Maximising Oil Production Through Data Modelling, Simulation and Optimisation José Antonio Peñuelas Alvarez A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Automatic Control and Systems Engineering March 2017 Acknowledgements I would like to thank my main supervisor Dr Hua-Liang Wei for his valu- able guidance and support during my studies. I feel privileged for joining the Department of Automatic Control and Systems Engineering. I have learned a lot from all my friends and colleagues I have met at the department. You have all contributed to the amazing time I’ve had in Sheffield during the last years. I express my gratitude to Mexico’s Ministry of Energy for its financial support, without this help, this work would not have been possible. I would like to thank Dr Pablo Ibargüengoytia for his comments, ideas and monitor- ing the progress of my studies. Finally, I would like to thank my family for giving me their love and support. Without you, I would not be here. I dedicate this Thesis to you: Papá, Mamá y Ale. Abstract Theresearchworkpresentedonthisthesisprovidesanalternativetoolfor characterising oil fields under fluid injection by analysing historical produc- tion/injection rates. In particular polynomial and radial basis Non Linear Autoregressive with Exogenous Input Model (NARX) models were devel- oped; these models were capable of capturing the dynamics of an operating field in the North Sea. A Greedy Randomised Adaptive Search Procedure (GRASP) heuristic optimisation method was applied for estimating a future injection strategy. This approach is combined with a risk analysis methodology, a popular ap- proach in financial mathematics. As a result, it is possible to estimate how likely it is to reach a production goal. According to the simulations, it is possible to increase oil production by 10% in one year by implementing a smart injection strategy with low statisticaluncertainty. Resultingfromthisresearchproject,acomputational tool was developed. It is now possible to estimate NARX models from any fieldunderfluidinjectionaswellasfindingthebestfutureinjectionscenario. Contents 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contributions and Thesis Overview . . . . . . . . . . . . . . . 8 1.3.1 Main Contributions . . . . . . . . . . . . . . . . . . . 8 1.3.2 Chapter Description . . . . . . . . . . . . . . . . . . . 10 1.3.3 Published Articles . . . . . . . . . . . . . . . . . . . . 12 2 State of the Art in Reservoir Simulation 13 2.1 Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Analysis of Decline Curves . . . . . . . . . . . . . . . . 15 2.1.2 Material Balance Equation . . . . . . . . . . . . . . . 18 2.2 Capacitive Resistive Model . . . . . . . . . . . . . . . . . . . 23 2.3 Statistical Reservoir Analysis . . . . . . . . . . . . . . . . . . 26 2.4 Linear Data-Driven Models . . . . . . . . . . . . . . . . . . . 29 2.5 Multi-Layer Neural Networks . . . . . . . . . . . . . . . . . . 31 2.5.1 Scott Field, a Case Study From the North Sea . . . . 37 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 i 3 New Practical Application of the Non Linear Autoregressive with Exogenous Input Model in Petroleum Engineering 49 3.1 The Non Linear Autoregressive Moving Average with Exoge- nousInputModel(NARMAX)SystemIdentificationMethod- ology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1 Polynomial NARX Models . . . . . . . . . . . . . . . . 52 3.2 The FROLS Algorithm for Term Selection . . . . . . . . . . . 54 3.2.1 NARX Model Estimation . . . . . . . . . . . . . . . . 58 3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4 NovelProbabilisticNARXNeuralNetworkModelApproach 75 4.1 Single Layer Multi-Scale Radial Basis Function Models . . . . 76 4.2 Implementing MSRBF Models for EOR Modelling . . . . . . 80 4.3 Novel Pruning Method for NARX MSRBF Models . . . . . . 86 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Estimating Future Uncertainty 99 5.1 Feature Selection Comparative Study . . . . . . . . . . . . . . 99 5.2 Introduction to Risk Analysis . . . . . . . . . . . . . . . . . . 111 5.2.1 Qualitative Methods . . . . . . . . . . . . . . . . . . . 112 5.2.2 Quantitative Methods . . . . . . . . . . . . . . . . . . 114 5.3 Monte Carlo for NARX Models . . . . . . . . . . . . . . . . . 115 5.3.1 Risk Profile Analysis . . . . . . . . . . . . . . . . . . . 120 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6 Production Optimisation 131 6.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Heuristic Optimisation Methods . . . . . . . . . . . . . . . . . 132 ii 6.3 GRASP Optimisation Using NARX Models . . . . . . . . . . 134 6.3.1 Financial Benefits . . . . . . . . . . . . . . . . . . . . 148 6.4 Forecasting Using Ensemble Modelling . . . . . . . . . . . . . 150 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7 Conclusions and Future Work 156 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Appendices 162 A MSRBF Model Structure 163 A.1 Multi-Layer Neural Network Performance . . . . . . . . . . . 