ebook img

Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons PDF

0.54 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH COMPASS CERN-PH-EP-2014–009 January23,2014 Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons TheCOMPASScollaboration 4 1 0 Abstract 2 Spin-averagedasymmetriesintheazimuthaldistributionsofpositiveandnegativehadronsproduced n a in deep inelastic scattering were measured using the CERN SPS muon beam at 160 GeV/c and a J 6LiD target. The amplitudes of the three azimuthal modulations cosφ , cos2φ and sinφ were h h h 4 obtainedbinningthedataseparatelyineachoftherelevantkinematicvariablesx,z orph andbin- T 2 ninginathree-dimensionalgridofthesethreevariables. Theamplitudesofthecosφ andcos2φ h h modulationsshowstrongkinematicdependenciesbothforpositiveandnegativehadrons. ] x e - p e h [ 1 v 4 8 2 6 . 1 0 4 1 : v i (tobesubmittedtoNucl.Phys.B) X r a TheCOMPASSCollaboration C.Adolph8,R.Akhunzyanov7,M.G.Alekseev24,Yu.Alexandrov15,*,G.D.Alexeev7,A.Amoroso27,28, V.Andrieux22,V.Anosov7,A.Austregesilo10,17,B.Badełek31,F.Balestra27,28,J.Barth4,G.Baum1, R.Beck3,Y.Bedfer22,A.Berlin2,J.Bernhard13,R.Bertini27,28,K.Bicker10,17,J.Bieling4,R.Birsa24, J.Bisplinghoff3,M.Bodlak19,M.Boer22,P.Bordalo12,a,F.Bradamante25,10,C.Braun8,A.Bravar24, A.Bressan25,24,M.Büchele9,E.Burtin22,L.Capozza22,M.Chiosso27,28,S.U.Chung17,b, A.Cicuttin26,24,M.L.Crespo26,24,Q.Curiel22,S.DallaTorre24,S.S.Dasgupta6,S.Dasgupta24, O.Yu.Denisov28,S.V.Donskov21,N.Doshita33,V.Duic25,W.Dünnweber16,M.Dziewiecki32, A.Efremov7,C.Elia25,24,P.D.Eversheim3,W.Eyrich8,M.Faessler16,A.Ferrero22,A.Filin21, M.Finger19,M.Fingerjr.19,H.Fischer9,C.Franco12,N.duFresnevonHohenesche13,10, J.M.Friedrich17,V.Frolov10,R.Garfagnini27,28,F.Gautheron2,O.P.Gavrichtchouk7, S.Gerassimov15,17,R.Geyer16,M.Giorgi25,24,I.Gnesi27,28,B.Gobbo24,S.Goertz4,M.Gorzellik9, S.Grabmüller17,A.Grasso27,28,B.Grube17,A.Guskov7,T.Guthörl9,c,F.Haas17,D.vonHarrach13, D.Hahne4,R.Hashimoto33,F.H.Heinsius9,F.Herrmann9,F.Hinterberger3,Ch.Höppner17, N.Horikawa18,d,N.d’Hose22,S.Huber17,S.Ishimoto33,e,A.Ivanov7,Yu.Ivanshin7,T.Iwata33, R.Jahn3,V.Jary20,P.Jasinski13,P.Joerg9,R.Joosten3,E.Kabuß13,D.Kang13,B.Ketzer17, G.V.Khaustov21,Yu.A.Khokhlov21,f,Yu.Kisselev7,F.Klein4,K.Klimaszewski30,J.H.Koivuniemi2, V.N.Kolosov21,K.Kondo33,K.Königsmann9,I.Konorov15,17,V.F.Konstantinov21, A.M.Kotzinian27,28,O.Kouznetsov7,Z.Kral20,M.Krämer17,Z.V.Kroumchtein7,N.Kuchinski7, F.Kunne22,K.Kurek30,R.P.Kurjata32,A.A.Lednev21,A.Lehmann8,S.Levorato24,J.Lichtenstadt23, A.Maggiora28,A.Magnon22,N.Makke25,24,G.K.Mallot10,C.Marchand22,A.Martin25,24, J.Marzec32,J.Matousek19,H.Matsuda33,T.Matsuda14,G.Meshcheryakov7,W.Meyer2, T.Michigami33,Yu.V.Mikhailov21,Y.Miyachi33,A.Nagaytsev7,T.Nagel17,F.Nerling9,S.Neubert17, D.Neyret22,V.I.Nikolaenko21,J.Novy20,W.-D.Nowak9,A.S.Nunes12,I.Orlov7,A.G.Olshevsky7, M.Ostrick13,R.Panknin4,D.Panzieri29,28,B.Parsamyan27,28,S.Paul17,M.Pesek19,D.Peshekhonov7, G.Piragino27,28,S.Platchkov22,J.Pochodzalla13,J.Polak11,24,V.A.Polyakov21,J.Pretz4,h, M.Quaresma12,C.Quintans12,S.Ramos12,a,G.Reicherz2,E.Rocco10,V.Rodionov7,E.Rondio30, A.Rychter32,N.S.Rossiyskaya7,D.I.Ryabchikov21,V.D.Samoylenko21,A.Sandacz30,S.Sarkar6, I.A.Savin7,G.Sbrizzai25,24,P.Schiavon25,24,C.Schill9,T.Schlüter16,A.Schmidt8,K.Schmidt9,c, H.Schmieden3,K.Schönning10,S.Schopferer9,M.Schott10,O.Yu.Shevchenko7,L.Silva12, L.Sinha6,S.Sirtl9,M.Slunecka7,S.Sosio27,28,F.Sozzi24,A.Srnka5,L.Steiger24,M.Stolarski12, M.Sulc11,R.Sulej30,H.Suzuki33,d,A.Szabeleski30,T.Szameitat9,P.Sznajder30,S.Takekawa28, J.terWolbeek9,c,S.Tessaro24,F.Tessarotto24,F.Thibaud22,S.Uhl17,I.Uman16,M.Vandenbroucke22, M.Virius20,J.Vondra20 