ebook img

Maximum velocity of self-propulsion for an active segment PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Maximum velocity of self-propulsion for an active segment

Maximum velocity of self-propulsion for an active segment P.Rechoa,b,L.Truskinovskya aLMS,CNRS-UMR7649,EcolePolytechnique,RoutedeSaclay,91128Palaiseau,France bPhysicochimieCurie,CNRS-UMR168,InstitutCurie,CentredeRecherche,26rued’UlmF-75248ParisCedex05,France Abstract 5 Themotorpartofacrawlingeukaryoticcellcanberepresentedschematicallyasanactivecontinuumlayer. Themain 1 active processes in this layer are protrusion, originating from non-equilibrium polymerization of actin fibers, con- 0 2 traction,inducedbymyosinmolecularmotorsandattachmentduetoactivebondingoftrans-membraneproteinstoa substrate.Allthreeactivemechanismsareregulatedbycomplexsignalingpathwaysinvolvingchemicalandmechani- n a calfeedbackloopswhosemicroscopicfunctioningisstillpoorlyunderstood.Inthissituation,itisinstructivetotakea J reverseengineeringapproachandstudyaproblemoffindingthespatialorganizationofstandardactiveelementsinside 8 acrawlinglayerensuringanoptimalcost-performancetrade-off.Inthispaperweassumethat(intherangeofinterest) 2 theenergeticcostofself-propulsionisvelocityindependentandadopt,asanoptimalitycriterion,themaximizationof theoverallvelocity.Wethenchooseaprototypicalsetting,formulatethecorrespondingvariationalproblemandobtain ] h a set of bounds suggesting that radically different spatial distributions of adhesive complexes would be optimal de- p pendingonthedomineeringactivemechanismofself-propulsion. Thus,forcontraction-dominatedmotility,adhesion - hastocooperatewith’pullers’whichlocalizeatthetrailingedgeofthecell,whileforprotrusion-dominatedmotility o i itmustconspirewith’pushers’concentratingattheleadingedgeofthecell. Bothtypesofcrawlingmechanismswere b observedexperimentally. . s c i s y h 1. Introduction p [ Eukarioticcellsarespatiallyextendedactivebodiesthatcansteadilyself-propelinviscousenvironmentsatlow Reynolds numbers [1, 2]. It has been understood [3, 4, 5] that in these conditions a combination of stationarity 1 v and linearity of friction leads to kinematic reversibility and that a symmetric (under time reversal) stroke cannot 4 produce self-propulsion. For Stokes swimmers, a variety of non-symmetric motility strategies have been proposed 9 and optimized using various efficiency criteria [6, 7, 8, 9, 10, 11, 12]; similar models for crawlers advancing on a 1 frictional background were considered in [13, 14, 15]. Most of the self-propulsion mechanisms proposed in these 7 papersarefullykinematicinthesensethatthetimedependenceoftheshapeofaswimmer/crawlerisprescribed.This 0 . impliesthatappropriatelychosenactuatorscanalwaysperformtherequiredinternalmovements. Incellstheroleof 1 suchactuatorsisplayedbyactiveagentsandinthispaperwefocusonthefactthattheirdynamics,whilebeingdriven 0 biochemically,mustbecompatiblewiththefundamentalbalancesofmassandmomentum. 5 1 In the context of eukaryotic cell motility, a prototypical scheme of self-propulsion includes protrusion through : polymerization of actin filaments which is accompanied by dynamic assembly of focal adhesions; myosin-driven v contractionoftheactinnetworkwhichallowsthemotorparttoadvanceacargo,and,finally,detachmentofadhesive i X contactswithasimultaneousdepolymerizationofactinfibers[16]. Itisusuallyassumedthatactivepolymerization r ensuringprotrusioncanbedescribedastheworkofspatiallydistributedpushers, generatingpositiveforcecouples, a while active contraction can be viewed as an outcome of the mechanical action of distributed pullers, responsible for negative force couples [17, 18, 19, 20, 21]. The role of ATP in reversible adhesion of adhesive patches (focal