ebook img

Mean-field dynamo action from delayed transport PDF

3.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mean-field dynamo action from delayed transport

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed21January2014 (MNLATEXstylefilev2.2) Mean-field dynamo action from delayed transport Matthias Rheinhardt1⋆, Ebru Devlen1,2, Karl-Heinz Ra¨dler1,3, and Axel Brandenburg1,4 1Nordita,KTHRoyalInstituteofTechnologyandStockholmUniversity,Roslagstullsbacken23,SE-10691Stockholm,Sweden 2DepartmentofAstronomy&SpaceSciences,FacultyofScience,UniversityofEge,Bornova35100,Izmir,Turkey 3Leibniz-Institutfu¨rAstrophysikPotsdam,AnderSternwarte16,D-14482Potsdam,Germany 4DepartmentofAstronomy,StockholmUniversity,SE-10691Stockholm,Sweden 4 1 0 21January2014, Revision:1.132 2 n a ABSTRACT J Weanalyzethenatureofdynamoactionthatproduceshorizontallyaveragedmagneticfields 0 intwoparticularflowsthatwerestudiedbyRoberts(1972,Phil.Trans.R.Soc.A271,411), 2 namelyhisflows IIand III.Theyhavezero kinetichelicity eitherpointwise (flowII), oron average (flow III). Using direct numerical simulations, we determine the onset conditions ] R fordynamoactionatmoderatevaluesofthemagneticReynoldsnumber.Usingthetest-field method,weshowthattheturbulentmagneticdiffusivityisthenpositiveforbothflows.How- S ever, we demonstrate that for both flows large-scale dynamoaction occursthroughdelayed . h transport.Mathematicallyspeaking,themagneticfieldatearliertimescontributestotheelec- p tromotiveforcethroughthe off-diagonalcomponentsof the α tensor such thata zero mean - magneticfieldbecomesunstabletodynamoaction.Thisrepresentsaqualitativelynewmean- o r fielddynamomechanismnotpreviouslydescribed. t s Keywords: Dynamo–magneticfields–MHD–turbulence a [ 1 v 6 1 INTRODUCTION Well-known alternatives include the Ω J effect (Ra¨dler × 2 1969a,b; Krause&Ra¨dler 1980) and the shear–current effect Themagneticfieldsinvariousastrophysicalsettingsaregenerally 0 (Rogachevskii&Kleeorin2003,2004),whichrelyupontheexis- believed tobe produced by dynamo processes, which convert ki- 5 tenceofcertainoff-diagonalcomponentsoftheηttensor.Another 1. netic energy into magnetic. Small-scale dynamos produce mag- class of large-scale dynamos whose operation is based upon the netic energy at scales smaller than or equal to that of the under- 0 turbulentdiffusivitytensoralone,isduetonegativeturbulentdif- lyingmotions,large-scaledynamosatlargerscales.Bothtypesof 4 fusivity(Lanotteetal.1999;Zheligovskyetal.2001;Zheligovsky dynamosplayimportantrolesinastrophysics. Wemaycharacter- 1 2012): ηt does not only become negative, but can even over- izelarge-scaledynamosbythegoverningmechanisminthecorre- : compensatethe(positive)microphysicaldiffusivity.Suchdynamos v sponding mean-field description. One of the best known of these havebeenstudiedusingasymptoticanalysisandhaveonlyrecently Xi mean-field effects is the α effect. It quantifies the component of been confirmed in direct numerical simulations (Devlenetal. themeanelectromotiveforcealongthedirectionofthemeanmag- r 2013). A simple example of a flow capable of dynamo action of a neticfield(Parker1955;Steenbecketal.1966),whichcanleadto this type is known as the Roberts-IV flow, which is one of the self-excitation.Inthepresenceofshear,theαeffectcangiverise flows studied in the seminal paper of Roberts (1972). However, totravelingwaves–relevanttoexplainingthesolarbutterflydia- aproper descriptionof suchdynamos intermsofmean-fieldthe- gram.Anotherimportanteffectisturbulentdiffusion,describedby oryisnotstraightforwardbecauseanegativetotaldiffusivitywould theturbulent diffusivityηt,whichquantifies acontribution tothe destabilizemodesonallscaleswithgrowthratesdivergingwithin- meanelectromotiveforcealong thedirectionof themeancurrent creasingwavenumber.Luckily,inthecaseoftheRoberts-IVflowit density.Intheabsenceofshearitisthebalanceofαeffectvs.tur- turnedoutthattheturbulentdiffusivityiseffectivelywavenumber- bulentandmicrophysicaldiffusionthatdeterminestheonsetofdy- dependent andnegativeonlyatsmallwavenumbers (Devlenetal. namoactionand,foroscillatorymagneticfields,alsotheirperiod. 2013). Negative diffusivity dynamos are remarkable in the sense However, this basic picture of astrophysical large-scale dynamos that the evolution of different components of the mean magnetic is a strong simplification. Both α effect and turbulent diffusivity fielddecouples.Thisisnotthecaseforαeffectdynamos,northose are in general described by tensors. This aspect is often ignored, basedontheΩ J andshear–currenteffects,forwhichthemutual inparticularbecauseαeffectdynamosworkalreadyundersimple × interactionbetweentwocomponentsofthemeanfieldisessential. conditions,underwhichthesetensorpropertiesarelessimportant. Bycontrast,inanegativediffusivitydynamo,onecomponent can Dynamos based on the α effect are not the only ones. growwiththeotherpermanentlyvanishing. The dynamos mentioned so far are mean-field dynamos op- ⋆ E-mail:[email protected] erating via an instantaneous connection between the mean elec- (cid:13)c 0000RAS 2 M. Rheinhardtetal. tromotive force E and the magnetic field B or its (first) spatial independentgrowthofitsfieldcomponents.InflowsIIIandIV,the derivatives. We know, however, that an instantaneous connection meankinetichelicitydensityhvanishesandwemaynothavean is only an idealization (Ra¨dler 1976) and that turbulent transport αeffect.Whilemeanfielddynamo actionfromflowIVhasbeen has in general a memory effect, i.e., the electromotive force de- demonstrated as being due to negative magnetic eddy diffusivity pends through a convolution on the values of the mean magnetic (Devlenetal.2013),wewillshowinthispaperthatflowIIIgives field at all past times (Hubbard&Brandenburg 2009). Although risetoself-excitationofmeanfieldsasaconsequenceofturbulent in isotropic turbulence such effects have been found to be small pumping,i.e.,aγeffect.AsforflowII,thefieldcomponentsevolve (Hubbard&Brandenburg2009),exampleshavebeengivenwhere independently. theycanbeimportant(Hubbard&Brandenburg2009;Ra¨dleretal. 