L.Wang2,T.Weisrock13,M.Wilfert13,R.Windmolders4,W.Wis´licki30, H.Wollny22,K.Zaremba32,M.Zavertyaev15,E.Zemlyanichkina7,andM.Ziembicki32 1 UniversitätBielefeld,FakultätfürPhysik,33501Bielefeld,Germanyj 2 UniversitätBochum,InstitutfürExperimentalphysik,44780Bochum,Germanyjq 3 UniversitätBonn,Helmholtz-InstitutfürStrahlen-undKernphysik,53115Bonn,Germanyj 4 UniversitätBonn,PhysikalischesInstitut,53115Bonn,Germanyj 5 InstituteofScientificInstruments,ASCR,61264Brno,CzechRepublick 6 MatrivaniInstituteofExperimentalResearch&Education,Calcutta-700030,Indial 7 JointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russiam 8 UniversitätErlangen–Nürnberg,PhysikalischesInstitut,91054Erlangen,Germanyj 9 UniversitätFreiburg,PhysikalischesInstitut,79104Freiburg,Germanyjq 10 CERN,1211Geneva23,Switzerland 11 TechnicalUniversityinLiberec,46117Liberec,CzechRepublick 12 LIP,1000-149Lisbon,Portugaln 13 UniversitätMainz,InstitutfürKernphysik,55099Mainz,Germanyj 14 UniversityofMiyazaki,Miyazaki889-2192,Japano 15 LebedevPhysicalInstitute,119991Moscow,Russia 16 Ludwig-Maximilians-UniversitätMünchen,DepartmentfürPhysik,80799Munich,Germanyjp 17 TechnischeUniversitätMünchen,PhysikDepartment,85748Garching,Germanyjp 18 NagoyaUniversity,464Nagoya,Japano 19 CharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublick 20 CzechTechnicalUniversityinPrague,16636Prague,CzechRepublick 21 StateResearchCenteroftheRussianFederation,InstituteforHighEnergyPhysics,142281Protvino, Russia 22 CEAIRFU/SPhNSaclay,91191Gif-sur-Yvette,Franceq 23 TelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israelr 24 TriesteSectionofINFN,34127Trieste,Italy 25 UniversityofTrieste,DepartmentofPhysics,34127Trieste,Italy 26 AbdusSalamICTP,34151Trieste,Italy 27 UniversityofTurin,DepartmentofPhysics,10125Turin,Italy 28 TorinoSectionofINFN,10125Turin,Italy 29 UniversityofEasternPiedmont,15100Alessandria,Italy 30 NationalCentreforNuclearResearch,00-681Warsaw,Polands 31 UniversityofWarsaw,FacultyofPhysics,00-681Warsaw,Polands 32 WarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Polands 33 YamagataUniversity,Yamagata,992-8510Japano a AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal b AlsoatDepartmentofPhysics,PusanNationalUniversity,Busan609-735,RepublicofKoreaand atPhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973,U.S.A. c Supported by the DFG Research Training Group Programme 1102 “Physics at Hadron Accelera- tors” d AlsoatChubuUniversity,Kasugai,Aichi,487-8501Japano e AlsoatKEK,1-1Oho,Tsukuba,Ibaraki,305-0801Japan f AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700,Russia g present address: National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, UnitedStates h presentaddress: RWTHAachenUniversity,III.PhysikalischesInstitut,52056Aachen,Germany i AlsoatGSImbH,Planckstr.1,D-64291Darmstadt,Germany j SupportedbytheGermanBundesministeriumfürBildungundForschung k SupportedbyCzechRepublicMEYSGrantsME492andLA242 l SupportedbySAIL(CSR),Govt.ofIndia m SupportedbyCERN-RFBRGrants08-02-91009and12-02-91500 n SupportedbythePortugueseFCT-FundaçãoparaaCiênciaeTecnologia,COMPETEandQREN, GrantsCERN/FP/109323/2009,CERN/FP/116376/2010andCERN/FP/123600/2011 o SupportedbytheMEXTandtheJSPSundertheGrantsNo.18002006,No.20540299andNo.18540281; DaikoFoundationandYamadaFoundation p SupportedbytheDFGclusterofexcellence‘OriginandStructureoftheUniverse’(www.universe- cluster.de) q SupportedbyEUFP7(HadronPhysics3,GrantAgreementnumber283286) r SupportedbytheIsraelScienceFoundation,foundedbytheIsraelAcademyofSciencesandHu- manities s SupportedbythePolishNCNGrantDEC-2011/01/M/ST2/02350 *Deceased Measurementofazimuthalhadronasymmetriesinsemi-inclusivedeepinelastic... 