adhesions)isunderstoodratherpoorlyandtheyareusuallytreatedaspassiveviscousbinderswhosespatialdistribution mayberegulatedactively[22]. Emailaddress:[email protected](L.Truskinovsky) PreprintsubmittedtoMathematicsandMechanicsofSolids January29,2015 Since our knowledge of the mechanism controlling the transport and the intensity of active agents performing protrusion,contractionandadhesionisratherlimited,weadoptinthispaperasemi-kinematicapproachandtreatthe correspondingdistributionsasfunctionalcontrolparametersconstrainedbythefundamentalmechanicalbalances.We thenposeavariationalproblemoffindingtheoptimaltemporalandspatialdistributionsoftheseparametersinsidea crawlingcontinuumbody. Inviewofsomesuccessfulattemptstojustifysuchreverseengineeringapproach[23],we anticipatethatouroptimalsolutionswillbeeventuallybackedbyanappropriateconstitutivetheory. While the real organisms are expected to optimize some measure of a trade-off between the velocity of self- propulsion and the corresponding energy expenditure, in this paper we make a simplifying assumption that the en- ergetic cost of self-propulsion is fixed and use as optimality criterion the maximization of the overall velocity. We are interested in steady translocation and assume that the internal distributions of mechanical parameters are com- patible with the traveling wave ansatz. This simplifying assumption allows us to replace the optimization of the crawling stroke in space and time by a purely spatial optimization of the internal distribution of active elements in theco-movingcoordinatesystem. Intheinterestofanalytictransparencyweusethesimplest1Dmodelofactively contractingcontinuum(subjectedtoviscousfrictionalforces)thathasbeenusedrepeatedlyinthecellmotilitystudies [24,25,26,27,28,29,30,16,31]. Inasettingsimilartooursthedependenceofcellvelocityonthedistributionof activestressesandadhesionpropertieswasstudiedin[18]wherebothcontractionandprotrusionwererepresentedby activecouples. Giventhatprotrusionisusuallylocalizedattheleadingedgeofthecell,wemodeltheeffectofactive polymerizationdifferentlybyusingStefantypeboundaryconditionsontheedgesofacrawlingsegmentthatfixthe influxandtheoutflowofactin, seealso[32,33,21]. Forthegivenstrengthofprotrusion, weprescribetheaverage levelofcontractileactivity,andthensearchfortheoptimalinternaldistributionofcontractileandadhesiveunits. Our analysis of the ensuing variational problem demonstrates that radically different distributions of focal ad- hesions are optimal depending on the domineering active mechanism of self-propulsion. Thus, for contraction- dominated motility, focal adhesions have to cooperate with pullers which end up localizing at the trailing edge of thecellwhileforprotrusion-dominatedmotilitytheymustconspirewithpusherswhichconcentrateinourmodelat theleadingedgeofthecell. Bothtypesofcrawlingmechanismshavebeenobservedexperimentally. Thepaperisorganizedasfollows. InSection2weformulatethemodel. Asimpleanalyticallytractablecaseof contractiondominatedmotilityistreatedinSection3. InSection4weobtainanalyticallyupperandlowboundsfor theself-propulsionvelocityinthegeneralcase. ThesameoptimizationproblemwasstudiednumericallyinSection 5. InSection6wepresentsomeevidencethatourlowerboundmayinfactcoincidewiththeoptimalsolution. The lastSection7containsthediscussionofourresults. 