2011;Devlenetal.2013). 2.2 Mean-fieldmodelling Inhisseminalpaper,Roberts(1972)studiedfoursimplespa- tiallyperiodic steady flowsinview of their dynamo action. Flow We consider the behavior of a magnetic field B in an infinitely I gives an often mentioned example for the classical α effect extended homogeneous electricallyconducting fluidmovingwith (e.g., Ra¨dleretal. (2002) or Ra¨dler&Brandenburg (2003)). As avelocityU.ThenBisgovernedbytheinductionequation Devlenetal.(2013)recognized,flowIVconstitutes,ifconsidered η∇2B+∇ (U B) ∂ B =0, ∇ B=0, (6) onthemean-fieldlevel,theabove-mentioneddynamoduetonega- × × − t · tivemagneticeddydiffusivity.Inthepresentpaperwewillanalyze whereηisthemagneticdiffusivityofthefluid. the dynamo mechanisms in flowsII and III,using direct numeri- We adopt the concept of mean-field electrodynamics, define calsimulations(DNS)combinedwithanalyticcalculationsinthe meanfieldsasaveragesoverallxandy,denotethembyoverbars, secondordercorrelationapproximation(SOCA)andthetest-field e.g.,B andU,andput B = B+bandU = U +u.Clearly, method(TFM)tocomputetherelevanttransportcoefficients. meanfieldslikeB andU may thendepend onz andtonly. We Insection2wedefinetheflows,introducethemean-fieldcon- excludehere,however, ameanflowofthefluid,i.e.U = 0,and ceptandanalyzetheirdynamo-relevantpropertiesunderSOCA.In specifyutobeoneoftheflowsintroducedabove. section3wefirstpresentnumericalfindingsondynamoactionin Fromtheinductionequation(6)wemayderiveitsmean-field flowsIIandIIIandthenprovideexplanationsinmean-fieldterms version relying upon the results of the TFM. Section 4 is devoted to the η∇2B+∇ E ∂ B=0, ∇ B=0, (7) development of adynamical equation for themean electromotive × − t · forceoccurringwithflowII,whilewedrawconclusionsinsection withthemeanelectromotiveforceE definedby 5. E =u b. (8) × From(6)and(7)wemayconcludethatbhastoobey 2 THEPROBLEMCONSIDERED η∇2b+∇ (u b)′ ∂ b= ∇ (u B), ∇ b=0, (9) t × × − − × × · 2.1 TheRobertsflows where(u b)′standsforu b u b. Roberts(1972)investigatedfourincompressiblespatiallyperiodic Ifui×sspecifiedaccordin×gto−(1)a×ndoneoftherelations(2)– steady flows with regard to their dynamo properties. More pre- (5),bandthereforeE dependonthemagneticReynoldsnumbers cisely, the flows vary periodically in the x and y directions, but v0/ηk0 andw0/ηk0.Forsimplicitywedefineonlyonemagnetic areindependentofz.Wemaywritethecorrespondingvelocitiesu Reynoldsnumber,Rm,by sothatthecomponentsuxanduyhaveinallfourcasestheform Rm =max(v0,w0)/ηk0. (10) ux =v0 sink0x cosk0y, uy = v0 cosk0x sink0y, (1) Note the difference to the more common definition employing − whilethecomponentsu aredifferentandgivenby urms. z Given that(9)islinear,b isalinear functional of B and its uz=w0 sink0x sink0y (flowI), (2) derivatives.Underourassumptions,allspatialderivativesofBcan uuzz==w12w00c(ocsoks02xk0cxos+k0cyos2k0y) ((flfloowwIIII)I,), ((34)) bBpely,ewJxpjhree=rsese(µd1/mbµye)atǫhnje3slm∂thzeeBamnl,aetglhenacetttriiicsc,cpJuerr=rmene(at1bd/ielµint)sy(i,tyan∂JdzB=wye(,1∂h/azvµBe)x∇s,i0m×)-. uz=w0 sink0x (flowIV), (5) Henceforuindependentofz,themeanelectrom−otiveforceE can wherev0,w0andk0areconstants.Inallfourcases,Robertsfound berepresentedintheform conditionsunderwhichdynamoactionispossible,thatis,magnetic fieldsmaygrow.Theresultingmagneticfieldssurvivexyaveraging i(z,t)= aij(ζ,τ)Bj(z ζ,t τ) E − − andarethereforeamenabletomean-fieldtreatment. ZZ (cid:0) η (ζ,τ)µJ (z ζ,t τ) dζdτ. (11) Inviewofmean-fielddynamotheory,itisinformativetocon- − ij j − − siderthekinetichelicitydensityh=u (∇ u)oftheflows.In Hereaij andηij aretensors,whicharesymmetric1(cid:1)inζ. · × thecaseofflowI,thevolumeaverageofhisequaltov0w0k0,that is,ingeneralnon-zero.Asdiscussedinvariouscontexts,wehave 1 Inordertoseethis,startfromthemoregeneralrelation then an α effect (e.g. Ra¨dleretal. 2002; Ra¨dler&Brandenburg 2003), which enables self-excitation of mean magnetic fields be- Ei=R R Kij(ζ,τ)Bj(z−ζ,t−τ)dζdτ,splitKijintoapartaijthat issymmetricandanotheronewhichisantisymmetricinζ.Representthe ing of Beltrami type by a so-called α2 dynamo. Remarkably, in latteroneasaderivative ofaquantitysymmetricinζ.Anintegration by thecaseofflowII,hvanishes everywhere(not onlyonaverage). partsdelivers thenatermofthetypebij∂zBj intheintegrand, withbij Nevertheless,aswewillsee,somekindofαeffectoccurs,which beingsymmetricinζ.Itcaneasilyberewrittensothatittakestheformof explainstheexistenceofmean-fielddynamos, showing, however, theηijµJjtermintheintegrandof(11),withηijbeingsymmetricinζ. (cid:13)c 0000RAS,MNRAS000,000–000 3 Wemaysubjectequationslike(7)and(11)toaFouriertrans- wenowhaveforflowIII