3 1 Introduction In the quark-parton model the transverse degrees of freedom of the nucleon constituents are usually integrated over, and the parton distribution functions (PDFs) as determined in lepton-nucleon deep in- elastic scattering (DIS) depend only on the Bjorken scaling variable x and on Q2, the virtuality of the exchanged photon. On the other hand it was soon realised [1, 2] that in semi-inclusive DIS (SIDIS) processes,namelyinlepton-nucleonDISinwhichatleastonehadronfromthecurrentjetisdetected,a possibleintrinsictransversemomentumofthetargetquarkwouldcausemeasurableeffectsinthecross- section. IndeedtheSIDIScross-sectionisexpectedtoexhibitacosφ andacos2φ modulation,where h h φ is the angle between the lepton scattering plane and the plane defined by the hadron and the virtual h photon directions, as shown in Fig. 1. The coefficients of these modulations are predicted to vanish asymptoticallyas1/Qand1/Q2,respectively[2]. Theearlymeasurementsinthe70showeverwerenot accurateenoughtodetectsuchmodulations. hadron plane ph ph T h y x z q lepton plane Fig.1: SIDISintheγ∗N system: p(cid:126)h isthemomentumoftheproducedhadronandp(cid:126)h itstransversecomponent T withrespecttothevirtualphotondirection. Attheendofthe70s,interestinpossiblemodulationsoftheSIDIScross-sectioncamealsofromadiffer- entdirection. Azimuthalasymmetriesinunpolarisedprocessesinquantumchromodynamics(QCD)are generatedbygluonradiationandsplitting,andtheobservationoftheseasymmetrieswasinfactproposed as a test of perturbative QCD (pQCD) [3]. Such a possibility however was immediately questioned by R. Cahn [4]. Using simple kinematics the amplitudes of the azimuthal modulations expected from the quark intrinsic transverse momentum could be computed and shown to be the dominant term as long as both Q2 and the hadron transverse momentum are not too large [4]. Azimuthal modulations in the SIDIS cross-section were indeed first observed by the EMC Collaboration [5, 6] and then at FNAL [7], and at higher energies by the ZEUS experiment at HERA [8]. The present understanding is that pQCD accountsfortheasymmetriesatlargevaluesofthefinal-statehadrontransversemomentumph,whileat T lowvalues(ph(cid:46)1GeV/c)itistheintrinsictransversemotionofthequarkswhichplaysthekeyrole[9]. T Intrinsictransversemomentumhasrecentlyattractedmuchattentioninconnectionwiththegreatexper- imental and theoretical effort to understand the origin of the nucleon spin and, in particular, the many transverse spin effects in hadronic reactions observed since several decades. The PDFs of the nucleon have been generalised to include this new degree of freedom, introducing the transverse-momentum- dependent(TMD)distributions. Also,TMDfragmentationfunctions(FF)havebeenintroduced,thebest knownbeingtheCollinsFF,whichdescribesacorrelationbetweenthetransversemomentump(cid:126)h ofeach T of the hadrons in a hadronic jet and the spin of the fragmenting quark in the hadronization process of a transversely polarised quark. The knowledge of this new sector of hadronic physics is still at its be- ginning, but several new important phenomena