169 B Production Well Models 172 C Future Injection Values 182 iii List of Figures 1.1 Energy Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 World Energy Consumption Forecast . . . . . . . . . . . . . . 3 1.3 Simple Field Under Injection Diagram . . . . . . . . . . . . . 7 2.1 Exponential Decline Curve Analysis Example . . . . . . . . . 17 2.2 Oil, Gas and Water Compressibility Ratios. . . . . . . . . . . 19 2.3 Fluid Expansion Diagram . . . . . . . . . . . . . . . . . . . . 22 2.4 Neural Network Structure . . . . . . . . . . . . . . . . . . . . 33 2.5 Multi-Layer Neural Network Structure . . . . . . . . . . . . . 34 2.6 Scott Field Location . . . . . . . . . . . . . . . . . . . . . . . 37 2.7 Raw Oil Production Data . . . . . . . . . . . . . . . . . . . . 38 2.8 Raw Water Injection Data . . . . . . . . . . . . . . . . . . . . 39 2.9 Total Oil Production . . . . . . . . . . . . . . . . . . . . . . . 40 2.10 Total Water Injection. . . . . . . . . . . . . . . . . . . . . . . 41 2.11 Outlier Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.12 Partial Autocorrelation Function . . . . . . . . . . . . . . . . 44 2.13 12-Delays 21-Hidden Neurons NN Model Response . . . . . . 45 2.14 11-Delays 2-Layers NN Model Structure . . . . . . . . . . . . 46 3.1 MISO System Identification Diagram . . . . . . . . . . . . . . 50 iv 3.2 Third order Polynomial-Model 16 Performance . . . . . . . . 66 3.3 Model 2 Performance . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Model 3 Performance . . . . . . . . . . . . . . . . . . . . . . . 67 3.5 Model 3 Residuals Histogram . . . . . . . . . . . . . . . . . . 68 3.6 Model 3 Residuals Confidence Limits . . . . . . . . . . . . . . 69 4.1 Output Lag Estimation . . . . . . . . . . . . . . . . . . . . . 82 4.2 Input Lag Estimation . . . . . . . . . . . . . . . . . . . . . . 83 4.3 MSRBF Model ny=5 nu=4 . . . . . . . . . . . . . . . . . . . 84 4.4 Drop-out Diagram . . . . . . . . . . . . . . . . . . . . . . . . 89 4.5 MSRBF Dropout Diagram . . . . . . . . . . . . . . . . . . . . 90 4.6 No of Models vs MSE OSA . . . . . . . . . . . . . . . . . . . 93 4.7 No of Models vs MSE MPO . . . . . . . . . . . . . . . . . . . 93 4.8 Ensemble OSA Predictions . . . . . . . . . . . . . . . . . . . 95 4.9 Ensemble MPO Predictions . . . . . . . . . . . . . . . . . . . 95 4.10 Ensemble Prediction Performance . . . . . . . . . . . . . . . . 96 5.1 Flow Chart For Sequential Feature Selection Algorithm. . . . 103 5.2 Moving Average Ranking For Input 3 . . . . . . . . . . . . . . 104 5.3 MSE vs Added Feature . . . . . . . . . . . . . . . . . . . . . . 110 5.4 Fishbone Diagram . . . . . . . . . . . . . . . . . . . . . . . . 114 5.5 Polynomial model predicted scenarios. . . . . . . . . . . . . . 119 5.6 MSRBF model predicted scenarios . . . . . . . . . . . . . . . 120 5.7 Changes in Std Polynomial Model . . . . . . . . . . . . . . . 121 5.8 Changes in Std MSRBF Model . . . . . . . . . . . . . . . . . 122 5.9 Histogram From Polynomial Model . . . . . . . . . . . . . . . 124 5.10 Histogram From MSRBF Model . . . . . . . . . . . . . . . . . 125 5.11 Risk Profiles From Polynomial Model . . . . . . . . . . . . . . 126 v 5.12 Risk Profiles From MSRBF Model . . . . . . . . . . . . . . . 127 6.1 Optimised Oil Production-Polynomial Model . . . . . . . . . 143 6.2 Optimised Oil Production-MSRBF Model . . . . . . . . . . . 143 6.3 30% Production Increase Polynomial Model . . . . . . . . . . 147 6.4 30% Production Increase MSRBF Model . . . . . . . . . . . . 147 6.5 Ensemble Diagram . . . . . . . . . . . . . . . . . . . . . . . . 151 6.6 Ensemble Forecast Polynomial & MSRBF Model . . . . . . . 152 6.7 Ensemble Residual Limits Polynomial & MSRBF Model . . . 152 6.8 Ensemble Prediction Distribution Polynomial & MSRBF Model153 6.9 Ensemble Modelling Optimisation . . . . . . . . . . . . . . . . 154 vi List of Tables 2.1 Best Multi-Layer Models . . . . . . . . . . . . . . . . . . . . . 45 3.1 Polynomial NARX Models . . . . . . . . . . . . . . . . . . . . 64 3.2 Polynomial NARX Model 3 . . . . . . . . . . . . . . . . . . . 70 3.3 Injection Well Frequency-Model 3 . . . . . . . . . . . . . . . . 72 4.1 MSRBF Model Performance Comparison . . . . . . . . . . . . 96 4.2 Model Performance Comparission . . . . . . . . . . . . . . . . 97 5.1 Number of Estimated Models . . . . . . . . . . . . . . . . . . 105 5.2 Feature Selection Time Comparison . . . . . . . . . . . . . . . 106 5.3 Input Variable Ranking . . . . . . . . . . . . . . . . . . . . . 107 5.4 Injection Well Ranking . . . . . . . . . . . . . . . . . . . . . . 109 5.5 Monte Carlo Iterations for Polynomial Model . . . . . . . . . 117 5.6 Monte Carlo Iterations for MSRBF Model . . . . . . . . . . . 118 6.1 Number of iterations for local search-Polynomial Model . . . 141 6.2 No of iterations for local search-MSRBF Model . . . . . . . . 142 6.3 Probability of Reaching Production Levels-Polynomial Model 144 6.4 Probability of Reaching Production Levels-MSRBF Model . . 145 6.5 Financial Increase in Sales . . . . . . . . . . . . . . . . . . . . 149 vii
Description: