ebook img

Matrix Polar Decomposition and Generalisations of the Blaschke-Petkantschin Formula in Integral Geometry PDF

0.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Matrix Polar Decomposition and Generalisations of the Blaschke-Petkantschin Formula in Integral Geometry

MATRIX POLAR DECOMPOSITION AND GENERALISATIONS OF THE BLASCHKE-PETKANTSCHIN FORMULA IN INTEGRAL GEOMETRY PETERJ.FORRESTER 7 1 0 Abstract. Inthework[Bull,Austr.Math.Soc.85(2012),315-234],S.R.Moghadasi 2 hasshownhowthedecompositionoftheN-foldproductofLebesguemeasure n onRnimpliedbymatrixpolardecompositioncanbeusedtoderivetheBlaschke- a Petkantschindecompositionofmeasureformulafromintegralgeometry.Weuse J knownformulasfromrandommatrixtheorytogiveasimplifiedderivationofthe 7 decompositionofLebesgueproductmeasureimpliedbymatrixpolardecomposi- 1 tion,applyingtootothecasesofcomplexandrealquaternionentries,andwegive correspondinggeneralisationsoftheBlaschke–Petkantschinformula.Anumberof ] R applicationstorandommatrixtheoryandintegralgeometryaregiven,including P tothecalculationofthemomentsofthevolumecontentoftheconvexhullof . k≤N+1pointsinRN,CN orHN withaGaussianoruniformdistribution. h t a m [ 1. Introduction 1 v Offundamentalimportancetomatrixtheoryisthesingularvaluedecomposi- 5 tion. Let M bean n×N realmatrix,andsuppose n(cid:62) N sothatthecolumnsof 0 M canformabasisofan N-dimensionalsubspaceinRn. LetU (V)bean n×n 5 4 (N×N)realorthogonalmatrix,andlet Λ bean n×N diagonalmatrix,diagonal 0 entries σ (j = 1,...,N) each non-negative. The singular value decomposition . j 1 takestheform 0 7 M =UΛVT. (1) 1 v: Since MTM =VΛTΛVT oneseesthatthe{σ2}aretheeigenvaluesofMTMandV j Xi isthecorrespondingmatrixofeigenvectors,whilethefactthat MMT =UΛΛTUT r tellsusthatthe{σ2}arethenon-zeroeigenvaluesof MMT,andthecolumnsofU a j aretheeigenvectors. Anequivalentwaytowrite(1)istofirstnotethat (cid:34) (cid:35) Λ = I˜ diag(σ ,...,σ ), I˜ := IN×N . n,N 1 N n,N 0 (n−N)×N Thisshows M =U diag(σ ,...,σ )VT, (2) 1 1 N whereU =UI˜ ;thusU consistsofthefirst N columnsofU. MultiplyingU 1 n,N 1 1 in(2)byVTV —whichistheidentity—ontherightshowsthatacorollaryofthe 1 2 PETERJ.FORRESTER singularvaluedecompositionisthepolardecomposition M = QP, (3) where Q =U VT hasits N columnsforminganorthonormalsetofvectorsinRn, 1 and P =Vdiag(σ ,...,σ )VT isan N×N realsymmetricmatrix. 1 N The decompositions (2) and (3) both have analogues for M complex. The singularvaluedecomposition(2)hastheform M =U diag(σ ,...,σ )V†, (4) 1 1 N whereV isan N×N unitarymatrix,andthecolumnsofU formanorthonormal 1 setof N vectorsinthecomplexvectorspaceCn. Thepolardecomposition(3)has theform M = ZH, (5) where Z =U V† alsohasits N columnsforminganorthonormalsetofvectorsin 1 Cn and H =Vdiag(σ ,...,σ )V† iscomplexHermitian. 