ebook img

Maximal Invariants Over Symmetric Cones PDF

0.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Maximal Invariants Over Symmetric Cones

Maximal Invariants Over Symmetric Cones EmanuelBen-David StanfordUniversity 2 August2010 1 0 2 Abstract n a In this paper we consider some hypothesistests within a family of Wishart distributions, J where both the sample space and the parameter space are symmetric cones. For such testing 2 problems,wefirstderivethejointdensityoftheorderedeigenvaluesofthegeneralizedWishart ] distributionandproposeateststatisticanalogtothatofclassicalmultivariatestatisticsfortest- T inghomoscedasticityofcovariancematrix. InthisgeneralizationofBartlett’stestforequality S ofvariancestohypothesesofreal,complex,quaternion,Lorentzandoctoniontypesofcovari- . h ancestructures. t a m 1 Introduction [ 1 Consider astatistical modelconsisting ofasamplespace Xandunknown probability measures P , θ v with θ in the parameter space Θ. In this setting, the statistical inference about the model is often 4 1 concentrated on parameter estimation and hypothesis testing. In the latter, we typically test the 5 hypothesis H : θ ∈ Θ ⊂ Θvs. the hypothesis H : θ ∈ Θ\Θ . Systematically, this meansto finda 0 0 0 0 suitable test statistic t from Xtoameasurable space Y,and the distribution of tP , the transformed . θ 1 measurewithrespectto P undert. 0 θ ForaGaussian model, wherethe sample space isRn,the probability measures aremultivariate 2 1 normal distribution N (0,Σ)and the parameter space isPD (R),the cone ofn×npositive definite n n v: matricesoverR,someclassical examplesofsuchhypotheses arethesphericity hypothesis: i X H :Σ = σ2I vs. H : Σ , σ2I , (1.1) 0 n n r a forsomeσ > 0;thecomplexstructure hypothesis A −B H :Σ = ∈ PD (C) vs. Σ ∈ PD (R), (1.2) 0 B A ! k 2k forsomerealk×kmatrices A,B,with2k = n;andthequaternion structure hypothesis A −B −C −D B A −D C H : Σ =   ∈ PD (H) vs. H : Σ ∈ PD (R), (1.3) 0 CD −DC AB −AB m 4m forsomerealm×mmatrices A,B,C,D,with4m = n. Incidentally, ineachofthesehypotheses the parameter space in the full model is PD (R), the parameter space in the submodel is a subcone of n 1 PD (R),andthehypothesisisinvariantunderanactionofasubgroupoftheorthogonallineargroup n ofRn,O(n,R). Moregenerally, supposeΩisasymmetricconeand M = {P ∈ P(X): σ ∈ Ω} (1.4) σ isastatistical modelwithparameterspaceΩ,and M = {P ∈ P(X): σ ∈ Ω } (1.5) 0 σ 0 is asubmodel of M, where the parameter set Ω is a(symmetric) subcone of Ω. In this set up, we 0 wishtotestthehypothesis H : σ ∈ Ω vs. H : σ ∈ Ω\Ω . (1.6) 0 0 0 In the presence of a group action, testing the hypothesis (1.6) leads one to the study of a maximal invariant withrespect toagroup[13,19,3,23]. The maximal invariants that arise in testing problems like those stated in (1.1), (1.2) and (1.3) are indeed functions of the eigenvalues of the sample covariance matrix [3, 1, 13, 19]. Therefore, in most situations, the problem is reduced to finding the distribution of the ordered eigenvalues of a distribution (often Wishart) over the cone of positive definite matrices over the real, complex, or quaternion fields. In this respect, studies on the distribution of the ordered eigenvalues of a random matrix with valuesinaclassicalsymmetricconeoverlapwithsimilarstudiesinRandomMatrixTheory(RMT) [7,8,18]. Therefore, applications