ebook img

Maximising Oil Production Through Data Modelling, Simulation and Optimisation José Antonio PDF

216 Pages·2017·2.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Maximising Oil Production Through Data Modelling, Simulation and Optimisation José Antonio

Maximising Oil Production Through Data Modelling, Simulation and Optimisation José Antonio Peñuelas Alvarez A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Automatic Control and Systems Engineering March 2017 Acknowledgements I would like to thank my main supervisor Dr Hua-Liang Wei for his valu- able guidance and support during my studies. I feel privileged for joining the Department of Automatic Control and Systems Engineering. I have learned a lot from all my friends and colleagues I have met at the department. You have all contributed to the amazing time I’ve had in Sheffield during the last years. I express my gratitude to Mexico’s Ministry of Energy for its financial support, without this help, this work would not have been possible. I would like to thank Dr Pablo Ibargüengoytia for his comments, ideas and monitor- ing the progress of my studies. Finally, I would like to thank my family for giving me their love and support. Without you, I would not be here. I dedicate this Thesis to you: Papá, Mamá y Ale. Abstract Theresearchworkpresentedonthisthesisprovidesanalternativetoolfor characterising oil fields under fluid injection by analysing historical produc- tion/injection rates. In particular polynomial and radial basis Non Linear Autoregressive with Exogenous Input Model (NARX) models were devel- oped; these models were capable of capturing the dynamics of an operating field in the North Sea. A Greedy Randomised Adaptive Search Procedure (GRASP) heuristic optimisation method was applied for estimating a future injection strategy. This approach is combined with a risk analysis methodology, a popular ap- proach in financial mathematics. As a result, it is possible to estimate how likely it is to reach a production goal. According to the simulations, it is possible to increase oil production by 10% in one year by implementing a smart injection strategy with low statisticaluncertainty. Resultingfromthisresearchproject,acomputational tool was developed. It is now possible to estimate NARX models from any fieldunderfluidinjectionaswellasfindingthebestfutureinjectionscenario. Contents 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contributions and Thesis Overview . . . . . . . . . . . . . . . 8 1.3.1 Main Contributions . . . . . . . . . . . . . . . . . . . 8 1.3.2 Chapter Description . . . . . . . . . . . . . . . . . . . 10 1.3.3 Published Articles . . . . . . . . . . . . . . . . . . . . 12 2 State of the Art in Reservoir Simulation 13 2.1 Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Analysis of Decline Curves . . . . . . . . . . . . . . . . 15 2.1.2 Material Balance Equation . . . . . . . . . . . . . . . 18 2.2 Capacitive Resistive Model . . . . . . . . . . . . . . . . . . . 23 2.3 Statistical Reservoir Analysis . . . . . . . . . . . . . . . . . . 26 2.4 Linear Data-Driven Models . . . . . . . . . . . . . . . . . . . 29 2.5 Multi-Layer Neural Networks . . . . . . . . . . . . . . . . . . 31 2.5.1 Scott Field, a Case Study From the North Sea . . . . 37 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 i 3 New Practical Application of the Non Linear Autoregressive with Exogenous Input Model in Petroleum Engineering 49 3.1 The Non Linear Autoregressive Moving Average with Exoge- nousInputModel(NARMAX)SystemIdentificationMethod- ology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1 Polynomial NARX Models . . . . . . . . . . . . . . . . 52 3.2 The FROLS Algorithm for Term Selection . . . . . . . . . . . 54 3.2.1 NARX Model Estimation . . . . . . . . . . . . . . . . 58 3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4 NovelProbabilisticNARXNeuralNetworkModelApproach 75 4.1 Single Layer Multi-Scale Radial Basis Function Models . . . . 76 4.2 Implementing MSRBF Models for EOR Modelling . . . . . . 80 4.3 Novel Pruning Method for NARX MSRBF Models . . . . . . 86 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Estimating Future Uncertainty 99 5.1 Feature Selection Comparative Study . . . . . . . . . . . . . . 99 5.2 Introduction to Risk Analysis . . . . . . . . . . . . . . . . . . 111 5.2.1 Qualitative Methods . . . . . . . . . . . . . . . . . . . 112 5.2.2 Quantitative Methods . . . . . . . . . . . . . . . . . . 114 5.3 Monte Carlo for NARX Models . . . . . . . . . . . . . . . . . 115 5.3.1 Risk Profile Analysis . . . . . . . . . . . . . . . . . . . 120 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6 Production Optimisation 131 6.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Heuristic Optimisation Methods . . . . . . . . . . . . . . . . . 132 ii 6.3 GRASP Optimisation Using NARX Models . . . . . . . . . . 134 6.3.1 Financial Benefits . . . . . . . . . . . . . . . . . . . . 148 6.4 Forecasting Using Ensemble Modelling . . . . . . . . . . . . . 150 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7 Conclusions and Future Work 156 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Appendices 162 A MSRBF Model Structure 163 A.1 Multi-Layer Neural Network Performance . . . . . . . . . . . 