1 N InarecentpaperS.R.Moghadasi[17]hasconsideredthedecompositionsof Lebesguemeasureimpliedby(3)and(5). Intherealcaseanapplicationwasgiven toprovideanewderivationofadecompositionofLebesguemeasurefromintegral geometrydueoriginallytoBlaschke[2]andPetkantschin[20](ormoreprecisely, anequivalentformthereof,duetoMiles[16]). Afurtherapplicationwasgivento the computation of the moments of the determinant of an N×N standard real Gaussianmatrix. It is an aim of the present paper to give a different derivation to that in [17] oftheLebesguemeasuredecompositionsimpliedby(3)and(5). Thisderivation, tobecarriedoutinSection2,isdeducedfromknowledgeofamatrixchangeof variablesformulacoretothestudyoftheso-calledWishartmatricesinrandom matrixtheory,whichinturnisequivalenttoamatrixpolarintegrationtheorem. It allowsforanaturalextensiontothecasethattheentriesof Marerealquaternions, representedas2×2complexmatrices (cid:34) (cid:35) z w . (6) −w z Thematrixpolarintegrationtheoremcanthen,following[17],beusedtoderive Blashke-Petkantschintypedecompositionofmeasureformulas,nowforthereal, complexandrealquaternioncases. ThisisdoneinSection3. In Section 4, a matrix integration formula ofSection 2 is usedto deduce the matrix distribution of U(M†M)1/2, for U a random unitary matrix with entries whicharereal,complexorrealquaternion,correspondingtothoseof M,inthe casethatthematrixdistributionof M dependson M†M. Asanotherapplication, theevaluationofthemomentsofdeterminantsassociatedwithcertainclassesof random matrices with entries from these number fields is given, as is an affine MATRIXPOLARDECOMPOSITIONANDTHEBLASCHKE-PETKANTSCHINFORMULA 3 versionofthisresult. Intherealcase,theaffineversionrelatestothevolumeof theconvexhullof k ≤ N+1pointsuniformlydistributedintheunitballinRN, oronitssurface,asfirstcalculatedbyKingman[11]andMiles[16]. 2. DecompositionofMeasureImpliedbyMatrixPolarDecomposition Intherealcasethesingularvalueandpolardecompositionsaregivenby(2) and(3),whileinthecomplexcasetheyaregivenby(4)and(5). Alsoofinterestis therealquaternioncase,inwhichtheentriesof M havethe2×2blockstructure (6). Sincethereareingeneralfourindependentrealentriesin(6),wewillannotate thematricesin(4)and(5)toinvolvesuperscripts4sothatforthesingularvalue decompositionwehave M(4) =U(4)diag(σ I ,...,σ I )V(4)†, (7) 1 1 2 N 2 andforthepolardecompositionwehave M(4) = Z(4)H(4), (8) As a complex matrix, M(4) is of size 2n×2N. The matrix V(4) is a 2N×2N unitarymatrixwith2×2realquaternionentries,andthusafterconjugationbya permutationmatrixisamemberoftheclassicalgroupSp(2N). Eachblockcolumn ofU(4) canberegardedasamemberoftherealquaternionvectorspaceHn,and 1 the N block columns together form an orthonormal set. Note that the singular values in (7) are doubly degenerate. This is in keeping withW(4) := M(4)†M(4) havingthesymmetryW(4) = Z˜ W(4)Z˜−1,where 2N 2N (cid:34) (cid:35) 0 −1 Z˜ :=I ⊗ , 2N N 1 0 which implies the eigenvalues of W(4) are doubly degenerate. In (8) Z = 4 U(4)V(4)†,andthis2n×2Nmatrixhasthesamepropertiesasthosehighlightedfor 