2. Themodel Following [29, 32], we consider a one-dimensional segment of viscous active gel representing the cell lamel- lipodiumonafrictionalsubstrate. Thesegmenthastwofreeboundarieswhichweidentifyasthetrailingedgel (t) − andtheleadingedgel+(t). Theforcebalancecanbewrittenintheform ∂ σ=ξv (1) x whereσ(x,t)isthestressandv(x,t)isthevelocity.Weassumethatthefrictionalcoefficientmimickingthedistribution offocaladhesions[33,34,32,35,36,37]isspaceandtimedependentξ(x,t) ≥ 0. Theconstitutivebehaviorofthe gelismodeledbytheequation[29,32] σ=η∂ v+χ, (2) x where the active pre-stress χ(x,t) ≥ 0 accounting for the presence of myosin molecular motors [38, 39, 40, 41, 42] is also assumed to be a function of space and time. For simplicity we assume that the bulk viscosity coefficient η > 0 is constant. The assumption of infinite compressibility in (2) allows us to decouple the transport of (actin) densityρ(x,t)fromforcebalancemakingthemechanicalproblem’staticallydeterminate’.Themassbalanceequation ∂ρ+∂ (ρv)=0canthenbesolvedindependentlyafterthevelocityfieldisdetermined[43,44]. t x We further assume that some internal mechanism (stiffness of the cell cortex [45, 46, 47, 48, 49, 50], osmotic pressureactivelycontrolledbythechannelsandpumpsonthecellmembrane[51,52], etc.) maintainsagivensize L0 = l+−l− ofthecell. Thereforethestressattheedgesmustbethesameσ(l−(t),t) = σ(l+(t),t) = σ0,whereσ0(t) isthenanunknownfunction. TomodelactiveprotrusionweimposetwokinematicStefantypeboundaryconditions 2 characterizingtherateofactinpolymerizationv+ > 0anddepolymerizationv− > 0ontheboundariesofthemoving segment[29,34,32,33,43] l˙ =v +v(l (t),t). (3) ± ± ± Forconsistency,theoverallmassbalancemustbealsorespectedonthemovingboundariesandwesetρ(l (t),t)v = − − ρ(l+(t),t)v+, which implies an instantaneous recycling of depolymerized actin from the trailing edge to the leading edge,see[21,43]formoredetailonsuchclosureofthetreadmillingcycle. Whilethereisconsiderableexperimental evidencethatactivepolymerizationisindeedlocalizedattheleadingedgeofacrawlingcell,thede-polymerization maybespreadalongthelengthofthelamellipodium[33,32]. However,intheinterestofanalytictransparency,such spreadingwillbeignoredinthisstudy,seethough[43]. The two functions χ and ξ can be interpreted as infinite dimensional controls parameters and found through an optimizationprocedure. Evenintheabsenceofadetailedmicroscopicmodelgoverningtherearrangementofthese agentswestillneedtosubjectthemtointegralconstraintsprescribingtheaveragenumberofadhesioncomplexes[42] 1 (cid:90) l+(t) ξ(x,t)dx=ξ∗, (4) L 0 l−(t) whereξ∗ >0isagivenconstantand 1 (cid:90) l+(t) χ(x,t)dx=χ∗, (5) L 0 l−(t) whereχ∗ > 0isanothergivenconstantrepresentingtheaveragenumberofcontractilemotors[53]. Itisclearfrom (4,5) that since we prescribe the density of active agents, the performance of the self-propulsion machinery will be proportionaltothelengthoftheactivesegment,sotheappropriatevelocityfunctionalmaybealsonormalizedbythe totallength. Tosimplifytheanalysiswefurtherassumethatthemotionoftheactivesegmentissteady[32,33]withunknown velocity V = l˙− = l˙+ and that the unknown functions σ,v and the unknown controls ξ,χ depend exclusively on the appropriately chosen co-moving coordinate u = (x− x −Vt)/L ∈ [−1/2,1/2] . Then in dimensionless variables (cid:112) 0 0 σ:=σ/χ∗,x:= x/ η/ξ∗,t:=t/(η/χ∗),ξ :=ξ/ξ∗andχ:=χ/χ∗weobtaintheforcebalanceequation (cid:32) (cid:33) 1 ∂ σ(u) − ∂ u +σ(u)=g (u), (6) L2 u g (u) 2 1 (cid:112) whereL:= L / η/ξ∗. There-scaledcontrolfunctions 0 g (u)=ξ(Lu)≥0,g (u)=χ(Lu)≥0 1 2 mustsatisfytheconstraints (cid:90) 1/2 (cid:90) 1/2 g (u)du= g (u)du=1. (7) 1 2 −1/2 −1/2 Theboundaryconditionstaketheform (cid:40) σ(−1/2)=σ(1/2) (cid:16) (cid:17) (8) 1 ∂uσ(1/2) − ∂uσ(−1/2) =−∆V L2 g1(1/2) g1(−1/2) where ∆V := (v+−v−)η. χ∗L 0 ThedimensionlessvelocityofthesegmentperlengthV =V/Lcanbefoundfromtheformula (cid:32) (cid:33) 1 ∂ σ(1/2) ∂ σ(−1/2) V =V + u + u (9) m 2L2 g (1/2) g (−1/2) 1 1 where V := (v++v−)η. m 2χ∗L 0 3 Now, if we assume that the two parameters (V ,∆V), characterizing actin treadmilling, are fixed we can pose the m optimization problem of finding the controls g (u), g (u) ensuring the maximization of the normalized velocity V. 1 2 This problem is nontrivial