169 B Production Well Models 172 C Future Injection Values 182 iii List of Figures 1.1 Energy Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 World Energy Consumption Forecast . . . . . . . . . . . . . . 3 1.3 Simple Field Under Injection Diagram . . . . . . . . . . . . . 7 2.1 Exponential Decline Curve Analysis Example . . . . . . . . . 17 2.2 Oil, Gas and Water Compressibility Ratios. . . . . . . . . . . 19 2.3 Fluid Expansion Diagram . . . . . . . . . . . . . . . . . . . . 22 2.4 Neural Network Structure . . . . . . . . . . . . . . . . . . . . 33 2.5 Multi-Layer Neural Network Structure . . . . . . . . . . . . . 34 2.6 Scott Field Location . . . . . . . . . . . . . . . . . . . . . . . 37 2.7 Raw Oil Production Data . . . . . . . . . . . . . . . . . . . . 38 2.8 Raw Water Injection Data . . . . . . . . . . . . . . . . . . . . 39 2.9 Total Oil Production . . . . . . . . . . . . . . . . . . . . . . . 40 2.10 Total Water Injection. . . . . . . . . . . . . . . . . . . . . . . 41 2.11 Outlier Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.12 Partial Autocorrelation Function . . . . . . . . . . . . . . . . 44 2.13 12-Delays 21-Hidden Neurons NN Model Response . . . . . . 45 2.14 11-Delays 2-Layers NN Model Structure . . . . . . . . . . . . 46 3.1 MISO System Identification Diagram . . . . . . . . . . . . . . 50 iv 3.2 Third order Polynomial-Model 16 Performance . . . . . . . . 66 3.3 Model 2 Performance . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Model 3 Performance . . . . . . . . . . . . . . . . . . . . . . . 67 3.5 Model 3 Residuals Histogram . . . . . . . . . . . . . . . . . . 68 3.6 Model 3 Residuals Confidence Limits . . . . . . . . . . . . . . 69 4.1 Output Lag Estimation . . . . . . . . . . . . . . . . . . . . . 82 4.2 Input Lag Estimation . . . . . . . . . . . . . . . . . . . . . . 83 4.3 MSRBF Model ny=5 nu=4 . . . . . . . . . . . . . . . . . . . 84 4.4 Drop-out Diagram . . . . . . . . . . . . . . . . . . . . . . . . 89 4.5 MSRBF Dropout Diagram . . . . . . . . . . . . . . . . . . . . 90 4.6 No of Models vs MSE OSA . . . . . . . . . . . . . . . . . . . 93 4.7 No of Models vs MSE MPO . . . . . . . . . . . . . . . . . . . 93 4.8 Ensemble OSA Predictions . . . . . . . . . . . . . . . . . . . 95 4.9 Ensemble MPO Predictions . . . . . . . . . . . . . . . . . . . 95 4.10 Ensemble Prediction Performance . . . . . . . . . . . . . . . . 96 5.1 Flow Chart For Sequential Feature Selection Algorithm. . . . 103 5.2 Moving Average Ranking For Input 3 . . . . . . . . . . . . . . 104 5.3 MSE vs Added Feature . . . . . . . . . . . . . . . . . . . . . . 110 5.4 Fishbone Diagram . . . . . . . . . . . . . . . . . . . . . . . . 114 5.5 Polynomial model predicted scenarios. . . . . . . . . . . . . . 119 5.6 MSRBF model predicted scenarios . . . . . . . . . . . . . . . 120 5.7 Changes in Std Polynomial Model . . . . . . . . . . . . . . . 121 5.8 Changes in Std MSRBF Model . . . . . . . . . . . . . . . . . 122 5.9 Histogram From Polynomial Model . . . . . . . . . . . . . . . 124 5.10 Histogram From MSRBF Model . . . . . . . . . . . . . . . . . 125 5.11 Risk Profiles From Polynomial Model . . . . . . . . . . . . . . 126 v 5.12 Risk Profiles From MSRBF Model . . . . . . . . . . . . . . . 127 6.1 Optimised Oil Production-Polynomial Model . . . . . . . . . 143 6.2 Optimised Oil Production-MSRBF Model . . . . . . . . . . . 143 6.3 30% Production Increase Polynomial Model . . . . . . . . . . 147 6.4 30% Production Increase MSRBF Model . . . . . . . . . . . . 147 6.5 Ensemble Diagram . . . . . . . . . . . . . . . . . . . . . . . . 151 6.6 Ensemble Forecast Polynomial & MSRBF Model . . . . . . . 152 6.7 Ensemble Residual Limits Polynomial & MSRBF Model . . . 152 6.8 Ensemble Prediction Distribution Polynomial & MSRBF Model153 6.9 Ensemble Modelling Optimisation . . . . . . . . . . . . . . . . 154 vi List of Tables 2.1 Best Multi-Layer Models . . . . . . . . . . . . . . . . . . . . . 45 3.1 Polynomial NARX Models . . . . . . . . . . . . . . . . . . . . 64 3.2 Polynomial NARX Model 3 . . . . . . . . . . . . . . . . . . . 70 3.3 Injection Well Frequency-Model 3 . . . . . . . . . . . . . . . . 72 4.1 MSRBF Model Performance Comparison . . . . . . . . . . . . 96 4.2 Model Performance Comparission . . . . . . . . . . . . . . . . 97 5.1 Number of Estimated Models . . . . . . . . . . . . . . . . . . 105 5.2 Feature Selection Time Comparison . . . . . . . . . . . . . . . 106 5.3 Input Variable Ranking . . . . . . . . . . . . . . . . . . . . . 107 5.4 Injection Well Ranking . . . . . . . . . . . . . . . . . . . . . . 109 5.5 Monte Carlo Iterations for Polynomial Model . . . . . . . . . 117 5.6 Monte Carlo Iterations for MSRBF Model . . . . . . . . . . . 118 6.1 Number of iterations for local search-Polynomial Model . . . 141 6.2 No of iterations for local search-MSRBF Model . . . . . . . . 142 6.3 Probability of Reaching Production Levels-Polynomial Model 144 6.4 Probability of Reaching Production Levels-MSRBF Model . . 145 6.5 Financial Increase in Sales . . . . . . . . . . . . . . . . . . . . 149 vii

Description:
This approach is combined with a risk analysis methodology, a popular ap- proach in 4 Novel Probabilistic NARX Neural Network Model Approach 75 .. in order to find the inter-well connectivity on an operational field. They .. Where N is the initial oil in place, V is the reservoir volume, φ is the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.