ebook img

Matrix Canonical Forms: notational skills and proof techniques [Lecture notes] PDF

111 Pages·2015·1.471 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Matrix Canonical Forms: notational skills and proof techniques [Lecture notes]

Matrix Canonical Forms notational skills and proof techniques S. Gill Williamson ©S.GillWilliamson2012. Allrightsreserved. Preface Thismaterialisarewritingofnoteshandedoutbymetobeginninggraduate students in seminars in combinatorial mathematics (Department of Mathe- matics, University of California San Diego). Topics covered in this seminar were in algebraic and algorithmic combinatorics. Solid skills in linear and multilinearalgebrawererequiredofstudentsintheseseminars-especially in algebraic combinatorics. I developed these notes to review the students’ undergraduatelinearalgebraandimprovetheirproofskills. Wefocusedon a careful development of the general matrix canonical forms as a training ground. IwouldliketothankDr.TonyTrojanowskiforacarefulreadingofthismaterial andnumerouscorrectionsandhelpfulsuggestions. Iwouldalsoliketothank ProfessorMikeSharpe,UCSDDepartmentofMathematics,forconsiderable LaTeXtypesettingassistanceandforhisLinuxLibertinefontoptionstothe newtxmathpackage. S.GillWilliamson,2012 http://cseweb.ucsd.edu/~gill 3 x 4 CONTENTS Chapter1. FunctionsandPermutations 7 Algebraicterminology 7 Sets,lists,multisetsandfunctions 15 Permutations 20 Exercises 26 Chapter2. MatricesandVectorSpaces 27 Review 27 Exercises: subspaces 30 Exercises: spanningsetsanddimension 31 Matrices–basicstuff 33 Chapter3. Determinants 41 Elementarypropertiesofdeterminants 43 Laplaceexpansiontheorem 51 Cauchy-Binettheorem 57 Exercises: CauchyBinetandLaplace 63 Chapter4. Hermite/echelonforms 65 Rowequivalence 65 Hermiteform,canonicalformsanduniqueness 71 StabilizersofGL(n,(cid:75));columnHermiteforms 78 FinitedimensionalvectorspacesandHermiteforms 81 Diagonalcanonicalforms–Smithform 86 Chapter5. Similarityandequivalence 91 Determinantaldivisorsandrelatedinvariants 91 Equivalencevs. similarity 96 Characteristicmatricesandpolynomials 99 RationalandJordancanonicalforms. 100 Index 107 5 CHAPTER 1 Functions and Permutations Algebraicterminology In this first section, we summarize for reference certain basic concepts in algebra. Theseconceptsareusefulforthematerialwedevelophereandare essentialforreadingrelatedonlinesources(e.g.,Wikipedia). Remark1.1(Basicsetsandnotation). Weusethenotation(cid:78) = {1,2,...} forthepositiveintegers. Let(cid:78)0 = {0,1,2,...}denotethenonnegativeintegers, and let (cid:90) = {0,±1,±2,...} denote the set of all integers. Let ×nS (n-fold CartesianproductofS)bethesetofn-tuplesfromanonemptysetS. Wealso useSn forthiscartesianproduct. Aslightlymoregeneralnotationistowrite Sn for this product where n = {1,...,n} and the exponential notation RD denotesalln-tuples(i.e.,functions1.38)fromD toR (Weusedeltanotation: δ(Statement) = 1ifStatementistrue,0ifStatementisfalse.) Semigroup→Monoid→Group: setswithonebinaryoperation Afunctionw :S2 →S iscalledabinaryoperation. Itissometimesusefulto writew(x,y)inasimplerformsuchasxwy orsimplyx ·y orevenjustxy. Totiethebinaryoperationw toS explicitly,wewrite(S,w)or(S,·). Definition 1.2 (Semigroup). Let (S,·) be a nonempty set S with a binary operation “·” . If (x ·y) ·z = x · (y ·z), for all x,y, z ∈ S, then the binary operation“·”iscalledassociativeand(S,·)iscalledasemigroup.Iftwoelements, s,t ∈ S satisfys ·t =t ·s thenwesays andt commute. Ifforallx,y ∈ S we havex ·y =y ·x then(S,·)isacommutative(orabelian)semigroup. Remark1.3(Semigroup). LetS = M2,2((cid:90)e)bethesetof2×2matriceswith entriesin(cid:90)e = {0,±2,±4,...