because the functional V{g ,g } is prescribed implicitly through the unknown solution 1 2 of the boundary value problem (6,8). To our advantage though this linear elliptic problem is classical and is well understood,e.g. [54]. We observe that parameter V enters the expression for the velocity (9) in an additive way and does not affect m the solution of the optimization problem. The reason is that V characterizes a propulsion mode associated with m simpleaccretionofthematerialatthefrontanditssimultaneousremovalattherear;whenV (cid:44)0anaprioripolarity m is imposed and the problem of motility initiation disappears. In view of the complete decoupling of this mode of self-propulsionfromourcontrols,inwhatfollowsweassumewithoutlossofgeneralitythatV =0. m The second parameter ∆V, also characterizing the protrusion strength, does not induce polarity. As we clarify in the next Section, this parameter represents the mechanical action of pushers and the dependence of the crawling velocityon∆V,whichisnowsensitivetobothcontrols,ismuchmoresubtlethaninthecaseofV . m 3. Pushersandpullers Toseethatparameter∆Vcharacterizesinoursettingtheactivityofpushers,considertheglobalbalanceofcouples intheco-movingcoordinatesystem (cid:90) 1/2 (cid:90) 1/2 L g (u)v(u)udu=−∆V+ g (u)du+σ . (10) 1 2 0 −1/2 −1/2 Heretheterminthelefthandsidecharacterizesthetotalmomentduetoexternal(frictional)forces. Thefirsttermin thetherighthandside T =∆V is due to active protrusion, while the second term (cid:82)1/2 g (u)du = 1 is due to active contraction. The last term σ −1/2 2 0 correspondstopassivereactionforcesresultingfromtheprescriptionofthelengthofthesegment. Ourassumptionthat∆V >0meansthattheprotrusioncouplehasanegativesignshowingthatthecorresponding forcedipolesactonthesurroundingmediumbypushingoutwardandcreatingnegativestress.Instead,thecontraction couple has a positive sign because the contractile forces pull inward and the induced stresses are positive. We can thereforeassociateprotrusionwiththepresenceofpushersandcontractionwiththeactivityofpullers[18,21]. We canalso(tentatively)arguethatmotilityisprotrusion-dominatedwhenT > 1anditiscontraction-dominatedwhen 0<T <1. Thisassertionwillbeconfirmedlaterinthepaperbyrigorousanalysis. To illustrate the different roles played in our motility mechanism by pushers and pullers, we present below an analysisofatoymodelwhichanticipatesthemainconclusionsofthepaper. Wetemporarilyset∆V =0anddescribe the distribution of pushers and pullers by the same function g (u) allowing it now to be both positive and negative. 2 Ourgoalistoshowthatforprotrusion-dominatedmotilitydrivenbypushers,itisbeneficialtocreatestrongadhesion attheleadingedgewhileforcontraction-dominatedmotilitydrivenbypullers,itisthetrailingedgethathastoadhere moststrongly. Consideraspecialchoicesofcontrolfunctions, g (u)=qδ(u−u )+(1−q)δ(u−u ),g (u)= pδ(u−u )−(1−p)δ(u−u ), (11) 1 1 2 2 3 4 whereδistheDiracdistribution,0 ≤ q,p ≤ 1and−1/2 ≤ u ,u ,u ,u ≤ 1/2. Thecontrolfunctiong (u)represents 1 2 3 4 1 twoadhesionsitesu = u andu = u whoselocationsandintensitiesmustbeoptimizedinrelationtotheprescribed 1 2 positionofasinglepullerplacedatu=u andcharacterizedbyapositivedipolemomentpandasinglepusherlocated 3 atu=u andcharacterizedbyanegativedipolemoment p−1. Theparameter pmeasurestherelativeimportanceof 4 contractioncomparingtoprotrusion. Supposethat u <u ,u <u (12) 3 1 2 4 4 whichensuresthatouractivesegmentmovesfromlefttorightandthatinthesegmenttheadhesionsitesarealways outsidethelocationoftheactiveagents. Byusing(11)wecanexpressthevelocityofthesegmentas (cid:32) (cid:33) 1 (1−2p)(u −u )c V = 1+ 2 1 , 2 u −u +1+(u −u )a 1 2 2 1 where, 1 1−2q a= andc= . 