ofsuchstudiesarenotmerelylimitedtothetestingproblemswe mentioned. Other applications of the distribution of the ordered eigenvalues of a random matrix, specially a Wishart matrix, can be found in physics, e.g. [18], principle component analysis, e.g. [19,14],andsignalprocessing, e.g. [21,20,22]. Inthispaperwediscussthestatisticalanalysisofmodelsoftheform(1.4). Therearemanymod- elsthatfallinthiscategory,suchastheWishart,invertedWishart,betaandhyperbolicdistributions. In our analysis, we extensively exploit the algebraic and geometric structures of symmetric cones, described by Jordan algebras and Riemannian symmetric spaces, respectively (see [12, 9, 11]). In thestatisticalinferenceofthesemodelstwoproblemsofinterestaretheestimationoftheparameter σ,andtestingahypothesis oftheform(1.6). Herewefocusmainlyonthelatter. In approaching these problems, webegin inSection 2with giving ashort review ofsymmetric cones and their analysis based on [9]. Essential parts of this section are the classification of irre- ducible symmetric cones, or equivalently, simple Jordan algebras, and Pierce decomposition. In Section 3 we study special functions over symmetric cones. Our main goal in this section is to define zonal polynomials over a symmetric cone. Sections 4, 5, and 6 present our contribution to the theory of maximal invariants over symmetric cones, introducing a new family of non-central Wishart distributions oversymmetric cones, deriving the joint distribution ofthe ordered eigenval- uesofsuchdistributions, andproposing ananalog ofBartlett’s testfortestinghomoscedasticity of, roughly speaking, thecovariance matrix. 2 2 The structure of symmetric cones Inthissectionweprovidethereaderwithacondensereviewofthestructuralanalysisofsymmetric coneswhichisessentialinunderstandingthegeneralizednotions,suchashypergeometricfunctions, zonal polynomials and the Wishart distribution, we discuss later. More thorough presentation of thesetopicscanbefoundin[9]andelsewhereinthisvolume. 2.1 Symmetric cones Let (J,h·,·i) be a Euclidean vector space and letGL(J) be the set of regular linear transformations on J. A convex cone Ω ⊂ J is a set satisfying αx+βy ∈ Ω for any α,β > 0 and x,y ∈ Ω. Let Ω denote the closure of Ω in J. The convex cone Ω is proper if Ω∩−Ω = {0}, full if Ω−Ω = J. A homogeneous cone Ω is a full proper open convex cone with this property that the automorphism groupofΩ,definedbyG(Ω)= {g ∈ GL(J) : gΩ = Ω},andconsequently theconnected component of the identity in G(Ω), denoted by G, act transitively on Ω. The homogeneous cone Ω is called symmetric if it is homogeneous and self-dual, i.e., Ω∗ = {y ∈ V : hx|yi > 0,∀x ∈ Ω\{0}} = Ω. Everysymmetricconeisthefiniteproductofirreduciblesymmetriccones,whereasymmetriccone isirreducible ifitisnot thedirect product oftwoormoresymmetric cones. Afamiliar example of anirreducible symmetricconeisPD (R). r A well-known property of a homogeneous cone Ω is that the stabilizer of each x ∈ Ω,G , is a x maximal compact subgroup of G. For a symmetric cone Ω, if we set K = G ∩O(J), where O(J) is the group of orthogonal transformation of J, then K is the stabilizer of an element of Ω and, consequently, amaximalsubgroup ofG. AnotherinterestingpropertyofahomogeneousconeΩisthatifwedefineϕ(x) = exp(−hx|yi)dy Ω∗ for each x ∈ Ω, then ϕ(x)dx isaG-invariant measure on Ω. Thisfollows from thRe factthat for any g ∈Gwehaveϕ(gx) = |detg|−1ϕ(x). 