have been assessed [10] within a solid theoretical QCD framework[11]. Withinthisframework,muchattentionhasbeenpayedtodistributionswhichareT-odd 4 TheCOMPASScollaboration and for a long time were believed to be zero to preserve T-invariance. It was demonstrated afterwards that either initial or final state interactions can result in non-zero T-odd distributions. One T-odd PDF, the Sivers function, has already been shown to be definitely different from zero in SIDIS processes off transverselypolarisedprotons,evenathighenergies[12,13]. AnotherT-oddTMDPDFistheso-called Boer-Mulders(B-M)function,whichdescribesthecorrelationbetweenthequarktransversespinandits transverse momentum in an unpolarised nucleon [14]. On top of the Cahn effect, the B-M TMD PDF convoluted with the Collins FF is expected to contribute to the amplitudes of the cosφ and cos2φ h h modulations in unpolarised SIDIS processes and its extraction from the cross-section data is an impor- tantgoalofthemorerecentinvestigationsatlowerenergiesbytheHERMESCollaboration[15]andby theCLASCollaboration[16]. Inthispaper,firstresultsontheazimuthalmodulationsinunpolarisedSIDISobtainedbytheCOMPASS experimentarepresented. Thepaperisorganisedasfollows. Section2summarisestheformalismforthe SIDIScross-sectionintheone-photonexchangeapproximation. Ashortdescriptionoftheexperimental apparatus during the 2004 run is given in Sect. 3. The data analysis, the method used to extract the azimuthal asymmetries and the studies of the possible systematic effects are described in Sections 4, 5 and 6. Finally,theresultsaregiveninSect.7. 2 TheSIDIScross-section The spin-averaged differential SIDIS cross-section for the production of a hadron h with transverse momentumph andafractionz oftheavailableenergyisgivenintheone-photonexchangeapproxima- T tion[17]by: dσ (cid:16) = σ 1+(cid:15) AUU cosφ + phdphdxdydzdφ 0 1 cosφh h T T h (cid:17) +(cid:15) AUU cos2φ +λ(cid:15) ALU sinφ , (1) 2 cos2φh h 3 sinφh h whereσ istheφ independentpartofthecross-section,λisthelongitudinalpolarisationoftheincident 0 h lepton,y isthefractionalenergyofthevirtualphoton,andthequantities(cid:15) aregivenby: i √ √ 2(2−y) 1−y 2(1−y) 2y 1−y (cid:15) = , (cid:15) = , (cid:15) = . (2) 1 1+(1−y)2 2 1+(1−y)2 3 1+(1−y)2 The amplitudes AXU will be referred to as azimuthal asymmetries in the following. The superscripts f(φ ) h UU andLU refertounpolarisedbeamandtarget, andtolongitudinallypolarisedbeamandunpolarised target,respectively. The cosφ and the cos2φ asymmetries are related to the Cahn effect and to the B-M TMD PDF. The h h CahneffectcontributionstoAUU andAUU originatefromkinematics,whentheintrinsictransverse cosφh cos2φh momenta(cid:126)k of quarks inside the nucleon is taken into accouunt, starting from the elastic quark-lepton T cross-section [4]. Also the B-M function contributes to both AUU and AUU , where it appears cosφh cos2φh convoluted with the Collins FF. The ALU asymmetry is due to higher-twist effects and has no clear sinφh interpretationintermsofthepartonmodel. The amplitudes of the cosφ and cos2φ modulations have been measured in SIDIS on unpolarised h h proton and deuteron targets in a kinematic region similar to that of COMPASS by previous experi- ments [5, 7] and at higher energies by the ZEUS experiment [8]. Results at lower energies have been recentlypublishedbyHERMES[15]forpositiveandnegativehadronsseparatelyandbyCLAS[16]for π+. COMPASShaspresentedpreliminaryresultsforAUU ,AUU andALU onthedeuteronforpositive cosφh cos2φh sinφh and negative hadrons in 2008 [18]. A more refined analysis on a limited phase space as well as the Measurementofazimuthalhadronasymmetriesinsemi-inclusivedeepinelastic... 