1+q(1−q)(u −u )L2 1+q(1−q)(u −u )L2 2 1 2 1 Suppose for simplicity that our two adhesive complexes are placed symmetrically with respect to the center of the segmentu =1−u . Wecanthenuseasingleparameter∆u=u +1/2=1/2−u toobtain, 1 2 1 2   V = 121+ 1+2(∆1u−q(21p−)(q1)−L22+q) 2∆u . 1−2∆u At∆u=0,whenadhesivecomplexeslocalizeattheedgesofthesegment,thevelocityreachesitsmaximumvalue V = 1(cid:2)1+(1−2p)(1−2q)(cid:3). (13) 2 Because of the imposed inequalities (12), we must necessarily have in this configuration u = −1/2 and u = 1/2 3 4 meaningthatpushersandpullersmustalsolocalizeattheedges. Noticehoweverthatinequalitiesu <u andu <u 3 1 2 4 arenecessaryforformula(13)toholdsotheapparentconclusionthatu = u = 1/2andu = u = −1/2isaresult 3 1 4 2 of an abuse of notation. In a theory where, pushers, pullers and adhesion complexes have a characteristic size of dispersion,theadhesionclusterswillbeslightlyaheadofpullersandslightlybehindthepusherssothatactiveagents takeadvantageofthefirmattachmenttoeitherpushorpull(seemoreonthissubjectbelow). Fromoursimpleanalysisitfollowsthatifpullersdominate(p > 1/2),theoptimalwaytotuneadhesionistoset q = 1andconcentrateadhesivecomplexesatthetrailingedgeofthemovingsegmentachievingmaximumvelocity V = 1 when p = 1. If, instead, pushers dominate (p < 1/2), the optimal way to tune adhesion is to set q = 0 and concentrate adhesive complexes at the leading edge. In this case, the maximal velocity is again V = 1 given that p = 0. Inotherwords,tobeeffective,pullershavetoconcentrateonthetrailingedgeandensurestrongadhesionon the leading edge: in this way pullers can inflict contraction that displaces the trailing edge which due to the length constraint also propels the leading edge. On the contrary, pushers can take advantage of the firm attachment at the trailing edge to push against it and propel the leading edge which in turn pulls the trailing edge due to the length constraint. 4. Contractiondrivenmotility We now return to the study of the optimization problem in the original formulation. The simplest analytically transparentcaseiswhenprotrusionisdisabled∆V =0andmotilityisfullycontraction-driven. Supposefirstthatg ≡ 1whichmeansthattheadhesioncomplexesaredistributeduniformly. Thenthevelocity 1 oftheactivesegmentcanbeexpressedasaquadrature 1 (cid:90) 1/2 V =− sinh(Lu)g (u)du. (14) 2sinh(L2) −1/2 2 Onecanseethatifthefunctiong (u)iseven,thenV =0. Thisresultcanbeinterpretedasananalogueofthefamous 2 Purcell’stheoremaboutthenecessityofnon-symmetricstrokesinStokesswimming[4,2]. Ifthedistributiong (u)is 2 non-symmetricand,forinstance,moremotorsareplacedattherearofthesegment,thevelocitywillbecomepositive. Using the fact g (u) ≥ 0 we can also conclude from (14) that V ≤ 1/2. This upper bound is reached when all the 2 motorsarefullylocalizedattherearandg (u)=δ(u+1/2). 2 5 Now,considerthegeneralcasewhenthefocaladhesionsaredistributedinhomogeneously. Since(6)isaSturm- Liouvilleproblem,itssolutioncanbewrittenas (cid:90) 1/2 σ(u)=σ − G(u,s)(cid:2)g (s)−σ (cid:3)ds, (15) 0 2 0 −1/2 wheretheGreen’sfunctionG(u,s)canberepresentedtwoauxiliaryfunctionsh(u)and f(u) G(u,s)= 1 (cid:2)h(u)f(s)(cid:49) +h(s)f(u)(cid:49) (cid:3), (16) C [s<u] [u<s] solvingthefollowingstandardboundaryvalueproblems[54]: (cid:40) (cid:40) (1h(cid:48))(cid:48) = L2h (1 f(cid:48))(cid:48) = L2f h(−1/2g)1 =1,h(1/2)=1 , f(−1/2g)1=1, f(1/2)=−1 . (17) In(16),C =(hf(cid:48)− fh(cid:48))/g isaconstantinvolvingtheWronskianofthetwoauxiliaryfunctionsh(u)and f(u)and(cid:49) 1 istheindicatorfunction. Wecannowwrite 1(cid:90) 1/2 V = f(u)(g (u)−gˆ )du, (18) 2 2 2 −1/2 whereweintroducedanewmeasureofinhomogeneityofcontraction: (cid:82)1/2 h(u)g (u)du gˆ = −1/2 2 . 