formationwithrespecttozandt, w2 F(z,t)= Fˆ(k,ω)exp i(kz ωt) dkdω. (12) ηˆt = 4 η(4k02+0k2)−iω (19) − ZZ andforflowIV (cid:0) (cid:1) Then(7)turninto (cid:0) (cid:1) w2 (ηk2 iω)Bˆ ike Eˆ =0, Bˆz =0, (13) ηˆt = 2 η(k2+k02) iω . (20) − − × 0 − with e being the unit vector in the z direction. Here, of course, Weconcludefromthe(cid:0)seresultsthat,aslo(cid:1)ngasSOCAapplies, onlythex andy components of thefirstequation areof interest. inthecaseofflowIwehavecoupledequationsforB andB .For x y Equation(11)turnsinto flowsII–IV,however,theequationsforB andB aredecoupled, x y ˆ ˆ ˆ thatis,B andB developindependentlyofeachother.Thecon- (k,ω)=aˆ (k,ω)B (k,ω) ηˆ (k,ω)µJ (k,ω). (14) x y i ij j ij j E − tributions iω to the denominators in (16), (19) and (20) indicate Theaforementioned symmetryof aij andηij inζ occursnow as thatmemoryeffectsoccur,thatis,E atagiventimedependsalso symmetryofaˆij andηˆij ink.Werestrictthereforealldiscussions onBatformertimes;seeHubbard&Brandenburg(2009),andin abouttheseandrelatedquantitiestok 0.Theimaginarypartsof particulartheirAppendixA. aˆij andηˆij vanishatω =0.Furtherw≥ehaveJˆj =(ik/µ)ǫj3lBˆl, Inserting our resultsfor Eˆ intotheequations (13)governing thatis,Jˆ =(ik/µ)( Bˆy,Bˆx,0). Bˆ, dispersion relations can be obtained. Changing from Fourier − When using the Fourier transformation, we have to exclude toLaplacetransformationwithrespect tot,wereplace iω bya functionsthatgrowexponentiallyintime.Ifsuchfunctionsoccur, complexvariablepsothatapositiverealpartofpmeansa−growing wemayeasilymodifyourconsiderationsbyusingaLaplacetrans- solution.InthecaseofflowIthedispersionrelationreads formation instead; see Hubbard&Brandenburg (2009) for exam- ples.Then iωisreplacedbyacomplexvariable,says. p= kαˆ (η+ηˆt)k2. (21) − ± − InthecaseofflowII,wehave 2.3 Second-ordercorrelationapproximation p= ikαˆ (η+ηˆt)k2. (22) ∓ − Inwhatfollowswewillsometimesrefertothesecond-ordercor- ˆ ˆ Inthelattercase,theupperandlowersignsapplyforB andB , relationapproximation(SOCA),whichisdefinedbyomittingthe x y term with (u b)′ in (9). As long as B is steady or does respectively.InthecaseofflowsIIIandIV,(22)applieswithαˆ = not vary marke×dly during the time (v0k0)−1, a sufficient condi- 0. Theabovedispersion relation(21) forflow Icombined with tion for the applicability of this approximation reads Rm 1. If B varies more rapidly, this condition has to be replace≪d by (16), allowssteady or monotonously growing magnetic fieldsfor max(v0,w0)k0τ0 ≪ 1, where τ0 is a characteristic time of this saorbluittriaornislycsamnaalllsRombeifosocnillylatko/ryk.0)iIsnstuhfeficciaesnetloyfsflmoawll.II(,Dweceayminagy variation. For the determination of Eˆ under SOCA, we may use the conclude from (22) and (16), modified by (17), that the smallest Fourier-transformedversionsofrelations(8)and(9),simplifiedby value of Rm that allows growing magnetic fields is obtained for omittingtheterm(u b)′,thatis, k/k0 → 0. For a marginally stable field and v0 = w0 we have × inthislimitRm = 2√2.Thisfieldisoscillatingwithafrequency Eˆ =u ˆb, (15) ω = 2ηk0k.Withthisvalueof Rm,however, wearebeyond the × validity range of SOCA. In the case of flows III and IV, we find η(∂x2+∂y2−k2)+iω bˆ=−(Bˆx∂x+Bˆy∂y)u+ikuzBˆ . no solutions of the above dispersion relations, that is, (22) with W(cid:0)erecallherethatBˆ =0(cid:1). αˆ=0and(19)or(20),thatwouldcorrespondtomarginallystable z orgrowingmagneticfieldsevenifSOCAwerevalid. Astraightforwardcalculationonthebasisof(15)withuspec- ifiedasflowIleadstotherelation(14)with v0w0k0 2.4 Possibilityofadynamofromtimedelay aˆ11 =aˆ22 =αˆ, αˆ = 2 η(2k02+k2)−iω , (16) Let us consider a simpleexample which shows how the memory ηˆ11 =ηˆ22 =ηˆt, ηˆt = 4(cid:0)η(2k02+w02k2)−iω(cid:1). oeafncfleoycmtopnmozankeaennstdaotfd,Byann,damsoaboyepByosxss,iibslein.dAespseunmdee,ntthoifnkthinegoothfeflrso,wdeIIp,etnhdast Allothercomponentsofaˆij andηˆ(cid:0)ij areequaltozero(cid:1).Thecorre- sponding result for flow IIdiffers fromthat only in sofar as aˆ11 η∂z2Bx−∂zEy−∂tBx =0. (23) andaˆ22nowvanishandthefirstrelationof(16)hastobereplaced Ignoringfirstthememoryeffect,weput = αB withαinde- by Ey x pendent of z and t, but ignore for simplicity ηt. Without loss of aˆ12 =aˆ21 =αˆ. (17) generality we may restrict ourselves to solutions Bx of (23) that are proportional to exp(ikz +pt). We have then Rep = ηk2 Allotherrelations(16)remainvalidandsoalsotheremarkthatall − andImp= αk,thatis,thereareonlydecayingsolutionsof(23), not explicitly mentioned components of aˆ and ηˆ are equal to − ij ij whichareingeneraloscillatory.Letusnexttakethememoryeffect zero. intoaccount.Weassumenowthat (t)=αB (t τ)withapos- AsforflowsIIIandIV,allcomponentsofaˆijvanishandagain itivetimeτ and,thinkingofnottooEryapidchangxeso−fB duringthe alsoallofηˆij,exceptηˆ11andηˆ22.Putting timeintervalτ,expressthisby =α(1 τ∂ )B .Wxiththisrela- y t x ηˆ11 =ηˆ22 =ηˆt, (18) tionfor yand(23),wefindReEp= (η−α2τ)k2/ 1+(αkτ)2 E − − (cid:0) (cid:1) (cid:13)c 0000RAS,MNRAS000,000–000 4 M. Rheinhardtetal. Figure1. StabilitydiagramforflowsIIandIII.Thecorrespondingresult Figure2. StabilitydiagramforflowIIIshowingthemarginsoflargescale forflowIIunderSOCAisshownbythedottedline.(Thereisnodynamo andsmallscaledynamoaction.TheverticaldottedlineatRm = 15in- actionunderSOCAforflowIII.)Thenumbersatthecurves indicate the dicatesthesmallestvalueforwhichwehaveobservedsmall-scaledynamo oscillationfrequencyωinunitsofv0k0. action. andImp= αk(1+ηk2τ)/ 1+(αkτ)2 .Thatis,forα2τ >η − Table1.Oscillationfrequency,transportcoefficientsandresultingcomplex we have growing oscillatory s(cid:0)olutions. Now(cid:1) looking at αˆ in (16) growthratepaccordingto(22)forthepoints(Rcmrit,kcrit)onthemarginal and considering that −iω can be replaced by p, we see that for curveforflowII,seeFig.1;k˜crit=kcrit/k0,ω=ω/(v0k0). smallpitcanbeapproximatedasαˆ =αˆ0(1 τp),withkdepen- e − dbeyn∂ttαˆ,0itabnedcoτm>es0c.leCarrotshsaitngαˆoinvdereetodtchoenttaiminesdaommeamino,rryepelfafeccint,gspo Rcmrit k˜crit ωe 10αˆ/v0 10ηˆ/(v0/k0) p/(v0k0) thedynamoefficacyofflowIIcanwithfullrightbeattributedtoit. 4.56 0.025 0.021 8.310−0.197i 5.628−0.094i 4×10−6+0.021i 4.69 0.162 0.134 8.177−1.268i 5.688−0.627i 3×10−5+0.134i 5.00 0.260 0.215 8.009−2.034i 5.819−1.032i 3×10−5+0.215i 5.50 0.356 0.295 7.757−2.803i 6.051−1.491i 6×10−5+0.295i 3 DYNAMOACTIONFROMFLOWSIIANDIII 6.00 0.423 0.351 7.497−3.355i 6.280−1.904i−3×10−4+0.351i Inwhatfollowsweassumeforsimplicityalwaysv0 =w0asfaras 180..0000 00..566373 00..457366 65..444418−−45..626169ii 67..927474−−34..474834ii 74××1100−−55++00..457367ii numericalresultsareconcerned. 3.1 StabilitydiagramfromDNS thez extent of thecomputational domainmust belargerthanthe horizontalextents.Ontheotherhand,thelimitk 0isdifficult Tomakeprogressinstudyingmeanfielddynamoactionforflows → toperformnumerically,becausethegrowthratevanishesatk=0. II and III beyond SOCA, we now turn to numerical solutions of Eq. (6). We discretize them on a three-dimensional mesh in a Tostudydynamosnearonset,wechoosek/k0 = 0.025sothata finitegrowthratecanstillbeeasilydetermined. cuboid domain employing sixth-order finite differences in space Itturnsout thatallsolutionsonthemarginallinesareoscil- andathird-orderaccuratetime-steppingschemeusingthepublicly availablePENCILCODE2.Inthex,y andz directionsthecuboid latory. All growing and decaying solutions encountered in deter- mining them are also oscillatory. Tables 1 and 2 show the oscil- isgivenbythedimensions2π/k0,2π/k0,2π/k,wherekdefines lationfrequencies forthepointsonthemarginalcurvesindicated theminimumpossiblewavenumberofameanfield.Theboundary conditionsarealwaysperiodicinallthreedirections. in Fig. 1. These tables also give the values of αˆ, ηˆt, and the re- For a given value of k, we determine a critical value Rcrit sultinggrowthratespobtainedusingthetest-fieldmethod(TFM) m such that there are growing solutions for Rm > Rmcrit, but only explainedinSect.3.2.1below. decaying ones for Rm < Rmcrit. In Fig. 1 we show the resulting For flow III, a second k interval with dynamo action is ob- stabilitymarginsfor flowsIIand IIIinthek–Rm plane; seealso servedforRm & 15(seeFig.2),whereintheDNSinitiallyboth themeanandthetotalfieldsaredecayingtoverylowvalues.While cFoigrr.e2spfoorndhiinggherresRumltfirnomfloSwOICIIA.F,worhceoremgpraorwisionng,swoeluatilosonssharoewsuthge- Brmsstartstogrowagainatt 90(v0k0)−1,Bcontinuestofall. gestedonlyforflowII.Asmentionedabove,theresultingstability However, att 170(v0k0)−1≈,manyordersof magnitudebelow lineisalreadyoutsidethedomainofvalidityofSOCA. Brms, also B ≈starts to grow again and the growth rates of Brms In the limit k 0, we find Rcrit 4.58 and 2.9 for andBturnouttobeequal.Moreover,boththetotalBandBare m → ≈ ≈ oscillatorywiththesamefrequency,differingthoughfromtheone flowsIIandIII,respectively.ForRm 10,growingsolutionsare onlypossiblefork/k0 <0.64and<≤0.78,respectively.Notethat detectedinB duringtheinitialdecay.AsB isclearlydominated forRm 10,incontras∼ttodynamo∼swithflowsIandIV,growing byb,wemayidentifythegrowing fieldasasmall-scaledynamo ≤ mode,giventhatthehorizontalscalesofbanduarethesameal- solutionsareruledoutincubicdomains,thatisfork=k0.Instead, beittheverticalscaleofbisjustthesameasthatofB;seeFig.3. Regardingthenature of thegrowing B,seethediscussion at the 2 http://pencil-code.googlecode.com/ endofSect.3.2.4. (cid:13)c 0000RAS,MNRAS000,000–000 5 bx by bz Figure3.Small-scaledynamoforRm=25andk=1.25.Left,middle,right:isolinesofbx,byandbz,respectively.Top,bottom:planesy=0andz=0, respectively.Inthelowerleftpanel,isolinesofuzareoverplottedandinthelowermiddleandrightonesstreamlinesofux,y. Table2.AsTable1,butforflowIII,hencepfrom(30);k˜crit=kcrit/k0, p=1,2,withtheunitvectorsinxandydirection,e1,2andareal ωdescribingafrequency.Sincetheflowissteady,wecansolvefor ω=ω/(v0k0). e thetimedependenceinFourierspacebyassumingthesolutionsto beproportional toe−iωt,thatis,purelyoscillatory.Asmentioned Rcmrit k˜crit ω 10γˆ/v0 10ηˆ/(v0/k0) p/(v0k0) above,wemayalsoemploytheLaplacetransform,thenreplacing e 2.90 0.065 0.037 5.70−0.309i 1.29+0.0219i 9×10−6+0.037i iωbythecomplextimeincrements=λ iω.Equation(9)thus 2.94 0.132 0.075 5.69−0.622i 1.31+0.0430i 3×10−6+0.075i r−esultsinthefollowingsystemforthereal−andimaginarypartsof 3.00 0.184 0.104 5.68−0.861i 1.34+0.0580i 4×10−5+0.104i thecomplexamplitudeofb,bˆ(x,s)=bˆr+ibˆi(cf.Eq.