1 U . Also H(4) = V(4)diag(σ I ,...,σ I )V(4)†, whichis a 2N×2N Hermitian 1,4 1 2 N 2 matrixwithrealquaternionblocks(6). Introducethenotation (dM) fortheproductoftheindependentdifferentials (real and imaginary parts) of the entries of the matrix M. Let β = 1, 2 or 4 accordingtotheentriesof Mbeingreal,complexorrealquaternion. Asafirstuse ofthisnotation,wewriteF todenotethesenumberfields. For M asappearing β in(3),(5)and(8), (dM) consistsof βnN independentdifferentials. Consider the matrix W = M†M. In the real case it follows from (5) that W = H2; in the real quaternion case it follows from (8) that W = (H(4))2. In mathematical statistics a change of variables between the entries of M and the entries of W was first studied by Wishart [26] in the real case. This was further refined by James [10] (see the text book treatment in [18]) to obtain a change of variables formula associated with both (2) and (3). The analogue of this in the 4 PETERJ.FORRESTER complexcaseisdetailedin[7,§3.2.3],andthemodificationrequiredforthereal quaternion case given in [7, Ex. 3.2 q.5]. The change of variables formula in all threecasesisconvenientlysummarisedin[4,Prop.4]andreads (cid:16) (cid:17) (dM) =2−N(detW)β(n−N+1)/2−1(dW) U†dU . (9) 1 1 (cid:0) (cid:1) Here U†dU istheinvariantmeasureonthesetofn×N matriceswithelements 1 1 in F , and having the property that the N columns form an orthonormal set in β thevectorspaceFn. ThesematricesaresaidtodefinetheStiefelmanifold,tobe β denotedVβ sowehaveU ∈ Vβ and(cid:0)U†dU (cid:1)istheinvariantmeasureonthis N,n 1 N,n 1 1 manifold. Also,intermsofthesingularvalues,wedefine N detW = ∏σ2 (10) l l=1 inallthreecases. Thustheusualdefinitionofthedeterminantismodifiedinthe case β = 4, where W has eigenvalues {σ2} each with multiplicity 2; in (10) the l multiplicityisignored. From(9)wecanreadoffamatrixpolarintegrationtheorem,reproducingthe maintheorem,Theorem2.5,of[17]whichrelatestotherealandcomplexcases, andextendingittotherealquaternioncase. Proposition 1. Let Mβ denote the set of n×N matrices with entries in F . For n×N β M ∈ Mβ introducethepolardecompositionaccordingto n×N M =U W1/2, 1 whereU ∈ Vβ andW = M†M ∈ Pβ ,Pβ denotingthesetofHermitianmatrices 1 N,n +,N +,N with entries in F and having all eigenvalues non-negative. For g : Mβ → R β n×N absolutelyintegrablewehave (cid:90) (cid:90) (cid:16) (cid:17) (cid:90) g(M)dM =2−N U†dU (dW) (detW)β(n−N+1)/2−1 Mβ Vβ 1 1 Pβ n×N N,n +,N ×g(U W1/2). (11) 1 Remark2. In[17]thefactor2−N ontheRHSisreplacedby2−N2 inthecomplexcase andby2−N(N+1)/2 intherealcase,duetoadifferentnormalisationof (cid:0)U†dU (cid:1). 