ebook img

Mathematics of Quantum Computing: an Introduction PDF

773 Pages·2019·4.137 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematics of Quantum Computing: an Introduction

Wolfgang Scherer Mathematics of Quantum Computing An Introduction Mathematics of Quantum Computing Wolfgang Scherer Mathematics of Quantum Computing An Introduction 123 WolfgangScherer Kingston, UK ISBN978-3-030-12357-4 ISBN978-3-030-12358-1 (eBook) https://doi.org/10.1007/978-3-030-12358-1 Translation from the German edition language edition: Mathematik der Quanteninformatik by Dr.WolfgangScherer,©Springer-VerlagGmbHGermany2016.PublishedbySpringer-VerlagGmbH GermanyispartofFachverlagsgruppeSpringerScience+BusinessMedia.AllRightsReserved. ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Para Negri und für Matthias und Sebastian Preface In the last two decades the digitization of our lives has accelerated at a sometimes breathtaking rate. It isappearing in ever more aspectsof our existence to the point of becoming all-encompassing. Ever larger amounts of data are generated, stored, processed and transmitted. This is driven by increases in processing speed and computational performance. The latter is achieved by ever greater miniaturization ofcircuitsandphysicalmemoryrequirements.Asthistrendcontinuesrathersooner than later atomic or even sub-atomic scales will be reached. At the latest at that pointthelawsofquantummechanicswillberequiredtodescribethecomputational process along with the handling of memory. Originating from this anticipation as well as from scientific curiosity, many researchersoverthelastquartercenturyhavethusinvestigatedhowinformationcan be stored and processed in systems described by quantum mechanical laws. In doing so they created the science of quantum computing. Quantum computing is unique in the sense that nowhere else are fundamental questionsinphysicssocloselyconnectedtopotentiallyhugepracticalimplications andbenefits.Ourverybasicunderstandingofwhatconstitutesrealityischallenged bytheeffectswhichatthesametimeseemtoenableenormousefficiencygainsand to revolutionize computational power and cryptographic protocols. What is also quite enticing is that quantum computing draws from many ‘dis- tinct’branchesofmathematicssuchas,ofcourse,analysisandlinearalgebra,butto anevengreaterextentfunctionalanalysis,grouptheory,numbertheory,probability theory and not least computer science. This book aims to give an introduction to the mathematics of this wide-ranging and promising field. The reason that despite being an introduction it is so volu- minousisthatthereaderistakenbythehandandledthroughallargumentsstepby step.Allresultsareproveninthetextin—forthecognoscentiperhapsexcruciating —detail. Numerous exercises with their solutions provided allow the reader to test and develop their understanding. Any requisites from branches, such as number theory or group theory, are provided with all stated results proven in the book as well. vii viii Preface For the above reasons this book is eminently suitable for self-study of the subject.Theattentiveanddiligentreaderdoesnothavetoconsultotherresourcesto followthearguments.Thelevelofmathematicalknow-howrequiredapproximately corresponds to second year undergraduate knowledge in mathematics or physics. It is very much a text in mathematical style in that we follow the pattern of motivating text—definition—lemma/theorem/corollary—proof—explanatory text and all over again. In doing so all relevant assumptions are clearly stated. At the same time, it provides ample opportunities for the reader to become familiar with standard techniques in quantum computing as well as in the related mathematical sub-fields. Having mastered this book the reader will be equipped to digest sci- entific papers on quantum computing. I enjoyed writing this book. I very much hope it is equally enjoyable to read it. Acknowledgements Throughout my academic life many people have taught, motivated, enlightened and inspired me. I am truly grateful to every one of them and hope they will find this book to their liking. A very special thanks goes to the organizers and participants of the 2017 Summer Academy of the Studienstiftung des Deutschen Volkes. Their review and critical feedback for the German version has helped to erase several errors and to improve the presentation. It also was a pleasure to spend some time with them in lovely South Tirol. In particular, I am wholeheartedly grateful to Joachim Hilgert who, in addition to giving feedback on the German version, also very swiftly and thoroughly proofread a part of this manuscript. ThelargestdebtofgratitudeisowedtoMaria-Eugenia,MatthiasandSebastian, whoduringmanyyearsofthisprojecthavetakenthebackseatandtookmyretreat from family life in their stride but never wavered in their support and shared my enthusiasm.IamverygratefulinparticulartoSebastian,whoonceagainproofread large portions of the manuscript. His detailed review detected many errors and his constructive criticism during numerous enjoyable and lengthy sessions helped improve precision and clarity of the exposition. Needless to say that even his diligence will not have detected every error or shortcoming. Those were still caused by the author. Kingston Upon Thames, UK Wolfgang Scherer March 2019 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Some History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Reader’s Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 What is not in this Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Notation and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Basic Notions of Quantum Mechanics. . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Mathematical Notions: HILBERT Spaces and Operators. . . . . . . . . 12 2.3 Physical Notions: States and Observables. . . . . . . . . . . . . . . . . . 29 2.3.1 Pure States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 Mixed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5 Operators on Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3 Tensor Products and Composite Systems . . . . . . . . . . . . . . . . . . . . . 