(15)) 3.40 0.371 0.207 5.62−1.65i 1.51+0.0954i−9×10−7+0.207i 4.00 0.512 0.284 5.60−2.17i 1.73+0.111i 1×10−4+0.284i η∇2ˆbr+∇ (u bˆr)′ λbˆr ωˆbi = ∇ u Bˆ r , 5.00 0.638 0.357 5.69−2.57i 2.03+0.136i −3×10−5+0.357i × × − − − × × (25) 5.50 0.676 0.382 5.76−2.69i 2.17+0.153i −2×10−4+0.382i η∇2ˆbi+∇ (u bˆi)′ λbˆi+ωˆbr = ∇ (cid:0)u Bˆ i(cid:1), × × − − × × 6.00 0.703 0.402 5.84−2.79i 2.30+0.170i 1×10−4+0.402i 8.00 0.761 0.456 6.16−3.05i 2.76+0.233i 2×10−4+0.455i whereB isanyoutofthesetdefinedby(24).In(cid:0)general(cid:1)wethen 10.00 0.782 0.488 6.44−3.25i 3.15+0.255i 8×10−5+0.488i determine coefficients αˆij(z,k,s) and ηˆij(z,k,s) such that they obeytheequations ˆpq ˆpq ˆpq =αˆ B ηˆ µJ , (26) Ei ij j − ij j 3.2 Mean-fieldinterpretation ˆpq where i,j,p = 1,2, the superscript q is either c or s, µJ = j 3.2.1 Test-fieldmethod ∇ Bˆpq,andacommonargument(z,k,s)onallfunctionshas × j beendropped.Giventhatweareaskingforeightcoefficients,αˆ Thetest-fieldmethod(TFM)isatoolforidentifyingthecomplete ij set of transport coefficients that define E for a given flow u. It andηˆij,andthatthetestfieldsarelinearlyindependent,thesystem (26) is just sufficient to yield a unique result. For the z invariant does not suffer fromrestrictions likeSOCA asthe full Eq. (9) is solved numerically for b. This is done for a number of different Robertsflowsthecoefficientsarealsoindependentofz,hencewe willdropthisargumentinthefollowing. meanfields,calledthetestfields,whichmustbeprescribedprop- erlysuch that thewantedcoefficients canbe obtained unambigu- ously(Schrinneretal.2007).Wechooseherethefourlinearlyin- 3.2.2 Test-fieldresultsforflowII dependentfields ForafirstverificationoftheTFMwehavecalculatedthetransport Bpc =B0epe−iωtcoskz, Bps =B0epe−iωtsinkz, (24) coefficients for the points (Rmcrit,kcrit) on the marginal curve of (cid:13)c 0000RAS,MNRAS000,000–000 6 M. Rheinhardtetal. Table 3. Parameters of the fits (27) to the data points shown in Fig. 4. Here, α0 is normalized byv0, ηt0 by v0/k0, and all τ∗ by (v0k0)−1. Normalizationisindicatedbytildes. σ σ0 τσ1 τσ τσ2 e e e e α 0.83 0.904 2.05 1.296 η 0.56 0.643 1.49 1.414 Next,weusetheTFMtostudytheωdependenceofthetrans- port coefficients in the neighborhood of the lowest point on the marginalcurve,k/k0 = 0.025andRm 4.56,butfixingλ = 0 ≈ in(25).Forsimplicitywewriteαˆ(k,ω)andηˆt(k,ω),droppingthe imaginary unit in the second argument. The results are shown in Fig.4 Thesedatacanbeutilizedtoinferthedependencesoftheco- efficientsonthecomplexincrementswhichopensthewayforpre- Figure4. ωdependenceofαˆ(k,ω)andηˆt(k,ω)forflowIIwithk/k0= dictinggrowth(ordecay)ratesalsoforpointsintheRm–k plane 0.025andRm=4.6. distantfromthemarginalcurve.Toaccomplishthis,wehavetofind anapproximationofαˆandηˆasanalyticfunctionsofiω,inwhich weareallowedtoreplaceiω subsequentlybys.Employingthese functionsinEq.(22)withs = p,enablesustosolveconsistently forp. Forsmallvaluesofω,theresultingfunctionsαˆandηˆtarepro- portionalto(1 iωτ)−1,inqualitativeagreementwiththeSOCA − result Eq. (16). However, the values of τ are no longer the same forαˆ andηˆt.Forlargervaluesofω,theresultingω dependences become morecomplicated andcan befittedtoexpressions of the form αˆ(s)=α01+τ1α+s−τα(1τsα2s)2, (27) ηˆt(s)=ηt01+τ1ηs+τη(1τsη2s)2, − wheres= iωwithrealcoefficientsτ∗,α0,ηt0;seeTable3.Note − that αˆ and ηˆt are real only when s is so. The result is shown in Fig.4ascontinuouslines. Wehavealsoidentifiedthekdependenceofαˆandηˆt which, for ω = 0, prove to be roughly compatible with that of a Lorentzian, 1+(kℓ)2 −1,againinqualitativeagreementwiththe SOCAresultEq.(16),butwithdifferentvaluesℓ andℓ ofℓfor Figure5. Dependenceof1/αˆ(k,ω)and1/ηˆt(k,ω)onkforflowIIwith (cid:0) (cid:1) α η ω/v0k0 = 0.5 and Rm = 4.6. The Lorentzian fits are obtained with αˆ andηˆt.InFig.5weshow theresultforRm = 4.6andthear- k0ℓ = 1.0forReαˆandwith1.14forReηˆt,respectively. Inthesecond bitrarilychosen value ω/v0k0 = 0.5, where the fits(overplotted panel,Imηˆtisnotaconstant(bluesolidline)andaLorentzianwithk0ℓ= lines)areobtainedwithk0ℓα = 1.0andk0ℓη = 1.14. Notethat 0.55fitsbetter(bluedottedline). theSOCAresultEq.(16)forω =0suggestskindependentimag- 6 inarypartsof 1/αˆ and 1/ηˆt.FromFig.5onecanseethatthisis wellsatisfiedfor1/αˆ,butnotfor1/ηˆt. Fig. 1 employing kcrit and the detected oscillation frequency in (25).Itturnedoutthattohighaccuracy,αˆ andηˆ havethesame ij ij structureasobtainedunderSOCA,thatis,αˆ12 =αˆ21 =αˆ,ηˆ11 = ηˆ22 = ηˆwithallothercomponentsvanishing.Wheninsertingthe 3.2.3 Self-consistentgrowthratefromtest-fieldmethod resultsinthethusvaliddispersionrelation(22)theoutcomeshould be p = 0 iω. Indeed this was confirmed with high accuracy, InordertopredictthegrowthrateatagivenpointintheRm k − − see Table 1, where we list αˆ and ηˆ along with p obtained from plane, one could proceed as exemplified above: determine the ω them.Notethatthemarginalpointsweredeterminedbyaniterative dependence of αˆ and ηˆt, establish analytical approximations for procedureandtheiroscillationfrequencybyafit,sotheachievable αˆ(s) and ηˆt(s), s = iω, via a fit procedure, employ them in − agreementofthetworesultsforpislimitedalreadybythequality Eq.(22)withs=pandfinallysolveforp. oftheinputdatatotheTFM. A less cumbersome way is offered by an iterative approach (cid:13)c 0000RAS,MNRAS000,000–000 7 Table4. Iterationstepsoftheprocedure(28)withRm = 6andk/k0 = 0.3forflowII. n αˆ/v0 ηˆt/(v0/k0) p/(v0k0) 1 0.8696+0.0001i 0.5367−0.00003i −0.063280−0.2609i 2 0.9095+0.2747i 0.6846−0.04088i 0.005796−0.2765i 3 0.8261+0.2698i 0.6337−0.10560i 0.008907−0.5730i 4 0.8294+0.2487i 0.6212−0.09044i 0.003702−0.2570i 5 0.8349+0.2501i 0.6253−0.08747i 0.003753−0.2583i 6 0.8345+0.2514i 0.6260−0.08857i 0.004080−0.2583i 7 0.8341+0.2513i 0.6257−0.08874i 0.004077−0.2582i 8 0.8341+0.2513i 0.6257−0.08874i 0.004077−0.2582i Figure 6. Bx and By in a zt diagram as obtained from DNS for Rm =6,k/k0 =0.3,usingrandominitialconditions.Thegrowthrateis 0.00408v0k0andthefrequencyω = 0.2567v0k0,cf.thepredictedval- uesinTable4.