1 1 Thenormalisationof(cid:0)U†dU (cid:1)inherentin(11)canreadilybedeterminedbyusing 1 1 Gram-Schmidtorthogonalisationtowrite M =U˜ T, (12) 1 whereU˜ ∈ Vβ and T is an N×N uppertriangularmatrix withnon-negative 1 N,n diagonal entries {t }N and strictly upper triangular entries in F (in the case ii i=1 β β =4, T isrepresentedasa2N×2N complexmatrixwithdiagonalentries t I ). ii 2 MATRIXPOLARDECOMPOSITIONANDTHEBLASCHKE-PETKANTSCHINFORMULA 5 Astandardchangeofvariablesformulainrandommatrixtheorytellsus(seee.g. [18]fortherealcase,[7]or[3,Lemma2.7]forallthreecases) N (cid:16) (cid:17) (dM) = ∏tβ(n−j+1)−1(dT) U˜†dU˜ . (13) jj 1 1 j=1 Multiplying both sides by e−TrM†M = e−TrT†T, taking Tr in the real quaternion casetobe 1 ofitsusualmeaninginkeepingwith(10),andintegratinggives 2 (cid:90) (cid:16)U†dU (cid:17) =2N∏N πβ(n−i+1)/2 = ∏N σ , (14) U1∈VNβ,n 1 1 i=1 Γ(β(n−i+1)/2) i=1 β(n−i+1) whereσ =2πl/2/Γ(l/2)isthesurfaceareaofthe(l−1)-sphereinRl. Inthereal l casetheabovecalculationcanbefoundin[18,Ch.2]. Wecanmakeuseof(14)tosimplify(11)inthecasethat g(M) isindependent ofU . Thisextendsmatrixintegrationformulasfrom[17,Th.2.5],applicablefor 1 realorcomplexentries,totherealquaternioncase. Corollary3. For f : Pβ →Rabsolutelyintegrablewehave +,N (cid:90) f(M†M)(dM) Mβ n×N = ∏N σβ(n−i+1) (cid:90) f(M†M) (cid:16)detM†M(cid:17)β(n−N)/2(dM). (15) i=1 σβ(N−i+1) MβN×N 3. Blaschke-PetkantschinFormula 3.1. Blaschke-PetkantschinFormula—MilesVersion. TheGrassmannian Gβ N,n isthesetofall N-dimensionalsubspacesinFn. Thissetcanbeidentifiedwiththe β quotientspace Vβ /O(N). Thus,sincetheelementsof Vβ are N orthonormal N,n N,n vectorsinFn,elementsinthequotientconsistofall N orthonormalvectorsspan- β ningthesame N-dimensionalsubspace. Itfollowsthatwehavethedecomposition ofmeasure(see[10]fortherealcase) (cid:16) (cid:17) (cid:16) (cid:17) U˜†dU˜ =dωβ U†dU , (16) 1 1 N,n where U˜ ∈ Vβ , U ∈ Vβ and dωβ denotes the invariant measure on Gβ . 1 N,n N,N N,n N,n Asamatrixdecomposition U˜ = AU (17) 1 forsome Asuchthatthecolumnsof Aforma"reference"setoforthogonalvectors spanningtheparticular N-dimensionalsubspaceofFn. Forfutureapplicationwe β notefrom(16)and(14)that volVβ N σ volGβ = N,n = ∏ β(n−i+1). (18) N,n volVNβ,N i=1 σβ(N−i+1) 6 PETERJ.FORRESTER Makinguseof(16)and(17),itwasobservedbyMoghadasi[17]thatinthereal case(11)canbeusedtodeduceanintegrationformulaequivalenttotheBlaschke- Petkantschindecompositionofmeasureformulafromintegralgeometry[2],[20], [1],informduetoMiles[16],. Howevertherequiredworkingisnotrestrictedto therealcase,allowingforageneralisationoftheBlaschke-Petkantschinformula tothecomplexandrealquaternioncases. Proposition 4. Let g : Mβ → R be integrable. Make use of the notations Gβ , N,n N,n β dω fortheGrassmannianandcorrespondinginvariantmeasureasintroducedabove. N,n Wehave (cid:90) g(M)(dM) M∈Mβ N,n = (cid:90) dωβ (cid:90) (dM)g(AM) (cid:16)detM†M(cid:17)β(n−N)/2. (19) A∈Gβ N,n M∈Mβ N,n N,N Proof. Substituting(16)and(17)intheRHSof(11)thisreads (cid:90) (cid:90) (cid:90) (cid:16) (cid:17) g(M)(dM) =2−N dωβ U†dU Mβ A∈Gβ N,n U∈Vβ n×N N,n N,N (cid:90) × (dW)g(AUW1/2) (detW)β(n−N+1)/2−1. (20) W∈Pβ +,N