5 removalofsomespecificproblemsrelatedtotheacceptancecorrectionhasleadthefinalresultspresented here. Theyhavebeenobtainedfromthedatacollectedin2004withthetransverselypolarised6LiDtarget tomeasuretheCollinsandSiversasymmetries[19]. 3 Theexperimentalapparatus A brief description of the 2004 COMPASS apparatus is given in this Section. More details on the COMPASSspectrometercanbefoundinRef.[20]. The µ+ beam was naturally polarised by the π decay mechanism, and the beam polarisation λ was about −80%. The beam intensity was 2·108 µ+ per spill of 4.8 s with a cycle time of 16.8 s. The µ+ momentum (∼160 GeV/c) was measured event by event in a Beam Momentum Station (BMS) with a precision∆p/p(cid:46)1%. Asthestudyofthenucleonspinwasthemainpurposeoftheexperiment,apolarisedtargetsystemwas usedin2004. Itconsistedoftwocells, each60cmlong, filledwith6LiD,placedonthebeamline, and housed in a cryostat positioned along the axis of a solenoidal magnet. The 6LiD grains were immersed inamixtureofliquid3He/4He. Asmallcontaminationof7Lialmostexactlybalancestheprotonexcess in3He,sothatthetargetcaneffectivelyberegardedtobeisoscalar. Thedatausedinthepresentanalysis (25%ofthefull2004datasample)havebeentakenwiththetargettransverselypolarised,i.e.polarised along the direction of the dipole field (0.42 T) provided by two additional saddle coils. The two target cellswereoppositelypolarised,sodataweretakensimultaneouslyforthetwotargetpolarizationstates. Inordertokeepsystematiceffectsundercontrol,theorientationofthepolarisationwasreversedevery4 to5days(referredtoasa“period”ofdatatakinginthefollowing). Thespectrometerconsistsoftwomagneticstagesandcomprisesavarietyoftrackingdetectors,aRICH detector, two hadron calorimeters, and thick absorbers providing muon identification. The first stage is centredaroundthespectrometermagnetSM1,located4mdownstreamfromthetargetcentre,whichhas abendingpowerof1Tmandalargeopeningangletocontainthehadronsofthecurrentjet. Thesecond stageusesthespectrometermagnetSM2(operatedatabendingpowerof4.4Tm), located18mdown- stream from the target, with an acceptance of ±50 and ±25 mrad in the horizontal and vertical planes, respectively. Inordertomatchtheexpectedparticlefluxatvariouslocationsalongthespectrometer,var- ioustrackingdetectorsareused. Thesmall-areatrackersconsistofseveralstationsofscintillatingfibres, silicon detectors, micromegas chambers and gaseous chambers using the GEM technique. Large-area trackingdevicesaremadefromgaseousdetectors(DriftChambers, StrawTubes, andMWPC’s)placed aroundthetwospectrometermagnets. Muonsareidentifiedinlarge-areadetectorsusingdrift-tubesdownstreamofironorconcreteabsorbers. Hadrons are detected by two large iron-scintillator sampling calorimeters, installed in front of the ab- sorbers and shielded to avoid electromagnetic contamination. The charged particle identification relies ontheRICHtechnology,butisnotusedinthisanalysiswhereresultsaregivenfornon-identifiedcharged hadronsonly. In most DIS events the scattered muon is identified by coincidence signals in the trigger hodoscopes which measure the particle trajectory in the vertical (non-bending) plane and check its compatibility with the target position. Several veto counters upstream of the target are used to avoid triggers due to beamhalomuons. Inadditiontothisinclusivetriggermode,severalsemi-inclusivetriggersselectevents fulfilling requirements based on the muon energy loss and on the presence of a hadron signal in the calorimeters. TheacceptanceisfurtherextendedtowardhighQ2 valuesbytheadditionofastandalone calorimetrictriggerinwhichnoconditionissetforthescatteredmuon. 6 TheCOMPASScollaboration 4 Eventselectionandkinematicdistributions TheDISeventandhadronselectionsareperformedasinpreviousanalysesbasedonthesamedata[19], andonlyashortdescriptionoftheprocedureisgivenhere. A track reconstructed in the scintillating fibres and silicon detectors upstream of the target is assumed tobeanincomingmuonifitsmomentumismeasuredintheBMS.Scatteredmuonsareselectedamong the positively charged outgoing tracks with a momentum larger than 1 GeV/c, passing through SM1. In order to be accepted as the scattered muon, a track is required to cross an amount of material in the spectrometer corresponding to at least 30 radiation lengths and must be compatible with the hits in the triggerhodoscopes. Onlyeventswithonescatteredmuoncandidateareaccepted. Themuoninteraction point(theso-called“primaryvertex”)isdefinedbyonebeamparticleandthescatteredmuon. TheDIS eventsareselectedrequiringQ2>1(GeV/c)2,0.1<y<0.9,andaninvariantmassofthehadronicfinal statesystemW >5GeV/c2. If the amount of material traversed in the spectrometer is less than 10 radiation lengths the outgoing particlesareassumedtobehadrons. Inordertohaveagoodresolutionontheazimuthalanglethecharged hadrons are required to have at least 0.1 GeV/c transverse momentum ph with respect to the virtual T photon direction. In order to reject hadrons from target fragmentation the hadrons are also required to carry a fraction z >0.2 of the available energy while the contamination from hadrons produced in exclusive reactions is reduced by requiring z to be smaller than 0.85. No attempt is made to further suppressdiffractivemesonproduction,asdonee.g. inRef.[15]. In addition to these standard requirements, further cuts have been applied specific for this analysis be- cause it requires acceptance corrected azimuthal distributions of the final state hadrons. An upper limit on the transverse hadron momentum has been introduced (ph <1.0 GeV/c), both to ensure negligible T pQCDcorrectionsandtoobtainabetterdeterminedhadronacceptance. Inordertohaveaflatazimuthal acceptance the cut θ lab <60 mrad is applied, where θ lab is the virtual photon polar angle calculated γ∗ γ∗ withrespecttothenominalbeamdirectioninthelaboratorysystem. Thecutsy>0.2andx<0.13have beenalsoappliedbecauseofthecorrelationofxandy withθlab. γ∗ Thefinaleventandhadronselectionisthus: Q2>1(GeV/c)2, W >5GeV/c2, 0.003<x<0.13, 0.2<y<0.9, θlab<60mrad, 0.2<z<0.85 and 0.1GeV/c<ph <1.0GeV/c. γ∗ T The statistics of the hadron sample after all cuts is given in Table 1 for each of the 4 periods of data taken with the transversely polarised 6LiD target in 2004. The data with opposite polarisation have beencombinedafternormalisingthemontherelativeincomingmuonflux. Thehadronstandardsample consistsmainlyofpions[21],about70%forpositivehadrons,76%incaseofnegativehadrons. Positive kaons and protons amount to about 15% each, negative kaons and antiprotons amount to 16% and 8%, respectively,asevaluatedwithaLEPTOMonteCarloandcross-checkedwiththeRICHdetector. The x distribution and the Q2 distribution for the final sample are shown in Fig. 2 together with the hadron ph and z distributions. The mean values of y and Q2 with respect to x, z, and ph are shown in T T Fig.3. 