcBh.leiwoi88854808a55743461u,htiytdoesac2b2rioanhtntsnsnhnai+�+�+�+�+�+�+�+�gttwxo(..eeteInhsnrpfoilr05odLeitiiKnteenndllo,emKc0000000000000000ascoeycwn)thscmfaogfdt........n........litnNohnnaae(00000100000000001aautfiedsh⇥ir0mKsheet⇤polteKic55885259s54466856inl(ofSrnnReyshcsiaenr(noe,errahi⇡r1fiesniiacnat1faKs1maeaonng⇡evfttsfs2ieodstllnem4lt0cnncermsuyeaSay07yrae)eLphtfoce3tet�dbplgders⇢en⇤0snmlr0nsahlyoalnnen0Aetr�0iye6naytiid)ospesrlsemets)ttmimahtf.t,tce+ficsScnd0urrmswichtstpiNeudecnrontaiaSw⇡mseAtKndoBiibrseessa!lefaec,onncAohfiR+oneaeteet⇡eusagcfi.pttnctaettqBsrittnpi)+ioiultncnhad.liriidovculp�pdtKie.pyminnnaenTireeo,nKotieatb,!esatrndegedercenh0ph⇤irritu→nmmeutbaeda80.ddst⇤,tfem(vhiwltothmtridh,onr4s(1ehJneedyisteeoydtee1ertifia5edeoc4a/tteeaexhemfra4ha.anctnrh3t mvnEMriseleib3trisnyastei0wKtectesAszynqtmee(unth0xrsKithsi)ereuFdah ads.ayer)Ve0sa,itr.ep⇡ltbtetFea0enre⇡06t+Kb(/irhiioaw)-sLtmaileo1c0sssvyos+ctKeiaplfTeicid.htnsnAgc)ph0ha2csestτfl)oti∗totnni,⇡rlieitecindrTqSnbbyhhuhcrveoneaisa=ca(⇡itni+Snhdyyeogaeeeeessr----l,luetd8ssphτ8888888888888a94444444444555,e0123456789012deto−r2wo9nmdvimwstwctnanuayeela4oi()hhZZZZZteesris;rrsa5ttnhetKnneetdtbei0eeogahMaterr.rssn���������22eieerrnmitiiAAAee<<dniaIootπeaehtisortniVttaz⇢K(nnt⇣⇣eohnndKhmieKsit2/c.s)eno⇤AAeeeiea,o⇡cfS+sd0sca-nr∗0l.2un⇤⇢⇤⇢)twTo���B⇡tsdould⇤0aiKK22uothnrisf�+nenhdtargewnSScdo00rr⇡���i+tchggeed5eoKbmc2eAAnehe�mnirtebegdduorteemtK(���dtt⇡rdpi×mtthntKK2aio→t∗e⇡haapi⇢⇤e⇡Diafinod⇡iρ⇡a+⇡ididnh(n⇡dnntinm)ae⇡7K⇡emtnaddr⇤01htcbi(fi7d�+tqsmSi0eua⇡aKei0oemngeue7⇡⌘s⇢0Kra⇡eesmfi-av)l�⇡ee�asdsa0Kdcrset7ldn,−adpρ⌘mKmrs=odm=era∗⇡clerarawa0ia⇡itdcasepKr3sc+nly⇡x(bs�=0homesytceh)⇡te,⇡tsouu.7quuid0aa2cda0lv⇡bw0lrsunscsit.=hs6tm7e⇡e7.os+hotiit,eghst09sr.ued8ua-iiaaKe0t70edtfnisa+�m±pntmnirlonrm8.rTpt⇡c1ne00e)dherntit−evKaa±.h.0n4eaoha11=0lcmsbn.td⇡1eddee97eer0euoSalE0,.t+�o,imK2�wes=mnme.etq000y8sacih⇡d↵.a.0n.m0,0⇡s0.c�ire.2t22(s⇡cns0dIacee971y0o,tV9tsndm,aa)st.us01,dthntD.tnaie4i±eydhnsttmUm.9itseimem+�ci0sqamKclfli.00dutKaouonK0a.⇡.is00awlr0nxgc⇡⇡54d(6ca20u3ttdr,eiddn,hhnn4aeriidee)------- here. Our B0 K 0l+l results are in reasonable agreement with both SM theory expectations K1(1270) 1.272→(fixed)∗ − 0.098±0.006 K⇤(1680) 1.717(fixed) 0.377±0.050 6 28 28 101000 110000 2)Events/(0.0023 GeV/c2)Events/(0.0023 GeV/c2468000024680000 Events/(0.04 GeV)Events/(0.04 GeV) 2468246800000000 MeasurementofB+ K+τ+τ−,B K∗l+l−andB Kπ+π−γ decaysatBABAR BenjaminOberhof 50.502.25.52.1215.52.2225.52→.3235.52.4245.52.5255.52.266→55.2.27755.2.28855.2.299 → −0−000.2.2−−00.1.155−−00.1.1−−00.0.055 