ebook img

Matrix, Numerical, and Optimization Methods in Science and Engineering PDF

727 Pages·2021·16.102 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Matrix, Numerical, and Optimization Methods in Science and Engineering

Matrix,Numerical,andOptimizationMethodsinScienceandEngineering Address vector and matrix methods necessary in numerical methods and optimiza- tion of systems in science and engineering with this unified text. The book treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. It explores the dynamical systems theory used to describe and characterize system behavior, alongside the techniques used to optimize their performance. The book integrates and unifies matrix and eigenfunction methods with their applications in numericalandoptimizationmethods.Consolidating,generalizing,andunifyingthese topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and appliedmathematics. KevinW.Casselisprofessorofmechanicalandaerospaceengineeringandprofessorof appliedmathematicsattheIllinoisInstituteofTechnology.Heisalsoafellowofthe AmericanSocietyofMechanicalEngineersandanassociatefellowoftheAmerican InstituteofAeronauticsandAstronautics. Matrix, Numerical, and Optimization Methods in Science and Engineering KEVIN W. CASSEL IllinoisInstituteofTechnology UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108479097 DOI:10.1017/9781108782333 ©KevinW.Cassel2021 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2021 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Cassel,KevinW.,1966–author. Title:Matrix,numerical,andoptimizationmethodsinscience andengineering/KevinW.Cassel. Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2021.| Includesbibliographicalreferencesandindex. Identifiers:LCCN2020022768(print)|LCCN2020022769(ebook)| ISBN9781108479097(hardback)|ISBN9781108782333(ebook) Subjects:LCSH:Matrices.|Dynamics.|Numericalanalysis.| Linearsystems.|Mathematicaloptimization.|Engineeringmathematics. Classification:LCCQA188.C372021(print)|LCCQA188(ebook)| DDC512.9/434–dc23 LCrecordavailableathttps://lccn.loc.gov/2020022768 LCebookrecordavailableathttps://lccn.loc.gov/2020022769 ISBN978-1-108-47909-7Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. TheheavensdeclarethegloryofGod; theskiesproclaimtheworkofhishands. Dayafterdaytheypourforthspeech; nightafternighttheydisplayknowledge. Thereisnospeechorlanguage wheretheirvoiceisnotheard. Theirvoicegoesoutintoalltheearth, theirwordstotheendsoftheworld. (Psalm19:1–4) Contents Preface pagexi PartI MatrixMethods 1 1 VectorandMatrixAlgebra 3 1.1 Introduction 5 1.2 Definitions 10 1.3 AlgebraicOperations 13 1.4 SystemsofLinearAlgebraicEquations–Preliminaries 15 1.5 SystemsofLinearAlgebraicEquations–SolutionMethods 26 1.6 VectorOperations 37 1.7 VectorSpaces,Bases,andOrthogonalization 42 1.8 LinearTransformations 51 1.9 NoteonNorms 55 1.10 BrieflyonBases 57 Exercises 58 2 AlgebraicEigenproblemsandTheirApplications 64 2.1 ApplicationsofEigenproblems 64 2.2 EigenvaluesandEigenvectors 69 2.3 RealSymmetricMatrices 78 2.4 NormalandOrthogonalMatrices 91 2.5 Diagonalization 95 2.6 SystemsofOrdinaryDifferentialEquations 100 2.7 SchurDecomposition 121 2.8 Singular-ValueDecomposition 123 2.9 PolarDecomposition 135 2.10 QRDecomposition 138 2.11 BrieflyonBases 141 2.12 Reader’sChoice 141 Exercises 142 viii Contents 3 DifferentialEigenproblemsandTheirApplications 155 3.1 FunctionSpaces,Bases,andOrthogonalization 157 3.2 EigenfunctionsofDifferentialOperators 162 3.3 AdjointandSelf-AdjointDifferentialOperators 179 3.4 PartialDifferentialEquations–SeparationofVariables 189 3.5 BrieflyonBases 209 Exercises 210 4 VectorandMatrixCalculus 218 4.1 VectorCalculus 219 4.2 Tensors 231 4.3 ExtremaofFunctionsandOptimizationPreview 237 4.4 SummaryofVectorandMatrixDerivatives 249 4.5 BrieflyonBases 250 Exercises 250 5 AnalysisofDiscreteDynamicalSystems 253 5.1 Introduction 255 5.2 Phase-PlaneAnalysis–LinearSystems 256 5.3 BifurcationandStabilityTheory–LinearSystems 260 5.4 Phase-PlaneandStabilityAnalysis–NonlinearSystems 273 5.5 PoincaréandBifurcationDiagrams–DuffingEquation 286 5.6 AttractorsandPeriodicOrbits–Saltzman–LorenzModel 299 PartII NumericalMethods 313 6 ComputationalLinearAlgebra 315 6.1 IntroductiontoNumericalMethods 317 6.2 ApproximationandItsEffects 326 6.3 SystemsofLinearAlgebraicEquations–DirectMethods 334 6.4 SystemsofLinearAlgebraicEquations–IterativeMethods 346 6.5 NumericalSolutionoftheAlgebraicEigenproblem 355 6.6 Epilogue 371 Exercises 372 7 NumericalMethodsforDifferentialEquations 376 7.1 GeneralConsiderations 377 7.2 FormalBasisforFinite-DifferenceMethods 384 7.3 FormalBasisforSpectralNumericalMethods 391 7.4 FormalBasisforFinite-ElementMethods 396 7.5 ClassificationofSecond-OrderPartialDifferentialEquations 398 Exercises 405 Contents ix 8 Finite-DifferenceMethodsforBoundary-ValueProblems 407 8.1 IllustrativeExamplefromHeatTransfer 407 8.2 GeneralSecond-OrderOrdinaryDifferentialEquation 412 8.3 PartialDifferentialEquations 415 8.4 DirectMethodsforLinearSystems 420 8.5 Iterative(Relaxation)Methods 426 8.6 BoundaryConditions 430 8.7 Alternating-Direction-Implicit(ADI)Method 434 8.8 MultigridMethods 437 8.9 CompactHigher-OrderMethods 444 8.10 TreatmentofNonlinearTerms 448 Exercises 453 9 Finite-DifferenceMethodsforInitial-ValueProblems 466 9.1 Introduction 466 9.2 Single-StepMethodsforOrdinaryDifferentialEquations 467 9.3 AdditionalMethodsforOrdinaryDifferentialEquations 481 9.4 PartialDifferentialEquations 483 9.5 ExplicitMethods 485 9.6 NumericalStabilityAnalysis 489 9.7 ImplicitMethods 496 9.8 BoundaryConditions–SpecialCases 501 9.9 TreatmentofNonlinearConvectionTerms 502 9.10 MultidimensionalProblems 508 9.11 HyperbolicPartialDifferentialEquations 515 9.12 CoupledSystemsofPartialDifferentialEquations 517 9.13 ParallelComputing 518 9.14 Epilogue 522 Exercises 522 PartIII LeastSquaresandOptimization 527 10 Least-SquaresMethods 529 10.1 IntroductiontoOptimization 529 10.2 Least-SquaresSolutionsofAlgebraicSystemsofEquations 531 10.3 Least-SquareswithConstraints 538 10.4 Least-SquareswithPenaltyFunctions 541 10.5 NonlinearObjectiveFunctions 542 10.6 Conjugate-GradientMethod 543 10.7 GeneralizedMinimumResidual(GMRES)Method 551 10.8 SummaryofKrylov-BasedMethods 555 Exercises 556

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.