2.2 Euclidean Jordanalgebras A Jordan algebra J over Ris a real vector space equipped with amultiplication satisfying xy = yx and x(x2y) = x2(xy) for any x, y in J. An associative bilinear form B on J is a bilinear form satisfying B(xy,z)= B(x,yz) forany x,y,z ∈ J. AJordanalgebrawithnonon-trivialidealiscalledsimple. TypicalexamplesofJordanalgebrasare so-called special Jordan algebras. If Aisanassociative algebra, then thespecial Jordan algebra A+ isthevectorspace Aequipped withtheJordanproduct x◦y= (xy+yx)/2. Inparticular M (R),the r setofr×rmatrices,andS (R),thesetofr×rsymmetricmatrices,arespecialJordanalgebraswith r theJordanproduct. A finite dimensional Jordan algebra J over R is called Euclidean if there is an associative inner producton J. EveryEuclideanJordanalgebrahasamultiplicativeidentityelemente. Thequadratic representation of J is the map P : J → End(J), where P : x 7→ 2L(x)2 −L(x2)and L(x) is the left multiplication mapby x,i.e., L(x)(y) = xy. 3 2.3 Spectral decomposition Anon-zeroelementcin Jisidempotentifc2 = c. Anidempotentisprimitiveifitcannotbewritten as the sum of two idempotents. Two idempotents c and c are orthogonal if c c = 0. A Jordan 1 2 1 2 frame is a maximal set of orthogonal primitive idempotents c ,...,c . If J is simple, then for any 1 r Jordanframec ,...,c wehavec +···+c = eandthenumberofelementsinthisJordanframe,r, 1 r 1 r isinvariantforeveryJordanframe. ThiscommonnumberiscalledtherankofJ. Moreover,foreach x in J there is a Jordan frame c ,...,c such that ξ c +···+ξ c = x, where ξ ,...,ξ are called 1 r 1 1 r r 1 r the eigenvalues of x. The trace and determinant of x, denoted by tr(x) and det(x), respectively, are thesumandproduct ofalleigenvalues of x. 2.4 Euclidian Jordanalgebrasand symmetriccones ForaEuclidean Jordan algebra J thesetofsquared elements x2 where x ∈ J isaclosed cone. The interiorofthiscone,denotedby J ,isasymmetricconeandiscalledtheconeofpositiveelements + of J. Equivalently, J isthesetofall x2 suchthat xisregular, i.e.,det(x) , 0. Conversely, ifΩisa + symmetric cone and ǫ ∈ Ω, then one can construct aEuclidean Jordan algebra J such that J = Ω + andǫ istheidentityelementof J. 2.5 Classificationofirreducible symmetriccones Theirreduciblesymmetricconesareinone-to-onecorrespondence withsimpleEuclideanalgebras, whichareclassifiedintofourfamiliesofclassicalJordanalgebrastogetherwithasingleexceptional Jordanalgebra. The first three families of classical Jordan algebras are matrix spaces. More specifically, let D = R,CorthequaternionH. Denoteby xtheconjugateof xinD,ℜxtherealpartof x,andH (D) r thesetofr×r Hermitian matricesoverD. Recallthat X∗,theadjoint ofamatrix X,isobtained by taking the conjugate of each entries and then transposing the matrix. A matrix X is Hermitian if it is equal to X∗. This space equipped with the Jordan product X ◦Y = (XY +YX)/2 and the scaler product hX|Yi = ℜtr(XY)isasimple Euclidean Jordan algebra ofrankr andcorresponds totheir- reducible symmetricconeofpositivedefinitematricesoverR,CorH,respectively. Thedimension of H (D) over R is r +r(r −1)d/2, where d, the Peirce constant, is