00 00..0055 00..11 00..1155 00..22 mmESE S( G(GeVeV/c/2c)2) ∆∆EE ((GGeeVV)) DaDtaata 101000 CoCrorerrcetlcyt-lyre-rceocnosntsrutrcutcetde ds igsinganlal 6600 MiMs-isre-rceocnosntrsutrcutectde ds igsinganlal CoCnotnintuinuumum Events/(0.1)Events/(0.1) 468000468000 XKBXBKKs±S0±s00S0+XKBXBKK γγπGGππs±S0±s00S0+-+0 eeγγπGG γππγγ-+0nn ee γeeγγnnrreeiiccrriicc vents/(0.533 ps)vents/(0.533 ps) 2345234500000000 EE 2020 1100 00 00 00 0.01.10.02.20.03.30.04.40.05.50.06.6 00.7.7 00.8.8 00.9.9 11 −−88 −−66 −−44 −−22 00 22 44 66 88 FiFsihsehre rD Disicsrcirmiminiannantt ∆∆tt ((ppss)) FIFGIG.8..8.DDisitsrtirbiubtuitoinosnsofofmmESES(t(otpoplelfetf)t,),��EE(t(otopprirgighht)t,),ththeeFFisishheerrDDisisccrrimimininaanntt((bboottttoommlleefftt)),,aanndd��tt((bboottttoommrriigghhtt)),,sshhoowwiinngg tmhtmeehFaeernaiegsrnseusuoslfurotelftsthts4oehf:oefftoDhftlolehiolslewofitwrtfiinitibtgnoutgortteirhoqteheuqneuiBsriBero0me0fm!eF!neintKsstKh:sS0:eS⇡�0r⇡�+0d+0⇡.1i⇡.�s15�c5��ridm�da�atiEatnEaasansamt0m0.(p1.lp1l0eel0feG.tG.)eTVeTaVhnhe(ed(mdmd∆iEsiEStstStr)(r)i;rbi;mbiumgutEhtiESoitSon)>n,s>ss5hh5h.ao2.av27vwe7eGGitntehehVgeVe/i/irficrc2ts2sir(ig(ge�n�nsaEauEll/l)/)tb;b;samamtccokEkEgSgtSrhr>o>oeuu5nB5n.d.2d0277r→raGaGtteieiKVoVo//S0eeccnπn22hh,+,aa��πnnc0c0−e.e.1d1γd55bbyy ��EdEata0s.01a.01m0GpGelVeeV(wF(iFitsihhsehtrehraenanaddd�d�itt)ti.)o.nPaPoloinirntestqswuwiitrihtehmeererrnorortsrb:baarsrs0s.sh1ho5owwtthh∆eeEddaattaa..0.T1Th0heeGppreroVojjeecc(ttmiioonEnSo)of,ftmthheEeSfifit>trree5ssu.u2llt7tiisGsrereeVpprr/ecess2eennattneedddbbyy stsatcakcekdedhihsitsotgorgarmams,s,wwhehreereththeeshshadadededaareraeassrerpepreresesenntttht−heebbaacckkgg≤rroouunnddc≤coonnttrribibuuttioionnss,,aassddeessccrriibbeeddiinntthheelleeggeenndd.. SSoommeeoofftthhee cocnotnrt0irb.iu1btu5itoinosn∆sarEaerehahra0dr.ld1yl0yvGivsiisebiVblele(d∆duute)et.otPotohtiheniertisrsmwsmaitalhlllferfarracrctoitroionbnsas.r.NsNosothteoetwthhatathtetthhdeeastsaaam.meTeohorerddeperrroiisjseuucssteeidodnffoororftthhteheevvaafirrtiiooruuesssuccooltnntitrsriibbrueutptiirooenn-ssiinn − ≤ ≤ bobtoshethnthtteehdestsbatycakcsekdteadchkihsietsodtgorhgarimasmtsosganarandmdthsthe,ewcochorrererrseepspothonneddinsinhggaldelegegedenndad.r.easrepresentthebackgroundcontributions,asdescribed inthelegend. 