Ontheotherhand,inthecase n = N,andwith g(M) replacedby (cid:16) (cid:17)β(n−N)/2 g(AM) detM†M , thesesamesubstitutionsin(11)tellusthat (cid:90) (cid:16) (cid:17)β(n−N)/2 g(AM) detM†M (dM) Mβ N×N (cid:90) (cid:16) (cid:17)(cid:90) =2−N U†dU (dW)g(AUW1/2) (detW)β(n−N+1)/2−1. (21) U∈Vβ W∈Pβ N,N +,N Substituting(21)in(20)gives(19). (cid:3) 3.2. Blaschke-Petkantschin Formula — Affine Version. One viewpoint on (19) isasthedecompositionofmeasure ∏N dvn = (cid:12)(cid:12)det[vN]N (cid:12)(cid:12)β(n−N)∏N dvNdωβ , (22) k (cid:12) k k=1(cid:12) k N,n k=1 k=1 where vn ∈ (F )n, while vN ∈ (F )N is the co-ordinate for vn in a particular k β k β k basis for Span{vn}N , and dωβ is the invariant measure on subspaces (the k k=1 N,n Grassmannian Gβ )formedbythespan. Following[16],consider vn ∈ (F )n for N,n k β MATRIXPOLARDECOMPOSITIONANDTHEBLASCHKE-PETKANTSCHINFORMULA 7 k =0,1,...,N,anddefine zn = vn−vn (k =1,...,N). Thenwehave k k 0 N N ∏dvn = dvn∏dzn k 0 k k=0 k=1 =dvn(cid:12)(cid:12)det[zN]N (cid:12)(cid:12)β(n−N)∏N dzNdωβ , (23) 0(cid:12) k k=1(cid:12) k N,n k=1 wherethesecondequalityfollowsuponapplying(22)to{zn}N . WithBann×N k k=1 matrixwithcolumnsforminganorthogonalsetwhichisabasisforSpan{vN− k vN}N ,wehavezn = BzN. NowdefinezN = vN−vN. Then(23)canberewritten 0 k=1 k k k k 0 ∏N dvn =dvn(cid:12)(cid:12)det[vN−vN]N (cid:12)(cid:12)β(n−N)∏N dvNdωβ . (24) k 0(cid:12) k 0 k=1(cid:12) k N,n k=0 k=1 Finally,write vn = BvN+r,where r isanelementoftheorthogonalcomplement 0 0 ⊥,β of the column space of B, and let dS denote the volume element associated n−N withthissubspace. Thisreduces(24)totheaffineformof(22). Proposition5. Wehave ∏N dvn = (cid:12)(cid:12)det[vN−vN]N (cid:12)(cid:12)β(n−N)∏N dvNdωβ dS⊥,β . (25) k (cid:12) k 0 k=1(cid:12) k N,n n−N k=0 k=0 Theformula(25)isthedecompositionofmeasuregivenintheoriginalworks [2]and[20]. WithBandrasspecifiedintheabovetext,wenotethatvn = BvN+r, k k andinparticular (cid:107)vn(cid:107) = (cid:107)vN(cid:107)2+(cid:107)r(cid:107)2. (26) k k Also, the fact that B†B = I allows us to read off from (25) an analogue of the N matrixintegrationformula(15). Corollary6. For f : Pβ →Rabsolutelyintegrable,andletV = [vn−vn]. Wehave +,N n k 0 (cid:90) N f(V†V ) ∏dvn vnk∈(Fβ)n n n k=0 k N σ (cid:90) N = ∏ β(n−i+1) f(V†V )|detV |β(n−N)dvn∏dvN. (27) i=1 σβ(N−i+1) v0n∈(Fβ)n,vkN∈(Fβ)N N N N 0k=1 k 4. Applications 4.1. Induced Random Matrix Ensembles. Suppose the random matrix M ∈ Mβ hasPDFoftheform P(M†M). Thecorrespondinginducedensembleisde- n×M finedasthesetofrandommatricesoftheformK =U(M†M)1/2,whereU ∈ Vβ . N,N It is known [6] that the PDF of K is proportional to (detK†K)β(n−N)/2P(K†K). Hereitwillbeshownthatthisresult,togetherwiththeproportionalityconstant, canbededucedasaconsequenceofCorollary3. 