equal to the dimension of the r spaceDoverR. WhenDisthesetofrealnumbersH (R)isindeedS (R)andS (R) isPD (R). r r r + r The fourth class of Jordan algebras is a Minkowski space. This is the vector space R×Rn−1, n > 2, equipped with the product (ζ,x)(ξ,y) = (ζξ + x·y,ζy+ξx). It corresponds to the Lorentz coneL = {(ζ,x)∈ R×Rn−1 : ζ > kxk}. n The exceptional Jordan algebra can be described as follows. First notice that H× H with the product (x ,y )(x ,y ) = (x x − y y ,y x + y x ) is a non-associative algebra, called octonion 1 1 2 2 1 2 2 1 1 2 2 1 O. Any element in O can be written as x+ jy, where j = (0,1) and x,y ∈ H. The conjugation in O is defined by x+ jy = x− jy. The exceptional Jordan algebra is H (O) and its cone of positive 3 elementsisdenoted byPD (O). 3 Thefollowingtablesummarizestheinformation aboutsimpleEuclidean Jordanalgebras[9,6]. 4 Table1: Classification ofsimpleJordan algebras J J G K dimJ rankJ d + S (R) PD (R) GL+(R) SO (R) 1r(r+1) r 1 r r r r 2 H (C) PD (C) GL (C) U (C) r2 r 2 r r r r H (H) PD (H) GL (H) Sp (C) r(2r−1) r 4 r r r 2r R×Rn−1 L R×SO+ (R) SO ,(R) n 2 n−2 n 1,n−1 n−1 H (O) P (O) R×E F 27 3 8 3 3 6 4 2.6 Additional properties In the remainder of this section, and throughout the rest of the paper, we will assume that Ω is an irreducible symmetric cone ofpositive elements ofasimple Jordan algebra J ofdimension n,rank randthePeirceconstant ddefinedbyn = r+r(r−1)d/2. a)Foreach x ∈ Ωandg ∈Gwehave 1. detL(x) = det(x)n/r, 2. detP(x)= (detx)2n/r, 3. detgx= det(g)r/ndet(x)foreachg∈G, 4. detP(y)(x) = (dety)2detx, 5. (gx)−1 = g∗−1x−1,whereg∗ istheadjointofg, 6. P(x)−1 = P(x−1), 7. P(x)∗ = P(x),i.e.,P(x)isHermitian. b)K actstransitively onthesetofprimitiveidempotents andthesetofallJordanframes. 3 Special functions on symmetric cones The rich geometric structure of symmetric cones has naturally motivated many research studies in the field of harmonic analysis. In this section we give a short description of special functions on symmetriccones. 3.1 Gammafunction Let fix a Jordan frame c ,...,c in J. For each 1 ≤ j ≤ r we define the idempotent e = c + 1 r j 1 ···+c . Ingeneral, it can be shown that if c isan idempotent element of J, then the only possible j eigenvalues ofthelineartransformation L(c)are0,1/2,1.Onecanseethattheeigenspace, J(e ,1), j corresponding totheeigenvalue1ofL(e )isaJordanalgebrawiththemultiplicationinheritedfrom j J. Let Ω be the cone of positive elements and det(j) the determinant with respect to this Jordan j algebra. Let P : J → J(e ,1)betheorthogonal projection on J(e ,1). Theprincipal minor, ∆ (x), j j j j 5 is a homogeneous polynomial of degree j on J defined by ∆ (x) = det(j)(P (x)). We extend this j j definitionasfollows. Foreach s= (s ,...,s )∈ Cr weset 1 r ∆ (x) = ∆ (x)s1−s2∆ (x)s2−s3···∆ (x)sr. s 1 2 r For each s ∈ Cr the gamma function is ΓΩ(s) = Ωexp{−tr(x)}∆s(x)det(x)−nrdx. This integral is absolutely convergent ifℜs > (j−1)d/2, for j=R1,...,r. Moreover, j r d n−r ΓΩ(s)= (2π) 2 Γ(sj−(j−1) ). 