111333778111890333778890attaisattmiyaisTnmmiyena-meSmdb-SKemdlepeKeS0teper⇢S0t2ny�er⇢:dny�r=edBer=neleratn�latat�an0etsad.0ec1ysd.h81ymti8mont±mog±mte0httfe0.herr3t.aeir32eBci2+�seBt+�0si00io0..n0000i!.n.n6500!rs.65ar.KaodTKdfiTSa0hiSta0⇢thihi⇢st0iveis0�vem�emrdBeedBeeasecaosdcausdneauyreacyercaneamayacmnysenedsensdintsiotdsobioenbio-fnc-fa131y9379i7ng to Kπ andAπACπCKKeNxNtOrOaWWcteLLdEEDfDroGGmMMtEEhNeNTfiTStSto the mKπ 13811381agargsepreeemecmetrneutnmtw.witihRthpdpreervenviooituoeusslsylaypnpuiubnbltilesihrsmhedeeddreriesaustueltlstrse[8s[8o––1n10a0]n]atansndtdaitsies131a9389n8d hWWseetatnthhdaasnnkfkoErE.a.KKfionouualffosortrahtheeellhppadtthrhorronouu:gghahoocuuhttarttghheeedaapnniaaollynyssiiss,, 13812382ofoefoqeruqkiuvaiavolaenlne.tntpTproercecicosiisroirnoen.c.tInIfnothrthitsihssetsatsateitscitsoitcnicsd-sl-ailmrimyitibetedrdamnmceheaaisnsuugrree-f-r1a3193c99t9ieoesspnpsee,cciawiallleylyuwsweitithvhatlthuheeesccofomrmopmpuutt[aa3tti0ioo]nnaonofdfttBhhe(eKdd∗iil(luu8tt9iioo2nn)0ffaaccttoorr,, 13813383mmeKnetn+,tπ,nono)ded=veiv2ait.aitoTinohnefrfofirmormstthtuhenecSeSMrMtapiprnertdeydiciictsitosiontantisiissotiobcbsaseler,rvtveheded..s1e41c0400o0anandnddisAAs.y.sLLteeemYYaaatoiocuu,aanannccdffotohrrevvtaahlluiuraadbbl(lewedhdieissnccuuasspssipioolnincssa..blWeW)→eeisaarree − 14104101ggrraatteefufullffoorrtthheeeexxttrraaoorrddiinnaarryyccoonnttrriibbuuttiioonnssooffoouurrPPEEPP-- duetotheuncertaintiesonthesecondarybranchingf1r41a0420c2tIiIIoInccosol.llelTeaahggeuueleasssitinntwaaocchhrioieevwviinsngogftththheeeeetxaxcbceellellleeannrtteloluubmmtaiinninooessidittyybyaanndd 111111111333333333888888999111111111456789012333333333888888999456789012sdKtittinehihuesdKtittimsne⇤eerhihuWcsietms0esane⇤eeroeWch⇡etKy0e-esdafeptoehd⇡e+iKyh-eirfatnhe⇡tedc+eienhrrhpganh⇡te⇡asaeaeenevhupgieat⇡stutnnaeeeneviluieostupttntdnnsednylroesssthptgtdKKaedsttyrKresshoh(tKuanmlaestrt∗K⇡etoar(ttu+adhnmldo(meeK⇡et⇡trtdie⇡8nρdCdeomeMee⇡tiuc⇡ndCdeit)9hceP(waauh⇤0scpdit)oPeo27twae0yath⇤0srphoneaddh⇡)t7e0yoctrlhoitesa0dBh⇡aecuoe+o0rrliytshπBraeceui+grr.)0odymbithsrrehgz.0+0odmeioeusmhaz!emγceonsttmγatx!emAaciaphnatietxotAyaoyaheoasntierKtnyonysresnattnrKBiuysnsr.bacntS0dBi,uaym.btcn+Set⇢f0Bi,amBmtwre+eWnt⇢0iSmorwe1W(u!n�0g(peiSmKrmu!eRn�s5gBpe.l8mKeebgisgS.0el.tKh+.efgiaS→r60⇢tedIiuu1tKhfahaas�⇢indIiuuid+lno±asv→�ninae±id+lnoevsafe⇡tcahfreispsrfe⇡eotaf0hdn�oriπ0espeomirdn�Moodfinms.s⇡mir.ono)6dffntmso⇡i4eoo+rafttgieoa×rons+±t+mriatSta�erosyshtmidSaetf�eK00osusyhnameres1neKsou0t..narmaeStsr087otot0n)re⇢mSti.r0tc⇡onoe⇢5mdiaato0−⇡st×+modnaeo0iKsnnt+mn⇡6eotKntuttced⇡tr�uottnhh+cedear�yohh+nd�eaeetsy--,,n�whees--,,B1111111111e4444444444a8111111111100000001114444444444(3456789012s0000000111n.3456789012B2mTetteDt(IonmTetteDt(InhohCxx+n±onhohChexx2asaepthearatpstaeepttce3at→epetentchei0htaNpnenhtri.shaNnsasartir.d4urtsoasaaurunitddu4tneiauunettdntnmMsipce±veatktmsdpucee±akcapdNu)eiceprNc)eno,oeSoar0cenat,aoSsoan0atturLnaosodttls.tnrLnotttlsshtn.9pdiAethSdod8oiAltoeSdoBa+−o)ytofeciCBhndffrcitCh±nAdfi00EteC×aAteiierEeCaBteio..emdfleBnt87onomhodflon0nnAh1opioncAedfmi.ricRcsed.mi.sre0coRrsesa0etre.sgamirh−t.sgtmiTtp2tyttPTthpiTesyaPhei6iTrosahisarohnhaodsahnhnsLsaoihtnsysndijtsu.aeyndjsuaeeAsoderphsodcrphicwaEifci<cwqEpaSiftaoqNpaPvtaoNontuvotonlStuvothlealrraegehralra2egaerkeea`alrttikpe`alttisbn0iamvNsbnimNooacaoooielcgaoiielsn’ouraan2esrn’ouoaEnerearEmaacdrrtdmaacd0rseudmniselltenilult(´nle9epu+−´nlisepeiStiei×napeStgenua0prgethu76rcthiwstgpcghisgtprg%heritr1ReiiiReoeiiiieoeiincoesincze0nnskrennkrregreratgsCecis−tiAscwisiAletnwtettetnetetedoiid6oiLatodidiatodcodtrcFdto)rFrroarurganuegcmokbehcmokbhlatlah.tluhyoluyioPnyiiPnyipon“poqsnqsiChiCnpthonnzdputozduoohyhssyaois/saoiaenaetntsaesstuestutwatwaiiii”iiaibnqaibnolqtoloUtoiUiininuhlcsnuhlctsnntneediShydiSheeysees.,l.,l 11113333999911113456333399993456baarennrbaarsaeddnnrpsnaddep(tcncKheh(tctcKehihi⇡ntveioi⇡)gnevv⇤0ol)gey0(evf⇤0lKr.⇡rKy0efaar.⇡r+0(∗claπa+lK(tclci)l1btoocπ00ibr4nmooπar)n3msnap∗0+s0nco0pohγ)cfoπnoh0ifnetn+(πinhetnNgγnhte+gsfteR,rγsdfa,rl)diiac↵lsiitc↵etsiteretoiederonnedn0sintns.iton81KofTK20fTtareh.ta±rbs3ehebls+−ee!l0.⇢es!.00⇢s.0.V..00K78KVK6+−IK−+I⇡+a12+⇡a,n..⇡0050,n⇡Kd..11Kds26Vs⇤tV⇤ta0Ia0⇡tII⇡teI+Ies+I,s,111144441111111114444345611113456.ddsc3ddsccleu2eclheuse9nha+sanarga.Pfrg009ePtfea..tu01a(±ru((90Irn(tGInt+tGid.tac0id.eac00u.le.ruyl..Fr7lm22yFe)lmo06e)+−,soa,rsa±rt11sn(tsnh..c(Fyh59cFyhe0)hre)ur,a.uF,aFn1nnotnotg4chugchueeene)na)ad,ndI,nIastdastdtthtth<iiietioDetoDununBe9tBetoufuo.ufuo2tontrnNsrNsdcadcFaFhnneahteuzseuz//sei9mnaaimnood0FndFininao%naaoamirlmirlsessestcteCceeehdnhdnrrLutiuitiiuaunanFFlmlmggiRisRsssgigfiefecuce¨ue¨ssaamrmereaaNeBNeBrriicnuicniulhlh------ − − − andotherexperimentalresults. Similarly,althoughwithrelativelylargeruncertainties,weobserve broadagreementoftheB+ K +l+l resultswiththoseforB0 K 0l+l . However,inthelow ∗ − ∗ − → → dilepton mass-squared region, we observe relatively very small values for F in B+ K +l+l , L ∗ − → exhibiting tension with both the B0 K 0l+l results as well as the SM expectations. These ∗ − → tensionsinF aredifficulttointerpretbecauseofuncertaintiesduetoform-factorcontributionsin L the calculation of this observable in both the SM and NP scenarios. We measured the branching fractionsofthedecaysB+ K+π+π γ andB0 K0π+π γ. ForB+ K+π+π γ weobserved → − → S − → − five different resonances decaying to Kππ state and we measured their branching fractions. We found first evidence for B K (1400)+γ, B K (1410)+γ and B K (1400)+γ decays. We 1 ∗ ∗ → → → have calculated the dilution factor D from the measurement of B K (892)0π+γ, B+ KS0ρ0γ → ∗ → 7 MeasurementofB+ K+τ+τ−,B K∗l+l−andB Kπ+π−γ decaysatBABAR BenjaminOberhof → → → K+ρ(770)γ andB (K+π )0π+γ decays. Wehavemeasuredthetime-dependentCPasymmetry − → parametersS andC andhencederivedS fortheK0ρ(770)0γ CPeigenstate. K0π+π γ K0π+π γ K0ρ0γ S S − S − S References [1] J.P.Leesetal.[BABARCollaboration],Nucl.Instrum.Meth.A726,203(2013). [2] B.Aubertetal.[BABARCollaboration],Nucl.Instrum.Meth.A479,1(2002);B.Aubertetal.[BABAR Collaboration],Nucl.Instrum.Meth.A729,615(2013). [3] C.Bouchard,G.P.Lepage,C.Monahan,H.Na,J.Shigemitsu,Phys.Rev.Lett.111,162002(2013). [4] J.L.Hewitt,Phys.Rev.D53,4964-4969(1996). [5] J.P.Leesetal.[BABARCollaboration],Phys.Rev.D86,032012(2012). [6] R.Aaijetal.[LHCbCollaboration],Phys.Rev.Lett.111,191801(2013). [7] R.Barbieri,G.IsidoriandA.Pattori,Eur.Phys.J.C76,67(2016). [8] T.M.Aliev,M.SavciandA.Ozpineci,J.Phys.G24,49(1998). [9] J.P.Leesetal.[BABARCollaboration],Phys.Rev.D87,112005(2013). [10] D.J.Lange,Nucl.Instrum.Meth.A462,152(2001). [11] B.Denby,NeuralComputation5,505(1993). [12] A.Ali,W.Lunghi,C.GreubandG.Hiller,Phys.Rev.D66,034002(2002). [13] J.P.Leesetal.[BABARCollaboration],Phys.Rev.D87,112005(2013). [14] G.Buchalla,A.J.BurasandM.E.Lautenbacher,Rev.Mod.Phys.68,1125(1996). [15] W.Altmannshoferetal.,JHEP0901,019(2009). [16] G.Burdman,Phys.Rev.D52,6400(1995). [17] J.L.HewettandJ.D.Wells,Phys.Rev.D55,5549(1997). [18] J.-T.Weietal.[BelleCollaboration],Phys.Rev.Lett.103,171801(2009). [19] T.Aaltonenetal.[CDFCollaboration],Phys.Rev.Lett.108,081807(2012). [20] R.Aaijetal.[LHCbCollaboration],JHEP1308,131,(2013). [21] S.Chatrchyanetal.[CMSCollaboration],Phys.Lett.B727,77(2013). [22] G.Aadetal.[ATLASCollaboration],ATLAS-CONF-2013-038. [23] L.Breiman,Mach.Learn.24,123(1996);I.Narsky,physics/0507157(2005). [24] J.P.Leesetal.[BABARCollaboration],Phys.Rev.D93,052015,2016. [25] K.FujikawaandA.Yamada,Phys.Rev.D49,58901558(1994). [26] J.Hebingeretal.,LAL-15-75;http://publication.lal.in2p3.fr/2015/1550note-v3.pdf. [27] R.A.Fisher,AnnalsEugen.7,179(1936). [28] M.PivkandF.R.LeDiberder,Nucl.Instrum.Meth.A555,356(2005). [29] P.delAmoSanchezetal.[BABARCollaboration],Phys.Rev.D93,052013,2016. [30] K.A.Oliveetal.[ParticleDataGroupCollaboration],1584Chin.Phys.C38,090001(2014). [31] D.Astonetal.,Nucl.Phys.B296,493(1988). 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.