5 Extractionoftheazimuthalasymmetries 5.1 Themethod FromEq.(1),themeasuredazimuthaldistributionsareexpectedtobe: N(φ ,(cid:126)v) = N ((cid:126)v)a(φ ,(cid:126)v)[1+(cid:15) AUU ((cid:126)v)cosφ + h 0 h 1 cosφh h Measurementofazimuthalhadronasymmetriesinsemi-inclusivedeepinelastic... 7 Table1: Finalstatisticsusedfortheazimuthalasymmetryevaluationforeachofthe4data-takingperiods. period positivehadrons negativehadrons polarisation 1 3.9·105 3.4·105 + 2 3.4·105 2.9·105 − 3 5.8·105 5.0·105 + 4 3.6·105 3.1·105 − ×103 106 s s nt nt 120 e 105 e v v e e 100 104 80 103 60 102 40 10 1 20 10−1 0 5 10 15 20 25 30 35 40 10−2 10−1 Q2 ((GeV/c)2) x ×103 ×103 s s ron140 ron600 d d a120 a h h 100 400 80 60 200 40 20 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 ph (GeV/c) z T Fig. 2: Upper row: Q2 and x distributions of all the events in the final sample. Lower row: ph and z hadron T distributionsforthesamesampleofevents. +(cid:15) AUU ((cid:126)v)cos2φ +(cid:15) λALU ((cid:126)v)sinφ ], (3) 2 cos2φh h 3 sinφh h where a(φ ,(cid:126)v) is the apparatus acceptance and (cid:126)v indicates the generic set of kinematic variables (x, h z, ph, ...) on which the apparatus acceptance and the azimuthal asymmetries can depend. In order to T extracttheazimuthalasymmetriesitisnecessarytocorrectthemeasuredazimuthaldistributionsbythe φ dependent part of the apparatus acceptance and to fit the corrected distribution with the appropriate h φ modulation. h The azimuthal asymmetries have been first extracted from the data binned in x, z or ph, and inte- T grated over the other two variables (“integrated asymmetries”). The bin widths have been chosen to be larger than the experimental resolution estimated from Monte Carlo simulations. In each kinematic bintheazimuthaldistributionsN(φ )areproducedseparatelyforpositiveandnegativehadrons, divid- h ing the (0,2π) φ range into 16 bins. The apparatus acceptance a(φ ) is calculated from Monte Carlo h h simulations for positive and negative hadrons for each bin of φ and for each kinematic bin, as will h be described in Sect. 5.2. The hadron azimuthal distributions corrected for the apparatus acceptance 8 TheCOMPASScollaboration 〉 1.5 15 ) 〈y 〈y〉 2V/c) e 1.0 〈Q2〉 10 (G ( 〉 2 Q 〈 0.5 5 0.0 10−2 10−1 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 x z ph (GeV/c) T Fig.3: Q2andymeanvaluescalculatedinthebinsofx,ofzandofph. T N (φ ) = N(φ )/a(φ ) are then fitted with a four parameter function: F(φ ) = p ·(1+p · corr h h h h 0 cosφh cosφ +p ·cos2φ +p ·sinφ ). The azimuthal asymmetries are then obtained by dividing h cos2φh h sinφh h thefittedparametersbytheappropriatequantities,i.e.: p p p AUU = cosφh, AUU = cos2φh, ALU = sinφh. (4) cosφh (cid:104)(cid:15) (cid:105) cos2φh (cid:104)(cid:15) (cid:105) sinφh (cid:104)(cid:15) (cid:105)λ 1 2 3 The quantities (cid:104)(cid:15) (cid:105) are the mean values of (cid:15) defined in Eq. (2) and calculated for each kinematic bin. i i Thetwocentralbinsinφ havebeenexcludedfromthefitaswillbeexplainedinSect.6.2. h Thesameprocedureisusedtomeasuretheazimuthalasymmetriesforthehadronsbinnedsimultaneously inx,z andph (“3dasymmetries”). T 5.2 MonteCarloandacceptancecorrections Ineachkinematicbinandforeachφ bintheazimuthalacceptancehasbeenevaluatedas: h a(φ ) = N (φ )/N (φ ), (5) hi rec hi gen hi where N (φ ) is the number of reconstructed hadrons obtained from the Monte Carlo simulation rec