∆t = t−t0 witht0 definedbydominanceofthefastest growingmodefort>t0. definedschematicallyby p0= initialguess dowhilestopcriterion=TRUE 6 αˆ(pn),ηˆt(pn):=TFM(pn) (28) pn+1:=p αˆ(pn),ηˆt(pn) n:=n+1(cid:0) (cid:1) Figure7. Rm dependenceofγˆ(solid)andηˆt (dashed)forflowIIIwith enddo k = k0 andω = 0.Redlines:Scalings ∼ R2m andRm forγˆ andηˆt, respectively. where TFM(p ) stands for the application of the TFM, see n Sect.3.2.1,withthecomplexpnasinputandp(αˆ,ηˆt)fortherhsof where we have chosen the symbol γˆ, recognizing that this effect thedispersionrelationEq.(22).Ofcoursebothmajorstepsin(28) corresponds to an advection of the mean magnetic field with the havetobecarriedoutwiththechosenRmandkandanappropriate velocity γˆe (but without mean material transport). This is often stopcriterionhastobeapplied. referredtoasturbulentpumpingorturbulentdiamagnetism.Asfor We demonstrate this now for flow II in the special case of flowII,theequationsforB andB decouple,andwehavehere Rm = 6 and k/k0 = 0.3, which is well outside the domain of theonlyslightlydifferentdisxpersionyrelation validityofSOCA.Weadoptp0 =0astheinitialguessandobtain afterseveniterations,afour-digitconvergedresultwithgrowthrate p= ikγˆ (η+ηˆt)k2 (30) − − λ = 0.00408v0k0 and the frequency ω = 0.2582v0k0. Table 4 ˆ ˆ lists all iterations needed. For comparison we have performed a forbothBx andBy.Clearly,thepumpingeffect,ifactinginstan- DNS,againwithRm =6andrandominitialconditions,andanas- taneously,thatis,witharealγˆ,doesnotleadtodynamoactionon pectratioofthecuboidcorrespondingtok/k0,whichforperiodic itsown,butgivesmerelyrisetooscillations.However,forω 6= 0 boundaryconditionsallowsharmonicmeanfieldswiththedesired wefindalwayscomplexvaluesofγˆindicatingthepresenceofthe ktoevolve.Wearealsointerestedintheeigenfunctioncorrespond- memory effect. Like the imaginary part of αˆ for flow II, the one ingtothefastestgrowing mode. ThismeansthattheDNShasto ofγˆhasthepotentialtoovercomethenegativerealcontributionto runlongenough(untilt=t0,say)sothatallothermodeshavebe- pfromthesecondtermin(30).Table2presentsγˆ andηˆt forthe comesubdominant. Weobserveindeedbothcomponents ofB to pointsonthemarginalcurveofflowIIIshowninFig.1.Inthelast begrowingwithjustthepredictedgrowthrateandfrequency,see column one finds the value of the complex growth rate obtained Fig.6.Acorrespondingexperimentwithnon-vanishinginitialcon- wheninsertingthetransportcoefficientsinto(30).Asinthecaseof ditionsinonlyoneofthecomponents confirmstheirindependent flowII,theagreementwithp,observedintheDNS,isexcellent. growth. InFig.7weshowthatforflowIIIatsmallvaluesofRm,γˆ/v0 isproportional toR2, whichissteeper than theingeneral linear m scalingofthecomponents of αij/v0 inSOCA.Hence, thefound 3.2.4 PumpingeffectinflowIII γˆ cannot be captured by thisapproximation. Werecall here are- latedresultfortheGalloway–Proctorflow(Ra¨dler&Brandenburg Werecallthat,under SOCA,thedispersionrelation(22)forflow IIIapplieswithαˆ = 0,soonlydecayingsolutionsarepredicted. 2009),whereγ/urmsturnedouttobeproportionaltoRm5.Justlike However,thisisnolongertruebeyondSOCA:UsingtheTFM,we forflowII,wecandetermineself-consistentvaluesofγˆandηˆtfor findthatforallRm,kandωconsidered givenkandRminaniterativemannersuchthattheyobeythedis- persionrelation(30).AsdemonstratedinTable5forRm =6and αˆ12 =αˆ21 γˆ=0, stillwith αˆ11 =αˆ22 =0, (29) k/k0 =0.4theprocedureconverges,butrequiressomewhatmore − ≡ 6 (cid:13)c 0000RAS,MNRAS000,000–000 8 M. Rheinhardtetal. Table5. Iterationstepsoftheprocedure(28)withRm =6andk/k0 = 0.4forflowIII. n αˆ/v0 ηˆt/(v0/k0) p/(v0k0) 1 0.8035−0.0001i 0.1609−0.00000i 0.05245−0.3214i 2 0.8374+0.3268i 0.2188+0.06709i 0.06905−0.3242i 3 0.7018+0.2972i 0.2189+0.01903i 0.05719−0.2777i 4 0.7265+0.2543i 0.2062+0.02417i 0.04206−0.2867i 5 0.7395+0.2669i 0.2088+0.02846i 0.04671−0.2912i 6 0.7337+0.2704i 0.2101+0.02706i 0.04788−0.2891i 7 0.7330+0.2680i 0.2095+0.02673i 0.04701−0.2889i 8 0.7339+0.2680i 0.2094+0.02699i 0.04702−0.2893i 9 0.7338+0.2683i 0.2095+0.02699i 0.04714−0.2892i 10 0.7337+0.2683i 0.2095+0.02695i 0.04711−0.2892i Figure8. SimilartoFig.6,butforflowIIIatRm =6,k/k0 =0.4.The growthrateis0.0471v0k0 andthefrequencyω = 0.2877v0k0,cf.the predictedvaluesinTable5. stepsthan for flowII. Thenormalized growthrateand frequency resultingfromthedispersionrelationare0.04711and0.2892,re- 4 EVOLUTIONEQUATIONFORTHEMEAN spectively,andareinverygoodagreementwiththeresultofDNS; ELECTROMOTIVEFORCE seeFig.8. Naturally,thequestionariseshowthepolarvectorγecanbe 4.1 Realspace-timeformulation constructedfromanydirectionsdetectableinu.Superficially,there seemstobeonlyonesuchdirection,namelyjustthatofe,butno So far we have demonstrated how flows II and III can be repre- sentedinamean-fieldmodelifthetemporalbehaviorofthemean preferredsenseofit(upordown)isidentifiable.Indeed,fromthis fieldisanoscillationwithexponentiallygrowingordecayingam- argument one can correctlyconclude that flow I does not show a plitude,thatis,B exp(pt)withacomplexp.Itishighlydesir- pumpingeffect.Thisispossible,becauseforthisflowallsecond- ∼ abletoovercomethislimitationandtoallowgeneraltimebehav- rank transport tensors can beshown tobe symmetricabout the z ior,e.g.,whentransientprocessesaretobeconsidered.Thiscanbe axisundertheplanaraverageadoptedhere(Ra¨dleretal.2002).In accomplished by establishing analytical approximations for thek contrast,flowIIIdoesnotshowtheunderlyingsymmetryproperty. Consequently, itcanimprintpreferreddirectionsdifferentfrome andωdependencesofαˆandηˆtandFourier-backtransformingthem intothespacetimedomainforobtainingtheconvolutionkernelsin intoitsrelevant averagesandhasthereforethepotentialofshow- ing a pumping effect. Indeed, with the vorticity ω = ∇ u, a Eq.