},thesetofevenintegers. Definew(X,Y) =XY to be the standard multiplication of matrices (which is associative). Then (S,w)isasemigroup. Thissemigroupisnotcommutative(alternatively,itisa noncommutativesemigrouporasemigroupwithnon-commutingelements). The semigroup of even integers, ((cid:90)e,·), where “·” denotes multiplication of integers,iscommutative. 7 Associative + Identity = Monoid Definition1.4(Monoid). Let(S,·)beasemigroup. Ifthereexistsanelement e ∈S suchthatforallx ∈S,e·x =x ·e =x,thene iscalledanidentityforthe semigroup. Asemigroupwithanidentityiscalledamonoid. Ifx ∈S andthere isay ∈S suchthatx ·y =y ·x =e theny iscalledaninverseofx. Remark1.5(Monoid). Theidentityisunique(i.e.,ifeande(cid:48)arebothidentities thene =e ·e(cid:48) =e(cid:48)). Likewise,ify andy(cid:48) areinversesofx,theny(cid:48) =y(cid:48)·e = y(cid:48)·(x ·y) = (y(cid:48)·x)·y =e ·y =y sotheinverseofx isunique. Notethatthis lastcomputationshowsthatify(cid:48)satisfiesy(cid:48)x =e (y(cid:48)isa“leftinverse”)andy satisfiesxy =e (y isa“rightinverse”)theny(cid:48) =y. The2×2matrices,M2,2((cid:90)), withmatrixmultiplicationformamonoid(identityI2,the2×2identitymatrix). Associative + Identity + Inverses = Group Definition1.6(Group). Let(S,·)beamonoidwithidentitye andletx ∈S. Ifthereisay ∈S suchthatx ·y =y·x =e theny iscalledaninverseofx (see 1.4). Amonoidinwhicheveryelementhasaninverseisagroup. Remark1.7(Group). Commutativegroups,x ·y =y ·x forallx andy,play animportantroleingrouptheory. Theyarealsocalledabeliangroups. Note thattheinverseofanelementx inagroupisunique: ify andy(cid:48)areinverses ofx,theny(cid:48) =y(cid:48)·e =y(cid:48)·(x ·y) = (y(cid:48)·x)·y =e ·y =y (see1.5). Ring: onesetwithtwointertwinedbinaryoperations Definition 1.8 (Ring and Field). A ring, R = (S,+,·), is a set with two binaryoperationssuchthat(S,+)isanabeliangroupwithidentitydenoted by 0 (“+” is called “addition”) and (S − {0},·) is a semigroup (“·” is called “multiplication”). Thetwooperationsarerelatedbydistributiveruleswhich statethatforallx,y,z inS: (left) z ·(x +y) =z ·x +z ·y and (x +y)·z =x ·z+y ·z (right). Remark1.9(Notation,specialringsandgroupofunits). Thedefini- tionofaringassumesonlythat(S,·)isasemigroup(1.2). Thus,aringmaynot haveamultplicativeidentity. Werefertosuchastructureasaringwithout anidentity. LetR = (S,+,·)bearing. Theidentityoftheabeliangroup(S,+) isdenotedby0 (or0)andiscalledthezeroofthering(S,+,·). Ifr ∈S then R theinverseofr in(S,+)isdenotedby−r sor +(−r) = (−r)+r = 0. Suppose 8 (S −{0},·)isamonoidwithidentity1 (wesay“R isaringwithidentity1 ”); R R itsinvertibleelements(orunits),U(R),formagroup,(U(R),·),with1 asthe R group identity. The group (U(R),·), or simplyU(R), is the group of units of theringR. If(S −{0},·)iscommutativethen(S,+,·)isacommutativering. If (S −{0},·) is a group (i.e., (U(R),·) = (S −{0},·)) then the ringR is called a skew-fieldordivisionring. Ifthisgroupisabelianthentheringiscalledafield. Remark1.10(Basicringidentities). Ifr,s,t areinaring(S,+,·)thenthe followingbasicidentities(inbraces,plushintsforproof)hold: (1) {r ·0 = 0·r = 0} Ifx+x =x thenx = 0. Takex =r ·0andx = 0·r. (2) {(−r)·s =r ·(−s) = −(r ·s)} r·s+(−r)·s = 0 =⇒ (−r)·s = −(r·s). (3) {(−r)·(−s) =r ·s} Replacer by−r in(2). Notethat−(−r) =r. Inparticular,if(S−{0},·)hasidentity1 ≡ 1,then(−1)·a = −aforanya ∈S R and,takinga = −1,(−1)·(−1) = 1. Itisconvenienttodefiner −s =r +(−s). Thenwehave(r −s)·t =r ·t −s ·t andt ·(r −s) =t ·r −t ·s: t ·(r −s) =t ·(r +(−s)) =t ·r +t ·(−s)) = (t ·r +−(t ·s)) =t ·r −t ·s. Afieldisaring(S,+,·)where(S −{0},·)isanabeliangroup Remark1.11(Rings,fields,identitiesandunits). The2×2matrices overtheevenintegers,M2,2((cid:90)e),withtheusualmultiplicationandadditionof