hi and N (φ ) is the corresponding number of generated hadrons. In order to obtain the number of gen hi reconstructed hadrons the same kinematic cuts, the same event reconstruction, and the same event and hadron selection as for the real data have been applied. Only the kinematic cuts are applied to evaluate thenumberofgeneratedhadrons. ThesimulationinvolvesthefullCOMPASSMonteCarlochain,namely: thegenerationoftheDISevent, thepropagationoftheeventinsidetheapparatus, andthereconstructionofparticletracks. TheLEPTO generator[22]isusedforthefirststep. Theinteractionsbetweenparticlesandmaterialsandthedetectors response are simulated using COMGEANT, a software based on GEANT3 [23] and developed inside the Collaboration to describe the COMPASS set-up and which also includes trigger efficiencies,while detector efficiencies are simulated at CORAL level. The package CORAL [24] is used to perform the trackreconstructionanditisthesameprogramusedfortherealdata. Ithasbeencarefullycheckedthat theMonteCarlosimulationgivesagooddescriptionoftheapparatus. StartingfromthedistributionsobtainedusingthedefaultLEPTOsetting,differenttuningsoftheLEPTO parameters and also different sets of PDFs, already tested in other COMPASS analysis [25], have been used. The CTEQ5 [26] PDF set and the tuning of Ref. [25] have been adopted for the extraction of the acceptances. Measurementofazimuthalhadronasymmetriesinsemi-inclusivedeepinelastic... 9 TheratiosbetweenthedistributionsforrealandforMonteCarloeventsareshowninFig.4asafunction of the DIS variables, and in Fig. 5 as a function of the hadron variables. The agreement is satisfac- tory and gives confidence in the quality of the apparatus description used in the simulations. A typical hadronazimuthaldistributionfromrawdataN(φ ),thecorrespondingacceptancefromtheMonteCarlo h simulationa(φ ),andthecorrecteddistributionN (φ )areshowninFig.6asafunctionofφ . h corr h h R R 1.5 1.5 1.0 1.0 0.5 0.5 10−2 10−1 0.2 0.4 0.6 0.8 x y R R 1.5 1.5 1.0 1.0 0.5 0.5 1 10 10 Q2 ((GeV/c)2) W (GeV/c2) Fig.4: RatioRbetweendataandMonteCarloeventsdistributionsforx,y,Q2andW. Equation(3)showsthattherelevantpartoftheacceptanceistheonecontainingcosφ ,cos2φ andsinφ h h h modulations. Theamplitudesoftheseazimuthalmodulations,whichareessentiallythecorrectionsgiven by the Monte Carlo, have been evaluated and their trend has been studied as a function of the various kinematic variables. It has been found that the largest corrections, up to about 15%, have to be applied to the cosφ modulations. The cos2φ corrections are of the order of a few percent and the sinφ h h h correctionsarenegligible. Apriorytheacceptancefunctiona(φ ,(cid:126)v)evaluatedinaparticularbinofaspecificvariablexcouldstill h depend on some geometrical observable t like the azimuthal or polar angle of the scattered muon or on someotherkinematicvariables. Ithasbeenverifiedthatthisisnotthecase. Whenextractinga(φ ,(cid:126)v,t)in h binsoft,theresultingazimuthalasymmetriesdifferonaveragefromthoseextractedthroughintegration over t by less than one standard deviation of the statistical uncertainty, and also significantly less than thefinalsystematicuncertainty. 6 Systematicstudies Several possible systematic effects have been investigated. The most relevant studies are described in thissection. Someeffectsturnedouttohaveanegligibleimpactontheresultsandthuswerenotincluded intheevaluationofthefinalsystematicuncertainties.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.