77 3.1 Towards Qbytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2 Tensor Products of HILBERT Spaces . . . . . . . . . . . . . . . . . . . . . . 78 3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2.2 Computational Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3 States and Observables for Composite Systems . . . . . . . . . . . . . 90 3.4 SCHMIDT Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.5 Quantum Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Definition and Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.3 Entanglement Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.4 EINSTEIN–PODOLSKY–ROSEN-Paradox . . . . . . . . . . . . . . . . . . . . . . 135 ix x Contents 4.5 BELL Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.5.1 Original BELL Inequality. . . . . . . . . . . . . . . . . . . . . . . . . 141 4.5.2 CHSH Generalization of the BELL Inequality. . . . . . . . . . 146 4.6 Two Impossible Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.6.1 BELL Telephone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.6.2 Perfect Quantum Copier. . . . . . . . . . . . . . . . . . . . . . . . . 158 4.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5 Quantum Gates and Circuits for Elementary Calculations. . . . . . . . 161 5.1 Classical Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.2 Quantum Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.2.1 Unary Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.2.2 Binary Quantum Gates. . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.2.3 General Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.3 Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.4 On the Process of Quantum Algorithms. . . . . . . . . . . . . . . . . . . 206 5.4.1 Preparation of Input and Use of Auxiliary Registers . . . . 207 5.4.2 Implementationof Functions and Quantum Parallelism... 208 5.4.3 Reading the Output Register. . . . . . . . . . . . . . . . . . . . . . 212 5.5 Circuits for Elementary Arithmetic Operations . . . . . . . . . . . . . . 213 5.5.1 Quantum Adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5.5.2 Quantum Adder Modulo N. . . . . . . . . . . . . . . . . . . . . . . 226 5.5.3 Quantum Multiplier Modulo N . . . . . . . . . . . . . . . . . . . . 229 5.5.4 Quantum Circuit for Exponentiation Modulo N . . . . . . . . 233 5.5.5 Quantum FOURIER Transform . . . . . . . . . . . . . . . . . . . . . 237 5.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 6 On the Use of Entanglement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 6.1 Early Promise: DEUTSCH–JOZSA Algorithm . . . . . . . . . . . . . . . . . 247 6.2 Dense Quantum Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 6.3 Teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 6.4 Quantum Cryptography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 6.4.1 Ciphers in Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 255 6.4.2 Quantum Key Distribution without Entanglement . . . . . . 258 6.4.3 Quantum Key Distribution with Entanglement. . . . . . . . . 262 6.4.4 RSA Public Key Distribution . . . . . . . . . . . . . . . . . . . . . 266 6.5 SHOR Factorization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 271 6.5.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 6.5.2 The Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 6.5.3 Step 1: Selection of b and Calculation of gcdðb;NÞ. . . . . 275 6.5.4 Step 2: Determining the Period with a Quantum Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 6.5.5 Step 3: Probability of Selecting a Suitable b . . . . . . . . . . 290 6.5.6 Balance Sheet of Steps. . . . . . . . . . . . . . . . . . . . . . . . . . 296 Contents xi 6.6 Generalizing: The Abelian Hidden Subgroup Problem . . . . . . . . 301 6.7 Finding the Discrete Logarithm as a Hidden Subgroup Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 6.8 Breaking Bitcoin Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 6.9 GROVER Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 6.9.1 Search Algorithm for Known Number of Objects . . . . . . 324 6.9.2 Search Algorithm for Unknown Number of Objects. . . . . 337 6.10 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 7 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 7.1 What Can Go Wrong? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 7.2 Classical Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 7.3 Quantum Error Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 7.3.1 Correctable Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 7.3.2 Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . 384 7.3.3 Stabilizer Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 7.4 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 8 Adiabatic Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 8.2 Starting Point and Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . 404 8.3 Generic Adiabatic Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 413 8.4 Adiabatic Quantum Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 8.5 Replicating a Circuit Based by an Adiabatic Computation. . . . . . 440 8.6 Replicating an Adiabatic by a Circuit Based Computation. . . . . . 484 8.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 9 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 Appendix A: Elementary Probability Theory. .... .... .... ..... .... 501 Appendix B: Elementary Arithmetic Operations .. .... .... ..... .... 505 Appendix C: LANDAU Symbols ..... .... .... .... .... .... ..... .... 513 Appendix D: Modular Arithmetic .. .... .... .... .... .... ..... .... 515 Appendix E: Continued Fractions.. .... .... .... .... .... ..... .... 545 Appendix F: Some Group Theory.. .... .... .... .... .... ..... .... 559 Appendix G: Proof of a Quantum Adiabatic Theorem . .... ..... .... 621 Solutions to Exercises... .... ..... .... .... .... .... .... ..... .... 641 References.... .... .... .... ..... .... .... .... .... .... ..... .... 755 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 759

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.