2 (cid:82)1/2 h(u)du −1/2 Ifbothfunctionsg (u)areeven,then f(u)isoddand,sincetheintegralofaproductofanoddandanevenfunctions 1,2 is equal to zero, we obtain that V = 0. The same result follows if we assume that contraction is homogeneous g (u)=gˆ =1whiletheadhesiondistributiong (u)isarbitrary. Therefore,toensuremotilityat∆V =0,contraction 2 2 1 mustbeinhomogeneouswhileadhesionmaystillbeuniformprovidedcontractionisnoteven. Tofindtheoptimaldistributionsg (u), g (u)weproceedintwosteps. WefirstshowthatV ≤ 1andthenfinda 1 2 configurationofcontrolsallowingthecelltoreachthisbound. Noticethatwecanrewrite(18)intheform (cid:32)(cid:90) (cid:90) (cid:33) 1 V = f(u)(g (u)−gˆ )du+ f(u)(g (u)−gˆ )du 2 2 2 2 2 S+ S− where we defined the domains S− = {u/g2(u)≤gˆ2} and S+ = {u/g2(u)>gˆ2}. Applying the maximum principle to (17)weobtainthat1≥h(u)≥0andh(u)≥ f(u)≥−h(u). Usingtheboundson f,wecanwrite (cid:32)(cid:90) (cid:90) (cid:33) 1 V ≤ h(u)g (u)du+gˆ h(u)du . 2 2 2 S+ S− Sincetheintegrandsarepositiveandh(u)≤1itfinallyfollowsthat (cid:90) 1/2 (cid:90) 1/2 V ≤ h(u)g (u)du≤ g (u)du=1. (19) 2 2 −1/2 −1/2 Observethatinthecaseofahomogeneousdistributionofadhesiveclusters,thevelocitycouldreachonlyonehalfof thismaximalvalue. WenowshowthatthemaximalvelocityV =1canbereachedifbothcontrolsg (u)andg (u)arefullylocalized. 1 2 Takeθ>0andconsideraregularizeddistribution 1 θ g (u;θ)= . 1 πθ2+(u−u )2 1 6 Forthischoiceofg (u)theauxiliaryfunctionsh(u)and f(u)canbewrittenexplicitlyintermofLegendrepolynomials. 1 Inthelimitθ→0andlim g (u;θ)=δ(u−u )weobtain θ→0 1 1 (cid:40) 1ifu≤u h(u)=1and f(u)= 1 −1ifu>u . 1 Byusingtheseexplicitexpressionsfortheauxiliaryfunctionswecanrewrite(18)intheform 1(cid:34)(cid:90) u1 (cid:90) 1/2 (cid:35) V = g (u)du− g (u)du−2u . (20) 2 2 1 2 −1/2 u1 ifwenowsupposethatg (u)=δ(u−u )theexpressionforvelocityreducestoreducesto 2 2  V = 1 1−−22uu1ififuu2=<uu1 2 −1−21u if2u >1u 1 2 1 Itisnowclearthatthevelocityreachesitsmaximalvalueasu → −1/2whileu < u . Wecanthenformallywrite 1 2 1 u =u =−1/2andobtainthecontrolsg (u)=g (u)=δ(u+1/2)saturatingtheboundV =1.Notice,however,that 2 1 2 1 ifweassumedirectlyu = u → −1/2in(20),weobtainV = 1/2. Thisisinagreementwiththephysicalintuition 1 2 thattheanchoragepointmustbelocatedtotherightofthepullingforcedipole:inthiscasethepullingforcesadvance therearedgeofthesegmentwithminimalslipping. Mathematically,weencounterherethecaseofnon-commutation ofthelimitingproceduresu →−1/2andu →−1/2givingV =1onlyifthelimitsaretakenintheaboveorder. 2 1 To summarize, the optimization of the distribution of focal adhesions allows the contraction-dominated mecha- nism of cell motility to reach the value of velocity which is twice as large as when the adhesion is uniform. This meansthatinordertoimprovethemotilityperformancetheadhesionmachinerymustconspirewiththecontraction machinerymakingsurethatboththemotorsandtheadhesivecentersarelocalizedatthetrailingedge. Interestingly, exactlythistypeofcorrelationbetweenthestressescreatedbycontractionandthedistributionoffocaladhesionswas observedinexperimentsandnumericalsimulations[55,56,57,58,59,22]. Thelocalizationofadhesioncomplexes closetocelledges,wherecontractionisthestrongest,hasbeenalsoreportedoutsidethemotilitycontext[60,61,62]. 5. Upperandlowerboundsforvelocityinthegeneralcase We now turn to the general case where both contraction and protrusion are active. In particular, the protrusive power will be characterized by the parameter ∆V = T > 0 which was assumed to be equal to zero in the previous Section. Wecanthenwrite V = 12(cid:82)(cid:82)−111///222hf((uu))dduuT +(cid:90)−11//22 f(u)(g2(u)−gˆ2)du. (21) −1/2 Aswesee,thefirsttermintherighthandsideisassociatedwithprotrusion-based(orfilament-driven[63])motility while,aswehavealreadyseen,thesecondtermisthecontributionduetocontraction-based(ormotor-driven[63]) motility. Wenoticethatifg (u)iseven,then f(u)isoddandh(u)iseven,leadingto 1 (cid:82)1/2 f(u)du −1/2 =0. (cid:82)1/2 h(u)du −1/2 Ifg (u)isalsoeven,then 2 (cid:90) 1/2 f(u)(g (u)−gˆ )du=0. 