ebook img

Mathematics of Ramsey Theory PDF

278 Pages·1990·6.616 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematics of Ramsey Theory

A Algorithms and Combinatorics 5 Editorial Board R. L. Graham, Murray Hill B. Korte, Bonn L. LOV3sZ, Budapest laroslav Nesetfil Vojtech Rodl (Eds.) Mathematics of Ramsey Theory With 15 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Jaroslav Nesetfil Department of Applied Mathematics Charles University Malostranske mim. 25 11800 Praha 1 Czechoslovakia Vojtech Rodl Department of Mathematics and Computer Science Emory University Atlanta, GA 30322 USA Mathematics Subject Classification (1980): 00-02, OOA 10,03 F30, 05 A99, 05 B25, 05 C 15,05 C55, 05 C65, 05 C80, 11 B 13,11 B25, 28 D99, 34C35, 51E1O, 51E15, 51M99, 54H20, 68R1O ISBN- 13: 978-3-642-72907-2 e-ISBN -13: 978-3-642-72905-8 DOl: 10.1007/978-3-642-72905-8 Library of Congress Cataloging-in-Publication Data Mathematics of Ramsey theory / 1. Nesetfil, V. Rodl (eds.) p. cm. - (Algorithms and combinatorics; 5) Includes bibliographical references (p. ) and indexes. ISBN-13: 978-3-642-72907-2 1. Ramsey theory. I. Nesetfil, J. (Jaroslav) II. Rodl, V. (Vojtech), 1949-. III. Series. QA166.M37 1990 511'.5-dc20 90-10186 CIP This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights oftransiation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication on this publication or parts thereof is only permitted under the pro visions of the German Copyright Law of September 9,1965, in its current version, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1990 Softcover reprint of the hardcover 1st edition 1990 2141/3140-543210 - Printed on acid-free paper Preface During the last Prague Symposium on Graph Theory several people sugge sted collecting papers which would exhibit diverse techniques of contemporary Ramsey Theory. The present volume is an outgrowth of this idea. Contemporary research related to Ramsey Theory spans many and diverse areas of mathematics and it has been our intention to demonstrate it. We decided not merely to collect papers but also to edit the volume as a whole. In several instances we asked for specific contributions. Admittedly this was a bit ambitious project and as a result it took us several years to complete it. But perhaps the time was worth it: we are pleased that we have among the contributors many leading mathematicians. We thank all the authors for the excellent job they have done. We thank Jan KratochVl1 and Yvonne Hola. (Charles University, Pra gue) for technical assistance in editing this volume. The book has been TEX processed in the Institut fur Diskrete Mathematik (Bonn) and we thank Mrs. H. Higgins and B. Schaschek. Bonn, March 13, 1990 Jaroslav Nesetfil Vojtech Rodl Contributing Authors J6zsef Beck Hillel Furstenberg Mathematical Institute Institute of Mathematics Budapest H-1364 Hebrew University Hungary Givat Ram, Jerusalem 91904 Israel Stefan A. Burr Dept. of Computer Sciences Ronald L. Graham City College, C.U.N.Y. AT & T Bell Laboratories New York, NY 10031 Room 2T-I02 U.S.A. Murray Hill, NJ 07974 U.S.A. Timothy J. Carlson Department of Mathematics Yitzchak Katznelson Ohio State University Institute of Mathematics Columbus, OH 43210 Hebrew University U.S.A. Givat Ram, Jerusalem 91904 Israel Paul Erdos and Mathematical Instittit Department of Mathematics Hungarian Academy of Sci. Stanford University Budapest H-1364 Stanford, CA 92305 Hungary U.S.A. Peter Frankl Igor Kfii Centre National de la Dept. of Mathematics Recherche Scientifique University of Chicago 75700 Paris Chicago, IL 60637 France U.S.A. VIII Contributing Authors J aroslav N eseti'il Richard Rado Dept. of Applied Mathematics Dept. of Mathematics Charles University University of Reading Malostranske na.m. 25 White Knights 11800 Praha 1 Reading RG6 2AX Czechoslovakia England Vojtech Rodl Alon Nilli Department of Mathematics c/o N. Alon Emory University Dept. of Mathematics Atlanta, GA 30322 Sackler Faculty of Exact U.S.A. Sciences Tel Aviv University Tel Aviv Israel Stephen G. Simpson Dept. of Mathematics Pennsylvania State Univ. University Park, PA 16802 U.S.A. Jeff B. Paris Dept. of Mathematics Manchester University Manchester MI3 9PL Robin Thomas England School of Mathematics Georgia Technical University Atlanta, GA 30332 U.S.A. Hans J. Pro mel Research Institute of Discrete Mathematics Joel Spencer University of Bonn Courant Institute D-5300 Bonn 1 251 Mercer Street West Germany New York, NY 10012 U.S.A. Pavel Pudlak Mathematical Institute Bernd Voigt Czechoslovak Academy Research Institute of of Sciences Discrete Mathematics Zitna. 25 University of Bonn 11567 Praha D-5300 Bonn 1 Czechoslovakia West Germany Contributing Authors IX Benjamin Weiss William Weiss Institute of Mathematics Mathematics Department Hebrew University University of Toronto Givat Ram, Jerusalem 91904 Toronto, Ontario M55 IAI Israel Canada Table of Contents Introduction Ramsey Theory Old and New ......................................... 1 J. Nesetril and V. Rocil 1. Ramsey Numbers .................................................. 2 2. Transfinite Ramsey Theory ......................................... 3 3. Chromatic Number ................................................. 3 4. Classical Theorems ................................................. 3 5. Other Classical Theorems ........................................... 4 6. Structural Generalizations .......................................... 