(11).ThisintegralrepresentationofEthusbecomespractically polar vector can be constructed as ω (ω u), having×only a handleable. non-vanishingzcomponentequalto k×02v02w0×/2.Thisfindingalso However, performing a convolution in time is cumbersome − fromanumerical point ofview, because onewouldneed tostore supportsthequadraticscalingofγ/v0withRmforv0 =w0. themagneticfieldatsufficientlymany previous times.Moreover, It remains to clarify the nature of the mean field that grows the spatial integral represents a global operation requiring global along with the small-scale dynamo mode described in Sect. 3.1. communicationinparallelizedcodes.Thusadifferentialequation Forthat,wehaveappliedtheTFMwiththerelevantvaluesofRm governing E insteadof anintegral one would beamajor benefit. and k as well as the growth rate and frequency measured in the Suchamodelwouldalsoopenthegatewaytoincludenonlineari- DNS.Subsequently employing theobtained transport coefficients tiesduetomagneticquenchingofthetransportcoefficients,which inthedispersionrelation(30)yieldsapredictionofdecayinstead otherwisemustbekeptout. of growth, alongwithafrequency differingfromtheone usedas For isotropically forced turbulence, input to the TFM. An attempt to determine the complex growth (ordecay)rateofBconsistentlybytheiterativemethodfailsdue Rheinhardt&Brandenburg (2012) found that the kernels of tolackofconvergence.WeconcludethatthegrowingBisnotan the α and ηt tensors, which are then isotropic, can both well be eigenmode,butenslavedbythegrowingb.Theonlypossiblecause approximatedinFourierspaceby seemstobeanon-vanishingE0 ≡u×b0whereb0standsforthe σˆ = σ0 (31) small-scale field which would evolve in the absence of the mean 1+(kℓ)2 iωτ − fianedld,.aEs0ureipsrestsaetniotsnaanryi,nbhootmhobgeanneditByinwtohueledqhuaavtieonthgeosvaemrneintgemB- withσstandingforαorηt;seealsoBrandenburgetal.(2004)for poral dependence as b0 (after all transients having decayed). We passivescalars.MultiplyingnowEˆ =αˆBˆ−ηˆtµJˆwiththedenom- have calculated at first u b finding that it is more than six or- inatorof(31)andreturningfromthekωdomaintothespacetime ders of magnitude smaller×than urmsbrms. Given that b contains, domain,wearriveatadiffusion-typeoperatoractingonEandthus alongwithb0,necessarilyalsoacontributionfromthetanglingof atthesimpleevolutionequation TBFbMyvua,luoenseohfasαˆtoanredmηˆotv.eTthheatrepsaurtl,tiwnghiEch0,caanlthboeudgehribveedinfgroomnlythea 1−ℓ2∂z2+τ∂t Ei =α0Bi−ηt0µJi, (32) fractionofu bandanywaytinycomparedtourmsbrms,doesnot whichcloses(cid:0)themean-fieldin(cid:1)ductionequation(7).Inthissection, × vanish.However,givenitsdecreasewithincreasingresolution,we weaskhowusefulsuchanapproachistomodelthedynamoaction concludethatitislikelyanumericalartifact. offlowIIqualitativelyandperhapsevenquantitatively. (cid:13)c 0000RAS,MNRAS000,000–000 9 Table6. Rmdependenceofα0,ηt0,ℓandτforflowII. Rm α0/v0 ηt0k0/v0 ℓαk0 ταv0k0 ℓηk0 τηv0k0 1.00 0.249 0.138 0.743 0.495 0.772 0.560 2.00 0.481 0.313 0.808 0.908 0.854 1.108 3.00 0.664 0.465 0.844 1.128 0.859 1.273 4.58 0.832 0.559 0.814 1.133 0.734 0.725 6.00 0.901 0.546 0.737 0.998 0.576 −0.001 4.2 AmodelforflowII If SOCA were applicable to flow II, Eq. (31) would agree with Eq.(16)forαˆandηˆt.However,toexplaindynamoactionwehave togobeyondSOCA,so(31)canonlyberegardedasanapproxi- mation.ThedifferentialequationsforB andB decouple,which x y ismosteasilyformulatedbyemployingthemeanvectorpotential A,withB=∇ A: × 1−ℓ2∂z2+τ∂t Ei=±a0∂zAi+b0∂z2Ai (33) whichhast(cid:0)obesolvedalong(cid:1)with ∂ A = +η∂2A , (34) t i Ei z i i= 1,2.InEq.(33),theupperandlowersignsapplyrespectively toi=1and2.IfSOCAwerevalid,wewouldhave a0=Rmv0/4, b0 =Rmv0/8k0, (35) ℓ=1/√2k0, τ =Rm/2v0k0, whichimpliesthatℓ2/τ = η.Inthefollowing,ourcorresponding non-SOCAresultswillsometimesbenormalizedbythesevalues. When takingtheansatzes (31)for valid, but allowingnow ℓ andτ tobedifferentforαˆ andηˆt,allparameterscanbeobtained from the TFM–identified dependencies αˆ(k,ω) and ηˆt(k,ω) via thefollowingrecipes α0 = lim Reαˆ(k,0), k→0 1/2 1 Re 1/αˆ(k,0) ℓ = 1 foranyfixedk=0, (36) α k "Re(cid:0)1/αˆ(0,0)(cid:1) − # 6 Figure9. Rm dependenceofα0,ηt0,ℓσ,andτσ forσ = αorη,flow II.Inthelastpanel,weplottheresultinggrowthratepasobtainedfrom (cid:0) 1 Im 1/αˆ(cid:1)(k,ω) Eq.(37)fork/k0=0.025. τ = lim , α −ωk→→00"ωRe(cid:0)1/αˆ(k,ω)(cid:1)# andanalogouslyforηt0(cid:0),ℓη,andτη.(cid:1)TheresultsarelistedinTable6 Notethattherearepropagatingwavestravelinginoppositedirec- andplottedinFig.9independenceonRm,alongwiththeresulting tionsfor B and B .Thisresultagreesqualitativelywiththatof x y growth rate, which can be obtained by inserting (31) with τα = theDNS(Fig.6),butthegrowthrateistoosmall(0.00184v0k0in- τη =τ andℓα=ℓη =ℓinto(22)andsolvingforp: steadof0.00408v0k0)andalsothe(forthechosenzextent)most τ−1+(ηE +η)k2 unstablewavenumberistoolow(0.2k0insteadof0.3k0). p± = 2 (37) We choose Rm = 5 and, interpolating in Table 6, α0 = 1 1 4ηEηk4+τ−1 ∓iα0k+ηT0k2 1/2 . 