8 PETERJ.FORRESTER Corollary 7. Let M,U and K be specifiedas in theabove paragraph. The PDFof K is equalto N σ ∏ β(n−i+1) (detK†K)β(n−N)/2P(K†K). (28) σ i=1 β(N−i+1) Proof. FromthedefinitionsthePDFof K isequalto (cid:90) (cid:90) [U†dU] (dM)δ(K−U(M†M)1/2)P(M†M), (29) Vβ Mβ N,N n×N where [U†dU] denotesthenormalisedinvariantmeasureon Vβ . Makinguseof N,N (15)with f(M†M) = δ(K−U(M†M)1/2)P(M†M) thisisequalto N σ (cid:90) (cid:90) ∏ β(n−i+1) [U†dU] (dM)δ(K−U(M†M)1/2) i=1 σβ(N−i+1) VNβ,N Mnβ×N (cid:16) (cid:17)β(n−N)/2 × detM†M P(M†M). (30) FromthematrixpolardecompositionweknowthatforauniqueU ∈ Vβ and N,N with M ∈ Mβ , we have M = U(M†M)1/2. Hence in (30) (but not in (29) we N×N canreplacethedeltafunctionbyδ(K−M). TheintegrationoverUthusdecouples, givingunity,whiletheintegrationover M gives(20). (cid:3) 4.2. Moments of Determinants. In the real case, a well established application of the Blascke-Petkantschin formula (19) is to the evaluation of the moments of detM†M in the case that the PDF for the distribution of M is a function of the lengths(cid:107)m (cid:107),wherem denotesthek-thcolumnof M(see[16],[15,§3.1.3]). Since k k A in (19) has the property that A†A = I , and since the k-th column of AM is N Am ,weseethatchoosing g(M)tobeafunctionofthelengthsofthecolumnswe k have p(M) = p(AM). Makingusetooof(18)showsthatinthiscircumstancethe Blaschke–Petkantschinformulareducesto (cid:90) g(M)(dM) Mβ n×N = ∏N σβ(n−i+1) (cid:90) g(M) (cid:16)detM†M(cid:17)β(n−N)/2(dM) (31) i=1 σβ(N−i+1) MβN×N (cf.(15)). Asimpleexampledependingonlyonthelengthsofthecolumnsiswhen N g(M) = ∏p((cid:107)m (cid:107)). (32) i i=1 Letusnormalise g(M) for M ∈ MN×N byrequiringthat (cid:90) (cid:90) ∞ p((cid:107)m(cid:107))dm = σ rβN−1p(r)dr =1, βN (Fβ)N 0 MATRIXPOLARDECOMPOSITIONANDTHEBLASCHKE-PETKANTSCHINFORMULA 9 wherethefirstequalityfollowsbyconvertingtopolarcoordinates. Soifwechoose p(r) tobeuniformfor0<r <1andzeroforr >1,tobecorrectlynormalisedwe shouldset βN p(r) = χ0<r<1, (33) σ βN where χ = 1 for S true and χ = 0 otherwise. And requiring each m to have S S i lengthunityisachievedbychoosing 1 p(r) = δ(1−(cid:107)m(cid:107)). (34) σ βN AlsoofinterestistheGaussiandistribution P(M) = (cid:16)1(cid:17)βN2/2e−TrM†M := (cid:16)1(cid:17)βN2/2e−∑lN=1(cid:107)ml(cid:107)2 (35) π π (thisintherealquaternioncaseTrisdefinedas 1 itsusualvalue;cf.(10))forwhich 2 p(r) = (cid:16)1(cid:17)βN/2e−r2. (36) π ThecorrespondingmomentsofdetM†M canbereadofffrom(31). Proposition 8. Let the PDF of the N×N matrix M be of the form (32) with p(r) specifiedby(52). Wehave,form ∈ (F )N, (i = 1,...,N),andqsuchthatbothsides i β arewelldefined (cid:16)βN(cid:17)N(cid:90) |detM|q(dM) = ∏N σβ(N−i+1) (cid:16)Nσβn(cid:17)N(cid:12)(cid:12)(cid:12) (37) σβN (cid:107)mi(cid:107)≤1 i=1 σβ(n−i+1) nσβN (cid:12)n=N+q/β and (cid:16) 1 (cid:17)N(cid:90) |detM|q(dM) = ∏N σβ(N−i+1) (cid:16)σβn (cid:17)N(cid:12)(cid:12)(cid:12) . (38) σβN (cid:107)mi(cid:107)=1 i=1 σβ(n−i+1) σβN (cid:12)n=N+q/β IntheGaussiancase(35), (cid:16)1(cid:17)βN2/2(cid:90) e−∑lN=1(cid:107)ml(cid:107)2|detM|q(dM) π (F )N β = ∏N σβ(N−i+1) (cid:16)1(cid:17)βN(N−n)/2(cid:12)(cid:12) . (39) (cid:12) i=1 σβ(n−i+1) π n=N+q/β Proof. Theonlypointthatremainsistojustifyextendingfromvaluesq = (n−N)β withn ∈Z≥0tothegeneralvaluesofq. ThiscanbedonebyappealingtoCarlson’s theorem(seee.g.