5 7. Infinite Ramsey Theorem ........................................... 6 8. Unprovability Results ............................................... 6 9. Non-Standard Applications ......................................... 7 Part I. Classics Problems and Results on Graphs and Hypergraphs: Similarities and Differences ........................................... 12 P. Erdos 1. Extremal Problems of Turan Type .................................. 13 2. Density Problems ................................................. 15 3. Ramsey's Theorem ................................................ 17 4. Ramsey-Turan Type Problems ..................................... 22 5. Chromatic Numbers ............................................... 25 Note on Canonical Partitions ......................................... 29 R. Rado XII Table of Contents Part II. Numbers On Size Ramsey Number of Paths, Trees and Circuits. II ............... 34 J. Beck 1. Introduction ....................................................... 34 2. Proof of Theorem 1 - Part One ..................................... 36 3. Proof of Theorem 1 - Part Two .................................... 40 4. Proof of Theorem 2 ............................................... 42 5. Proof of Theorem 3 ............................................... 44 On the Computational Complexity of Ramsey-Type Problems ........... 46 S.A. Burr 1. Introduction ....................................................... 46 2. NP-Complete Ramsey Problems ................................... 47 3. Polynomial-Bounded Ramsey Problems ............................. 49 4. Discussion ........................................................ 51 Constructive Ramsey Bounds and Intersection Theorems for Sets ........ 53 P. Frankl 1. Introduction ....................................................... 53 2. Families of Sets with Prescribed Intersections ........................ 54 3. The Proof of Theorem 2.3 .......................................... 55 4. The Proof of Theorem 1.1 .......................................... 55 Ordinal Types in Ramsey Theory and Well-Partial-Ordering Theory ..... 57 I. KHz and R. Thomas 1. Introduction ....................................................... 58 2. Sheaves .......................................................... 61 3. Ramsey Systems .................................................. 64 4. Well-Partial-Ordering .............................................. 71 5. Erdos-Szekeres Theorem ........................................... 77 6. Ramsey Systems .................................................. 85 7. Canonical Ramsey Theorem ........................................ 92 Part III. Structural Theory Partite Construction and Ramsey Space Systems ....................... 98 J. Nesetfil and V. Rodl 1. Introduction ....................................................... 98 2. Statement of Results ............................................. 100 3. Partite Lemma ................................................... 101 4. Partite Construction .............................................. 106 5. Applications ..................................................... 108 Table of Contents XIII Graham-Rothschild Parameter Sets ................................... 113 H.J. Promel and B. Voigt 1. Introduction ...................................................... 113 2. Parameter Sets and Parameter Words (Definition and Basic Examples) 114 3. Hales-Jewett's Theorem ........................................... 117 4. Graham-Rothschild's Theorem .................................... 128 5. Infinite Versions .................................................. 136 6. Other Structures ................................................. 143 Shelah's Proof of the Hales-Jewett Theorem .......................... 150 A. Nilli Part IV. Noncombinatorial Methods Partitioning Topological Spaces ...................................... 154 W. Weiss 1. Introduction ..................................................... 154 2. Partitioning Singletons ........................................... 155 3. Partitioning Pairs ................................................ 167 4. Open Problems .................................................. 169 Topological Ramsey Theory ......................................... 172 T.J. Carlson and S.G. Simpson 1. Introduction ...................................................... 172 2. Ramsey Spaces and Ellentuck's Theorem ........................... 173 3. Finitary Consequences of Ellentuck Type Theorems ................. 176 4. The Axiom of Choice and the Construction of Non-Ramsey Sets ..... 177 5. Finite Dimensional Analogues of Ellentuck Type Theorems .......... 179 6. Canonical Partitions .............................................. 180 Ergodic Theory and Configurations in Sets of Positive Density ......... 184 H. Furstenberg, Y. Katznelson and B. Weiss 1. Introduction ..................................................... 184 2. Correspondence Between Subsets of lR? and ru?-Actions ............. 185 3. Ergodic Averages for Subsets of R2 ................................ 187 4. First Application to Subsets of Positive Density in R2 ............... 188 5. Proof of Theorem A .............................................. 189 6. A Recurrence Property of R2-Actions .............................. 191 7. Proof of Theorem B .............................................. 197

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.