matrices,isanoncommutativeringwithoutanidentity. Thematrices,M2,2((cid:90)), overallintegers,isanoncommutativeringwithanidentity. Thegroupofunits, (cid:32) (cid:33) +1 −1 U(M2,2((cid:90))),isallinvertible2×2integralmatrices.ThematrixP = −2 +3 (cid:32) (cid:33) 3 1 is a unit in M2,2((cid:90)) withP−1 = 2 1 .U(M2,2((cid:90))) is usually denoted by GL(2,(cid:90)) and is called a general linear group. The ring of 2 × 2 matrices of (cid:32) (cid:33) x y theform wherex andy arecomplexnumbersisaskew-fieldbut −y x notafield. Thisskew-fieldisequivalentto(i.e,a“matrixrepresentationof”) theskewfieldofquaternions(seeWikipediaarticleonquaternions). Themost importantfieldsforuswillbethefieldsofrealandcomplexnumbers. Definition1.12(Ideal). Let(R,+,·)bearingandletA ⊆ R beasubsetof R. If(A,+)isasubgroupof(R,+)thenAisaleftidealifforeveryx ∈ R and y ∈ A,xy ∈ A. Arightidealissimilarlydefined. IfAisbothaleftandright idealthenitisatwo-sidedidealor,simply,anideal. If(R,+,·)iscommutative thenallidealsaretwosided. 9 (cid:32) (cid:33) x y Remark1.13(Ideal). ThesetAofallmatricesa = formsasubgroup 0 0 (A,+)of(M2,2((cid:90)),+). ThesubsetAisarightidealbutnotaleftidealofthe ringM2,2((cid:90)).NotethatR = (A,+,·)isitselfaring. Thisringhaspairsofzero divisors-pairsofelements(a,b)wherea (cid:44) 0andb (cid:44) 0suchthata·b = 0. For (cid:32) (cid:33) (cid:32) (cid:33) 0 1 1 1 example,takethepair(a,b)tobea = andb = . Thepair 0 0 0 0 (a,b)is,ofcourse,alsoapairofzerodivisorsinM2,2((cid:90)). Anotherexampleofanidealisthesetofevenintegers,(cid:90) ,whichisasubset e oftheintegers,(cid:90)(which,itisworthnoting,formsaringwithnozerodivisor pairs). Thesubset(cid:90) ,isanideal(two-sided)in(cid:90). Givenanyintegern (cid:44) 0,the e set{k ·n|k ∈ (cid:90)}ofmultiplesofn,isanidealofthering(cid:90)whichwedenote by(n) =n(cid:90) = (cid:90)n. Suchanideal(i.e.,generatedbyasingleelement,n)in(cid:90) iscalledaprincipalideal. ItiseasytoseethatallidealsAin(cid:90)areprincipal ideals,(n),where|n| > 0isminimaloverthesetA. Anothernicepropertyof integersisthattheyuniquelyfactorintoprimes(uptoorderandsign). Definition1.14(Characteristicofaring). LetR bearing. Givena ∈ R and an integern > 0, definena ≡ a +a + ···a where there aren terms in the sum. If there is an integern > 0 such thatna = 0 for alla ∈ R then the characteristicofRistheleastsuchn.Ifnosuchnexists,thenRhascharacteristic zero(seeWikipediaarticle“Characteristic(algebra)”forgeneralizations). Algebraistshavedefinedseveralimportantabstractionsoftheringofintegers, (cid:90). Wenextdiscussfoursuchabstractions: integraldomains,principalideal domains(PID),uniquefactorizationdomains(UFD),andEuclideandomains- eachmorerestrictivethantheother. EuclideanDomain =⇒ PID =⇒ UFD Definition1.15(Integraldomain). Anintegraldomainisacommutativering withidentity,(R,+,·),inwhichtherearenozerodivisorpairs: pairsofnonzero elements(a,b)whereab = 0.(See1.13forringwithpairsofzerodivisors.) Remark1.16(Divisors,units,associatesandprimes). Fornoncommu- tativerings,anelementa isaleftzerodivisorifthereexistsx (cid:44) 0suchthat ax = 0(rightzerodivisorssimilarlydefined). LetR beacommutativering. If a (cid:44) 0andb areelementsofaR,wesaythata isadivisorofb (ora dividesb), a|b, ifthereexistsc suchthatb = ac. Otherwise,a doesnotdivideb,a (cid:45) b. Note that ifb = 0 and a (cid:44) 0 then a|b becauseb = a0 (c = 0). Thus a|0 ora divides0. (Thetermzerodivisorsof1.15referstopairs(a,b)ofnonzero elements and is not the same as “a is a divisor of 0” or “a divides 0”.) An elementu inR−{0}isaninvertibleelementoraunitofR ifu hasaninversein (R−{0},·). Theunitsformagroup,U(R)(1.9). Forcommutativerings,ab =u, 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.