2 2 −1/2 Inthiscasethevelocityofthesegmentisfullycontrolledbytheaccretionmechanismcharacterizedbytheparameter V . m 7 Considerfirstthecaseofprotrusion-drivenmotilitybyassumingthatcontractionishomogeneousg (u) ≡ 1and 2 thereforedoesnotcontributetotheoverallvelocity. Byusingagainthemaximumprincipleweobtaininequalities (cid:82)1/2 f(u)du −1≤ −1/2 ≤1, (cid:82)1/2 h(u)du −1/2 leadingtotheupperbound T V =V ≤ . (22) p 2 Themaximumoftheprotrusivecontributiontovelocityisreachedwhen,g (u)=δ(u− 1),becauseinthiscaseh=1 1 2 and f = 1almosteverywhere. Observe,thattheoptimalsolutioninthecaseofprotrusion-drivenmotilityisinsome senseoppositetothesolutiong (u)=δ(u+1/2)obtainedinthecaseofthecontraction-drivenmotility. 1 Basedon(19)and(22)wecannowarguethatinthecasewhenbothtreadmillingandcontractionarepresent,an upperboundforvelocityis T V ≤ +1, 2 however,aswehavejustseen,inviewoftheincompatibilityofthecorrespondingoptimalcontrols,thisboundcannot be reached. The optimal strategy for focal adhesions would then involve a compromise between the necessity to localizeadhesionatthetrailingedgeinordertoassistthecontractionmechanismandthecompetingtrendtolocalize adhesionattheleadingedgeinordertoimprovetheprotrusionpowerofthecell. To obtain a lower bound for V we now consider a particular test function representing a weighted sum of our competingoptimalcontrols,g (u)=qδ(u+1/2)+(1−q)δ(u−1/2). Wealsochoseg (u)=δ(u−u ),whereq∈[0,1] 1 2 0 andu ∈[−1/2,1/2]aretwoparameterstobeoptimized. Then,bysolving(17)weobtain, 0  f(u)= 1−2q1ififuu=∈]−−1/12/2,1/2[  1+q(1−q)L−21ifu=1/2 and,  h(u)= 1 1ififuu=∈]−−1/12/2,1/2[  1+q(1−q)L12 ifu=1/2, whichleadstotheexpressionforthevelocity T 1 V = (1−2q)+ (f(u )−(1−2q)h(u )). 0 0 2 2 Theoptimizationwithrespecttou givesu =−1/2and 0 0 T V = −q(T −1). 2 Finally,optimizinginqweobtainthatifT <1,weneedtotakeq=0andifT >1,wegetq=1.Thisresult,illustrated inFig1,suggeststhatthereisaswitchatT = 1betweenthecontraction-centeredoptimizationstrategy(q = 0)and the protrusion-centered optimization strategy (q = 1). Notice that the switch takes place exactly when the negative protrusiongeneratedcoupleT becomesequaltothepositivecontractilecoupleequalto1. AtaninterestingstateT = 1, thetwoactivemechanismsneutralizeeachotherandactivity-relateddipolesbecomeinvisiblebehindthepassive contributionsinEq. (10): inthiscasetheoptimalpositionofactiveandadhesiveagentsbecomesindeterminate. 8 Figure1: Solidlines:Lowerboundontheoptimalvelocityofself-propulsionVasafunctionofthemeasureofthe(relative)protrusivestrength T. Theoptimalstrategydependsonwhethercontraction(T <1)orprotrusion(T >1)dominates. Thedashedlinerepresentstheupperbound obtainedbyformallysummingtheincompatibleupperboundsfortheprotrusionandcontractionbasedstrategies. Thedottedlinerepresentsa sub-optimalstrategyobtainedundertheassumptionthatadhesionishomogeneous.Insetsillustratetheassociatedconfigurationsofcontrolsg1(u) andg2(u). 6. Numericalsolutionoftheoptimizationproblem To show that the low bound obtained in the previous Section is rather close to being optimal, here we solve the optimizationproblemnumerically. Afinitedimensionalreductionoftheoriginalvariationalproblemisconstructed byselecting N +2pointsu = i/(N +1)−1/2thatsubdividethesegment[-1/2,1/2]. Wethenlocalizeadhesionand i contractioninthesepointsbychoosingthecontrolfunctionsintheform (cid:88)N (cid:88)N+1 g (u)= giδ(u−u),g (u)= giδ(u−u), 1 1 i 2 2 i i=1 i=0 where (cid:80)N+1gi = (cid:80)N gi = 1 and gi ≥ 0,gi ≥ 0. In this way we also mimic the discrete nature of real adhesive i=0 2 i=1 1 1 2 clustersandrealmyosinmotors,soinsomerespectsthediscreteproblemisevenmorerealisticthanthecontinuum one. Bysolvingtheauxiliarylinearellipticproblemsforthischoiceofcontrolsweobtainthatthefunctionsh(u)and f(u)arepiece-wiseconstanth(u) = (cid:80)N A(cid:49) (u)and f(u) = (cid:80)N C(cid:49) (u). Thecoefficientswithi ∈ [2,N] i=0 i [ui,ui+1[ i=0 i [ui,ui+1[ satisfytheequations gi(A −A )+gigi−1A L2(u −u )=gi−1(A −A ) 1 i−1 i−2 1 1 i−1 i i−1 1 i i−1 gi(C −C )+gigi−1C L2(u −u )=gi−1(C −C ) 1 i−1 i−2 1 1 i−1 i i−1 1 i i−1 Theboundaryconditionsgive A =1,A =1,C =1,C =−1. 