00..8779v90/,kη0t,0w=her0e.5t6h2evl0a/ttke0r,cτho=iceτsαar=e s1o.m1/evw0hka0t,aarnbditℓra=ry ℓgαive=n ×− ±" − τ−1+((cid:0)ηE +η)k2 2 (cid:1)#  that τα 6= τη and ℓα 6= ℓη. In Fig. 11 we show the resulting zt diagram for B and B . Again, for both components there are x y HerewehavesetηT0 = ηt0+(cid:0)ηandηE = ℓ2/τ.(cid:1)Wehavescaled propagating waves, but traveling in opposite directions. The re- thecoefficientswiththeirrespectiveSOCAvaluesatRm =1,see sult agrees qualitatively with that of the DNS when restricting it Eqs.(35). tok = 0.1k0 (Fig.12),butthegrowthrateissomewhat toobig, Wenowemploytheresultingmean-fieldcoefficientstosolve 5.45 10−4v0k0 vs. 4.4 10−4v0k0 from DNS, whereas the × × theunderlyingsystemofmean-fieldequations.Forthatpurposewe oscillation frequencies match well: 0.0861v0k0 vs. 0.0854v0k0 use again the PENCIL CODE,which comes with acorresponding fromDNS. However, for a z extent of 20π/k0, thefastest grow- mean-fieldmoduletosolveEqs.(33)and(34).InFig.10weshow ing mode has twice the wavenumber, k = 0.2k0, along with theresultingmean-fieldcomponents,BxandBy,inaztdiagram. λ = 7.4 10−4v0k0 and ω = 0.168v0k0, which are also al- × (cid:13)c 0000RAS,MNRAS000,000–000 10 M. Rheinhardtet al. Figure10. Bx (top)andBy (bottom)inaztdiagramasobtainedfrom themean-fieldmodel(33),(34)forflowIIwithRm = 6andaz extent Figure12. BxandByinaztdiagramasobtainedfromDNSforflowII of20π/k0,usingtheparametersofTable6andrandominitialconditions. withRm = 5andazextentof20π/k0,usingrandominitialconditions. The(forthechosenzextent)fastestgrowingmodehask/k0 = 0.2,the The(forthechosenzextent)fastestgrowingmodehask = 0.2k0while growthrateis0.00184v0k0andthefrequencyis0.17v0k0. growthrateandfrequencyare0.00074v0k0and0.168v0k0,respectively. Thecorrespondingvaluesforthemodewithk=0.1k0are0.00044v0k0 and0.0854v0k0. totaldiffusivity(sumofturbulentandmicrophysicalmagneticdif- fusivities)isindeednegativewhendynamoactionoccurs,itisfor flowsIIandIIInotonlypositive,butturbulentandmicrophysical contributionshavethesameorderofmagnitude.Thesumofthese twopositivecontributionshastobeovercomebyadditionalinduc- tiveeffectsto produce growing solutions. These inductive effects comefromthesymmetricoff-diagonalcomponentsoftheαtensor combinedwiththememoryeffect. It is unclear how generic this qualitatively new mean-field dynamo behavior is. Off-diagonal components of the α tensor arecommonly foundininhomogeneous turbulence, butthenthey areusuallyantisymmetricandthuscorrespondtoturbulentpump- ing. Notmuch attention hasyet been paidtoward symmetricoff- diagonal contributions of α. However, we do know that in con- vectionsuchcontributionsdoexistinallthecaseswithshear;see Figure11. Bx (top)andBy (bottom)inaztdiagramasobtainedfrom Figs.9and12ofKa¨pyla¨etal.(2009).Dynamosowingtoacombi- themean-fieldmodel(33),(34)forflowIIwithRm = 5andaz extent nationofmemoryeffectandotherwisenon-generativeorevendif- of20π/k0, using interpolated parameters and random initial conditions. fusiveeffectsmightnotberestrictedtooff-diagonalcomponentsof The(forthechosenzextent)fastestgrowingmodehask = 0.1k0while α.Itismoregenerallyconnectedwithoscillatorybehaviorofasys- growthrateandoscillationfrequencyare0.000545v0k0and0.0861v0k0, respectively.Forthedefinitionof∆tseeFig.6. temcombined withthememory effect. Twoother examples have beenconsideredintheworkofRheinhardt&Brandenburg(2012), whereoscillatorysolutionsofbothaninhomogeneousα2dynamo most twice as large. The corresponding prediction from a mean- andahomogeneousαΩdynamohaveproducedsignificantlylower fieldsimulationisλ=2.9 10−4v0k0,ω=0.168v0k0. critical dynamo numbers in comparison with the model without × memoryeffect. Thepresentworkhashighlightedtheimportanceofusingthe test-field method to diagnose the nature of large-scale dynamos. 5 CONCLUSIONS Even without taking the memory effect into account, i.e., if the Thepresentworkhasdemonstratedaqualitativelynewmean-field test fields were assumed constant in time, it would have deliv- dynamo behavior that works chiefly through a memory effect. ered the information about the unusual occurrence of symmetric Without it, the examples of flows II and III studied in this paper off-diagonalcomponentsofαinflowIIandofaγ effectinflow wouldyieldjustdecayingoscillatorysolutions.Remarkableisalso III. the fact that flow II has zero kinetic helicity pointwise. This, to- Finally, let us emphasize the usefulness of taking spatio- getherwiththefactthatthetworelevantcomponentsofthemean temporal nonlocality even to lowest order into account. Techni- magneticfieldevolvecompletelyindependentlyofeachother(one cally, this is straightforward by replacing the usual equation of can be zero, for example), might lead one to the suggestion that themeanelectromotive forceby acorresponding evolutionequa- themean-fielddynamobehaviorofflowIIcouldbeduetonegative tion.Thisautomaticallyensuresthattheresponsetochangesinthe eddydiffusivity.However,unlikeflowIV,wheretherealpartofthe meanmagneticfieldiscausalanddoesnotpropagatewithaspeed (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.