[7,Prop,4.1.4]),whichtellsisthatiftwofunctions,analyticin therighthalfplane,agreeattheintegersandareboundedbyO(eµ|z|), µ < π,in (cid:3) thisregionthenthefunctionsareidentical. 10 PETERJ.FORRESTER Remark9. Intherealcase(35)correspondstoaresultofWilks[25];themethodof derivationpresentedhereisthatof[17]. Foreach β =1,2and4both(38)and(39) canbefoundin[21],wherethederivationmadeusetheJacobianforaQRtype decomposition; see also [14, 15]. Introducing polar coordinates m = r q when i i i (cid:107)q (cid:107) =1in(46),thedependenceonr canbeintegratedoutand,afteruseofthe i i explicit formula for σ below (14), (38) reclaimed. This same procedure can be l usedin(37)toprovideanotherderivationof(38). Remark 10. Differentiating both sides of (37)–(35) with respect to q and setting q =0providesuswiththeevaluationof (cid:104)log|detM|(cid:105). IntheGaussiancase,this averagehasappearedbefore,inthecontextofcalculatingtheLyapunovexponents fortherandommatrixproduct L = M(t)M(t−1)···M(1), (40) t whereeach M(j) ischosenfromthedistributionof M [19,8,9]. Inrelationtothis problem,onerecallsfromthemultiplicativeergodictheoremofOseledecthatthe limitingmatrixVN :=limt→∞(L†tLt)1/(2t) iswelldefined. TheeigenvaluesofVN areallnon-negative,andwhenwrittenintheform {eµl}lN=1,theexponents µl are theLyapunovexponents. Let u beaunitvector. Inthecasethateachcolumnof M(j) in(40)dependsonlyonitslength,thedistributionof u†M(j) isindependent of u, and a result of Raghunathan relating to the partial sums of the Lyapunov exponentstellsusthatinthissetting N ∑µ = (cid:104)log|detM|(cid:105). (41) i i=1 TheresultsofProposition8whenusedintheRHSof(15)provideuswithan extensionofthemomentformulastonowapplytodetM†M when M = [mn]N k k=1 isan n×N matrixwithentrieswithentriesinF . Intherealcase,thiswasfirst β noticedandmadeexplicitin[16]. Corollary11. With Mspecifiedasabove,let M = [mN]N correspondtothe N×N N k k=1 case. Letthenotation(cid:104)·(cid:105) refertotheexpectationwithrespecttothePDFrelatingto#. # Set A = ∏N σ /σ . Wehave β,n,N i=1 β(n−i+1) β(N−i+1) (cid:68)(detM†M)h/2(cid:69) = A (cid:16)nσβN(cid:17)N(cid:68)|detM |h+β(n−N)(cid:69) (cid:107)mnk(cid:107)≤1 β,n,N Nσβn N (cid:107)mkN(cid:107)≤1 (cid:68)(detM†M)h/2(cid:69) = A (cid:16)σβN(cid:17)N(cid:68)|detM |h+β(n−N)(cid:69) β,n,N N (cid:107)mnk(cid:107)=1 σβn (cid:107)mkN(cid:107)=1 (cid:68) (cid:69) (cid:16)1(cid:17)βN(n−N)/2(cid:68) (cid:69) (detM†M)h/2 = A |detM |h+β(n−N) , β,n,N N Gn π GN whereinthefinalequationthesubscriptsGn andGN refertotheGaussiandistribution on Mand M . N

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.