0 N 0 N WeusetheconventionsA−1 = A0,AN+1 = AN,C−1 =C0andCN+1 =CN toexpressthevelocityV intheform V = 21T −(cid:88)Ni=+01gi2Ai+2Ai−1(cid:80)(cid:80)iiNN==00CAii((uuii++11−−uuii)) + 21(cid:88)Ni=+01gi2Ci+2Ci−1. (23) 9 Thefunction(23)wasoptimizednumericallywithrespecttoparametersgi andgi subjectedtotheappropriateequality 1 2 andinequalitytypeconstraints. Tofindtheglobalminimumweusedthemethodofsimulatedannealingwithinitial guessescorrespondingtohomogeneousconfigurations. InFig.2,illustratingourresultsforN =100,onecanseethat for T < 1 both optimal functions g (u) and g (u) are localized at the trailing edge. Instead, for T > 1 we observe 1 2 thatg (u)localizesattheleadingedgewhileg (u)localizesatthetrailingedge. Thevalueofthemaximalvelocity, 1 2 obtained numerically, is the same as in the bound up to an error proportional to the mesh size. Notice also that the optimally spaced adhesion points are shifted from the locations of force dipoles by a mesh size. Thus, the solution ofthenumerical(regularized)probleminthecontraction-dominatedregime(withT = 0.9),showninFig.2,clearly distinguishes the optimal functions g (u) and g (u) that are both localized at the size of the mesh. The function 1 2 g (u) remains different from zero at one mesh size beyond the point where we already have g (u) = 0 (for positive 1 2 velocity). Intheprotrusion-dominatedregime(atT =1.1)showninFig.2,themeshsizeagainpreventslocalization ofthefunctiong (u)exactlyattheleadingedgewhileg (u)localizesexactlyatthetrailingedge. Theseobservations 1 2 confirm that the regularized numerical solution is more realistic than its singular analytic prototype. Overall, our numerical results are in full agreement with the analytic bounds which suggests that that these bounds are (nearly) sharp. Figure2: Numericalresultsfortheoptimizationofthefunction(23)fortwovaluesoftheprotrusivestrength,belowthethresholdT =0.9and abovethethresholdT =1.1.Insetsmagnifythestructureoftheoptimalcontrolsneartheboundariesofthemovingsegment.ParameterL=10. 7. Localstabilityanalysis In this Section we use a perturbation analysis to provide additional evidence that our lower bounds are close to beingoptimal. Inwhatfollowsweusethesuperscript◦toindicatetheunperturbedstateandsuperscript(cid:63)tomarkparameters characterizingtheperturbedconfiguration. Weassumethatforallfunctionsφ(u)thefollowingexpansionholdsinthe firstorder φ(u)=φ◦(u)+(cid:15)φ(cid:63)(u), where(cid:15) isasmallparameter. KeepingonlythefirstordertermintheexpressionforV,weobtain V(cid:63) = 1(cid:34)(cid:82)1/2 g◦f(cid:63)+ f◦g(cid:63)− (cid:82)−11//22f◦ (cid:18)(cid:82)1/2 g◦h(cid:63)+h◦g(cid:63)(cid:19) 2 −1/2 2 2 (cid:82)1/2h◦ −1/2 2 2 +T−(cid:82)−11//22h◦g◦2 (cid:32)(cid:82)1/2 f(cid:63)−−1(cid:82)/−211//22h(cid:63) (cid:82)1/2 f◦(cid:33)(cid:35), (cid:82)1/2h◦ −1/2 (cid:82)1/2h◦ −1/2 −1/2 −1/2 whereh(cid:63) = H(cid:63)(cid:48), f(cid:63) = F(cid:63)(cid:48)and (cid:40) (cid:40) H(cid:63)(cid:48)(cid:48)−L2g◦H(cid:63) = L2h◦g(cid:63) F(cid:63)(cid:48)(cid:48)−L2g◦F(cid:63) = L2F◦g(cid:63) 1 1 , 1 1 (24) H(cid:63)(cid:48)(−1/2)= H(cid:63)(cid:48)(1/2)=0 F(cid:63)(cid:48)(−1/2)= F(cid:63)(cid:48)(1/2)=0. Inviewofthesaturationoftheconstraintsbytheunperturbedsolution(cid:82)1/2 g◦ =(cid:82)1/2 g◦ =1,wemusthave −1/2 2 −1/2 1 (cid:90) 1/2 (cid:90) 1/2 g(cid:63) = g(cid:63) =0. 2 1 −1/2 −1/2 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.