2 Yj=1 Inparticular, identifying z ∈ Cwith(z,...,z) ∈ Cr,wehave ΓΩ(z) = exp{−tr(x)}det(x)z−nrdx Z J+ isabsolutely convergent ifℜz> n/r−1. Ifthisisthecase,then r n−r ΓΩ(z) = (2π) 2 Γ(z−(j−1)d/2). Yj=1 3.2 Beta functions Thebetafunction onasymmetricconeΩisdefinedbytheintegral BΩ(a,b) = ∆a−n(x)∆b−n(e− x)dx, Z r r Ω∩(e−Ω) wherea,b ∈ Cr,ande−Ω = {e−x : x ∈ Ω}.Thisintegralconvergesabsolutelyifℜa > (j−1)d/2 j Γ (a)Γ (b) Ω Ω andℜb > (j−1)d/2. Inthiscase B (a,b) = ,and j Ω Γ (a+b) Ω ∆a−n(y)∆b−n(x−y)dy = BΩ(a,b)∆a+b−n(x). Z r r r Ω∩(x−Ω) 3.3 The spaceofpolynomials A partition is a finite sequence of non-negative integers λ = (λ ,··· ,λ ) in decreasing order 1 r λ ≥ ··· ≥ λ . The weight of λ is |λ| = λ + ··· + λ . If |λ| = k, then we say λ is a partition 1 r 1 r ofk. Afunction f : J → Risapolynomial on J ifthereisabasis{v ,...,v }of J andapolynomial 1 n p ∈ R[t ,...,t ]suchthatforanylinearcombination x= n ξv, 1 n i=1 i i P f(x) = p(ξ ,...,ξ ). 1 n Onecan check that this definition isindependent ofthe choice ofbasis. Theset ofallpolynomials over J isdenoted byP(J). Theaction ofG on J can benaturally extended toanaction onP(J)by defininggp(x) = p(g−1x). LetP (J)bethesubspace ofP(J)generated bypolynomials g∆ ,g ∈G. λ λ Thenevery pinP (J)isahomogeneous polynomialofdegree|λ|. λ 6 3.4 Spherical polynomials Recall that K, the stabilizer of the identity e, is a compact Lie subgroup of G, thus there exists a Haarmeasureon K. Foreachpartition λthespherical polynomial Φ is λ Φ (x) = ∆ (kx)dµ (k), λ λ K Z K where µ is the normalized Haar measure on K. The function Φ is indeed a homogeneous poly- K λ nomial of degree |λ| and is invariant under the action of K, i.e., Φ (kx) = Φ (x) for any k ∈ K λ λ and x ∈ J. Moreover, the spherical polynomial Φ is, up to a constant factor, the only K-invariant λ polynomial inP (J). Moreprecisely, if pisaK-invariant homogeneous polynomial inP (J),then λ λ p(kx)dµ (k) = p(e)Φ (x). (3.1) K λ Z K Consequently, foranyg ∈G Φ (gkx)dµ (k) = Φ (ge)Φ (x). (3.2) λ K λ λ Z K If x ∈ Ωandℜγ > (r−1)d/2, thenforanyyinΩandg ∈Gwehave e−tr(xy)Φλ(gx)det(x)γ−nrdx = ΓΩ(λ+γ)∆−γ(y)Φλ(gy−1). (3.3) ZΩ 3.5 Zonal polynomials ThePochhammersymbolforΩisdefinedby Γ (s+λ) (s) = Ω , s∈ C. λ Γ (s) Ω Thisdefinition generalizes theclassical Pochhammersymbol. Thezonalpolynomial Z isahomo- λ geneous K-invariant polynomial on J definedby |λ|! Z (x) = d Φ (x), (3.4) λ λ(n) λ r λ where d is the dimension of the vector space P (J), and Φ is the spherical polynomial. Zonal λ λ λ polynomials are K-invariant polynomials normalized bytheproperty tr(x)k = Z (x) x∈ Ω. (3.5) λ |Xλ|=k Notice that the function p(x) = tr(x)k on Ω is a K-invariant homogeneous polynomial in P (J). It λ followsfromEquation(3.2)thatforeach x∈ J andy ∈ Ω Z (y)Z (x) Zλ(P(y12)kx)dµK(k) = λ λ . (3.6) ZK Zλ(e) 7 3.6 Hypergeometric functions Let a ,...,a and b ,...,b be real numbers with a −(i−1)d/2 ≥ 0,b −(j−1)d/2 ≥ 0 and 1 p 1 q i j x,y ∈ J. Thehypergeometric function F isdefinedby p q ∞ (a ) ···(a ) Z (x)Z (y) F (a ,...,a ,b ,...,b ,x,y) = 1 λ p λ λ λ . p q 1 p 1 q (b ) ···(b ) k! Z (e) Xk=1|Xλ|=k 1 λ q λ λ Fory= eweset F (a ,...,a ,b ,...,b ,x)= F (a ,...,a ,b ,...,b ,x,e).Thismeansthat p q 1 p 1 q p q 1 p 1 q ∞ (a ) ···(a ) Z (x) F (a ,...,a ,b ,...,b ,x) = 1 λ p λ λ . p q 1 p 1 q (b ) ···(b ) k! Xk=1|Xλ|=k 1 λ q λ This series converges absolutely if p ≤ q and diverges if p > q. Furthermore, F (x) = etr(x) and 0 0 F (b,x) = det(e− x)−b. 0 1 Suppose x∈ Ωandg∈G. ByusingtheintegralinEquation(3.6)for p ≤ qweget F (a ,...,a ,b ,...,b ,g(kx))dµ (k)= F (a ,...,a ,b ,...,b ,x,ge). (3.7) p q 1 p 1 q K p q 1 p 1 q Z K Similarly,ifℜγ > (r−1)d/2, y ∈ Ωand p < q,ory ∈ e−Ωand p = q,thenbyapplying Equation (3.3)weget e−tr(xy)pFq(a1,...,ap,b1,...,bq,gx,z)det(x)γ−nrdx = ZΩ Γ (γ)det(y)−γ F (a ,...,a ,γ,b ,...,b ,gy−1,z). Ω p+1 q 1 p 1 q WerecordthefollowingProposition, laterusedinderiving thebetatypedistribution, from[9]. Proposition 3.1. Suppose that p ≤ q+1, ℜη > (r−1)d/2 andℜη > (r−q)d/2. Ifg ∈ G such 1 2 thatge ∈ Ω∩(e−Ω),then pFq(a1,...,ap,b1,...,bq,gx)det(x)η1−nr det(e− x)η2−nrdx (3.8) ZΩ∩(e−Ω) = B (η ,η ) F (a ,...,a ,η ,b ,...,b ,η +η ,ge). Ω 1 2 p+1 q+1 1 p 1 1 q 1 2 Suppose y ∈ J and x ∈ Ω. We define x⋆y = P(x21)y and Eig(y|x) equal to the r-tuple of the orderedeigenvaluesofywithrespectto x,indecreasingorder. Noticethattheseeigenvalues arethe roots of the polynomial p(ℓ) = det(ℓx−y). In particular, for x = e, we have Eig(y) = Eig(y|e) is theorderedeigenvalues ofy. NotethatforaspecialJordanalgebra, suchasthespaceofsymmetric 1 1 matrices or Hermitian ones, the operation x⋆y is x2yx2. Here welist some interesting properties of⋆operation. Lemma3.1. Let xandybeinΩ. Then a) x⋆e= e⋆x = x, x⋆x−1 = x−1⋆ x= eand(x⋆y)−1 = x−1⋆y−1. b) x⋆y and y⋆ x have the same eigenvalues, therefore, any k-invariant function on Ω returns the samevalueonboth x⋆yandy⋆x. Inparticular, det(x⋆y) = det(y⋆x)= det(x)det(y), tr(x⋆y) = tr(y⋆x) = tr(xy)andZ (x⋆y) = Z (y⋆x). λ λ 8 Proof. a) We only prove the last equality. The other equalities are immediate from the definition of x⋆y. Fromproperty (5)inSubsection 2.6weget (x⋆y)−1 = (P(x12)y)−1 = P(x12)∗−1y−1 = P(x−12)y−1 = x−1⋆y−1. b) Foranr-tuple (ξ ,...,ξ )withξ > ··· ξ > 0,wedefine 1 r 1 r (ξ ,...,ξ )−1 = (ξ−1,...,ξ−1). 1 r r 1 Bythisnotation,onecancheckthatforanyx ∈ ΩwehaveEig(x−1) = Eig(x)−1. Clearly,theordered eigenvalues of x⋆yareequal toEig(y|x−1). Onthe other hand, Eig(y|x)isequal toEig(x|y)−1 (ifℓ isaneigenvalue of xwithrespect toy, then1/ℓ isaneigenvalue ofywithrespect to x). Therefore, Eig(x⋆y) = Eig(y|x−1)= Eig(x−1|y)−1 = Eig(y−1 ⋆x−1)−1 = Eig((y−1 ⋆x−1)−1) = Eig(y⋆x). (cid:3) Remark3.1. Thereisworthmentioninganinterestingfactaboutthe x⋆yoperationonΩ. Suppose µ and ν are two K invariant measures on Ω. These can be lift up, respectively, to K bi-invariant measuresµ♯ andν♯ onG. Byprojecting theconvolution measureµ♯⋆ν♯ onΩweobtainameasure on Ω , denoted by µ ⋆ ν and called the convolution of µ and ν. Now if x and y are two random vectorsinΩwithK invariant distributions µandν,thenthedistribution oftherandom vectorx⋆y istheconvolution µ⋆ν[10]. 4 The non-central Wishart distribution In multivariate statistics, the so-called non-central Wishart distribution is the multivariate analog of the non-central chi-square distribution and, similarly, it arises out of the sampling distribution of a sample statistic, namely the sample covariance matrix of a multivariate normally distributed population. Moregenerally, ifX isanN×rrandommatrixsuchthatX ∼ N (M,I ⊗Σ)withΣ ∈ N×r N PD (R),thenthedensityofS = XTXwithrespecttothestandardLebesguemeasureisproportional r to 1 1 1 1 det(Σ)−N2 exp{−2tr(Σ−1S)}exp{−2tr(∆)}0F1(2N, 4∆Σ−1S)1PDr(R)(S). Thusthenon-centralWishartdistribution isthetransformeddistribution withrespecttoamultivari- atenormaldistribution underthequadratic mapping X 7→ XTX. Wecangeneralize thissituation as follows. Let J beasimpleEuclideanJordanalgebra, and(E,h·|·i )aEuclideanspace. A(Jordan)repre- E sentation ψof J over E isalinearmappingψ : J → End(E)suchthatψ(x2) = ψ(x)2 foreach x∈ J. Therepresentation ψiscalled self-adjoint ifthe linear transformation ψ(x) isself-adjoint for every x∈ J. Assumeψisaself-adjoint representation of J ontheEuclideanvectorspace E. Foreachv∈ E,the function x 7→ hψ(x)v|vi isalinear form on E. Therefore, there exists aquadratic map Q : E → J E such that hψ(x)v|vi = hx|Q(v)i . The fact that hQ(v)|x2i = kψ(x)vk2 > 0 implies that Q(v) ∈ Ω, E J J E foreachv ∈ E. Proposition 4.1. Let v ∼ N(µ,ψ(σ)) be a normally distributed random vector in E with mean vector µ ∈ E and covariance ψ(σ) ∈ PD(E), where ψ is a self-adjoint representation of the simple Jordanalgebra J over E,σ ∈ Ω,and N > 2(n−r). Thenthedensityofx = Q(v)withrespecttothe canonical LebesguemeasureonΩis N −1 1 N 1 px(x) = 2N2ΓΩ( )det(σ)2Nr exp{− tr(ǫ)}·det(x)2Nr−nr0F1( , (σ−1⋆ǫ)⋆x) (4.1) 2r 2 2r 4 (cid:18) (cid:19) 9 whereǫ = σ−1⋆Q(µ). Proof. Firstwecomputeg(z) = E[exp{−hz,Q(v)i }],theLaplacetransform of Q(v). Foreachz ∈ J J wehaveg(z)isequalto −1 1 (2π)N2 det(ψ(σ))12 exp{−hψ(z)v,viE}exp{− hψ(σ)−1(v−µ),(v−µ)iE}dv (cid:18) (cid:19) ZV 2 = (2π)N2 det(σ)2Nr −1· exp{−1 2hψ(z)v,viE +hψ(σ)−1(v−µ),(v−µ)iE }dv. Z 2 (cid:16) (cid:17) V (cid:16) (cid:17) Werewritetheexpression 2hψ(z)v,vi +hψ(σ)−1(v−µ),(v−µ)i as E E hψ(2z+σ−1)(v−ψ(2z+σ−1)−1ψ(σ−1)µ,(x−ψ(2z+σ−1)−1ψ(σ−1)µi E +hψ(2z+σ−1)−1ψ(σ−1)µ,ψ(σ−1)µi +hψ(σ−1)µ,µi , E E andsubstitute itintheoriginalequations, obtaining 1 1 1 1 g(z) = 2−N2 det(σ)−2Nr det(z+ σ−1)−2Nr exp{− tr(ǫ)}0F0( (σ−1⋆ǫ)⋆(z+ σ−1)−1), 2 2 4 2 where ℜ(z+ 1σ−1) > 0. The density of x = Q(v) in Equation (4.1) then follows from the inverse 2 Laplacetransform ofg(z)(see[4]). (cid:3) InlightofProposition4.1,Equation(4.1)canbetakenasthedensityofthenon-centralWishart distribution overtheirreducible symmetricconeΩ. Definition 4.1. A random vector x with values in an irreducible symmetric cone Ω is said to have theWishartdistribution withparameters η > n−r,σ ∈ Ωandǫ ∈ Ω,ifitsprobability density with respecttothestandard canonical Lebesguemeasureon J isgivenby 1 1 1 exp{− tr(ǫ)} F ( η, (σ−1⋆ǫ)⋆x)w (x|η,σ)1 (x), 0 1 Ω Ω 2 2 4 where 1 1 wΩ(x|η,σ) = exp{− tr(σ−1x)}det(x)21η−nr1Ω(x). (4.2) 212ηrΓΩ(2η)det(σ)12η 2 This is denoted by x ∼ W (η,σ,ǫ), where η, σ, and ǫ are, respectively, the shape, (multivariate) Ω scale, and non-centrality parameters. In particular, if ǫ = 0, the distribution is called the (central) Wishartdistribution overasymmetriccone[5],denoted by x∼ W (η,σ), Ω otherwise, itiscalledthenon-central Wishartdistribution overasymmetriccone. Remark4.1. Ifx ∼ W (η,σ),thenitsprobability densityisw (x|η,σ). Ω Ω Remark 4.2. In accordance with classification of irreducible symmetric cones, the non-central Wishart distribution over an irreducible symmetric cone can be categorized as : i) the real type W (η,σ,ǫ) over PD (R), ii) the complex type CW (η,σ,ǫ) over PD (C), iii) the quaternion type r r r r HW (η,σ,ǫ) over PD (H), iv) the Lorentz type LW (η,σ,ǫ) over the Lorentz cone L , and v) the r r n n exceptional typeOW(η,σ,ǫ)overtheoctonion conePD (O). 3 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.